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Chapter 3 Some Special Distributions

3.1 The Binomial and Related Distributions

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Bernoulli experiment and Bernoulli distribution

I A Bernoulli experiment/trial has only two possible
outcomes, e.g. success/failure, heads/tails, female/male,
life/death, nondefective/defective, etc.

I The outcomes are typically coded as 0 (failure) or 1 (success).
I Definition: Bernoulli distribution, X ∼ Bern(p):

P (X = 1) = p, P (X = 0) = 1− p, 0 ≤ p ≤ 1.

I Properties:
1 The pmf is p(x) = px(1− p)1−x for x = 0, 1.
2 The mean is EX = µ = 1 · p+ 0 · (1− p) = p.
3 Since E(X2) = 12 · p+ 02(1− p) = p,

σ2 = Var(X) = E(X2)− µ2 = p− p2 = p(1− p).
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Definition of Binomial distribution

A binomial distribution is a common probability distribution that
occurs in practice. It arises in the following situation:

(1) There are n independent trials.

(2) Each trial results in a “success” or “failure”.

(3) The probability of success in each and every trial is equal to p.

If the random variable X counts the number of successes in the n
trials, then X has a binomial distribution with parameters n and p:

X ∼ Bin(n, p).

Remark 1 The Bernoulli distribution is a special case of Binomial
distribution with n = 1.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Properties of Binomial distribution

If X ∼ Bin(n, p), then

1 The probability distribution of X is

f(x) = P (X = x) =

(
n

x

)
px(1− p)n−x

for x = 0, 1, 2, . . . , n

2 E(X) = µ = np.

3 σ2 = np(1− p).
Note:

(1)
(
n
x

)
= n!

x!(n−x)! . Recall that this is called a combination and is
read “n choose x”.

(2)
∑n

x=0

(
n
x

)
px(1− p)n−x = 1
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The mgf of a binomial distribution is

M(t) =
∑
x

etxp(x) =
∑
x

etx
(
n

x

)
px(1− p)n−x

=
∑
x

(
n

x

)
(pet)x(1− p)n−x

= [(1− p) + pet]n, ∀t.
M ′(t) = n[(1− p) + pet]n−1(pet),

M ′(t) = n[(1− p) + pet]n−1(pet) + n(n− 1)[(1− p) + pet]n−2(pet)2,

which gives that
µ = M ′(0) = np,

and
σ2 = M ′′(0)− µ2 = np(1− p).
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Theorem 3.1.1

Let X1, X2, . . . , Xm be independent random variables such that
Xi has a Bin(ni, p) distribution, for i = 1, 2, . . . ,m. Let

Y =

m∑
i=1

Xi.

Then, Y ∼ Bin(
∑m

i=1 ni, p).

Proof.

The mgf of Xi is MXi(t) = (1− p+ pet)ni . By independence, we
see

MY (t) =
m∏
i=1

(
1− p+ pet

)ni =
(
1− p+ pet

)∑m
i=1 ni .

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Example

Consider the following settings. Is X a binomial random variable?

1 Let X equal the number times the ball lands in red in 10 spins
of a roulette wheel (on a roulette wheel, there are 38 slots: 18
red, 18 black, and 2 green). Yes, X ∼ Bin(n = 10, p = 18/38)

2 Let X equal the number of rainy days in the month of May.
No, since trials are not independent.

3 Let X equal the number of black chips when drawing 2 chips
with replacement from a bowl containing 2 black and 3 red
chips. Yes, X ∼ Bin(n = 2, p = 2/5).

4 Let X equal the number of black chips when drawing 2 chips
without replacement from a bowl containing 2 black and 3 red
chips. No, since trials are not independent and the probability
of success does not remain constant from trial to trial.

5 Let X equal the average weight of 20 randomly selected UI
students. No, since X is not counting the number of
“successes”.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Suppose that 60% of adults have had their wisdom teeth removed.
Suppose 10 adults are randomly selected. Assume independence.

I Find the probability that exactly 3 have had their wisdom teeth
removed.
Solution:
This is a “binomial setting” (i.e. it satisfies the 3 requirements
in the definition). So X ∼ Bin(n = 10, p = 0.60), hence

P (X = 3) =

(
n

x

)
px(1− p)n−x

=

(
10

3

)
0.603(1− 0.60)10−3

= 120(0.60)3(0.40)7

= 0.04247

where
(

10
3

)
= 10!

3!(10−3)! = 10·9·8
3·2·1 = 120.
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I If 10 adults are randomly selected, how many do we expect to
have had their wisdom teeth pulled, on average?
Solution:
X ∼ Bin(10, 0.60), so

E(X) = np = 10(0.60) = 6.

I Determine σ.
Solution:
X ∼ Bin(10, 0.60), so

σ2 = np(1− p) = 10(0.60)(1− 0.60) = 2.40

and
σ =
√

2.40 = 1.549.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Example 3.1.4

Suppose a random experiment that has success probability p. Let
X be the number of successes throughout n independent
repetitions of the random experiment. Then as the number of
experiments increases to infinity, the relative frequency of success,
X/n, converges to p in the following sense:

lim
n→∞

P

(∣∣∣∣Xn − p
∣∣∣∣ ≥ ε) = 0. for any ε > 0 .

Solution: Recall Chebyshev’s inequality:

P (|X − µ| ≥ kσ) ≤ 1/k2,

so we see
P (|X/n− p| ≥ ε) ≤ Var(X/n)/ε2.

Interpretation: The relative frequency of success is close to the
probability of p of success, for large values of n. This is the
so-called Weak Law of Large Numbers, which will be discussed
in Chapter 5.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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From binomial to multinomial

I The binomial distribution can be generalized to the
multinomial distribution. For simplicity, we consider the
trinomial distribution.

I Consider a random experiment with three mutually exclusive
and exhaustive events, C1, C2 and C3. Let pi = P (Ci) for
i = 1, 2, 3. Thus, p1 + p2 + p3 = 1.

I Repeat the above experiment n independent times. Define
the random variable X, Y , and Z to be the number of times
that event C1, C2, C3 occur. Then X, Y , and Z are
nonnegative random variables such that X + Y + Z = n.

I This distribution of (X,Y ) is called the trinomial distribution.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Joint pmf and joint mgf of trinomial distribution

I Joint pmf of X and Y :

p(x, y) =
n!

x!y!(n− x− y)!
px1p

y
2p
n−x−y
3 ,

where x and y are nonnegative integers and x+ y ≤ n.

I Joint mgf of X and Y :

M(t1, t2) = (p1e
t1 + p2e

t2 + p3)n,

for all t1, t2 ∈ R.
I We see X ∼ Bin(n, p1) and Y ∼ Bin(n, p2) according to
M(t1, 0) and M(0, t2).

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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From Binomial to Hypergeometric

An urn contains 6 red marbles and 4 blue marbles. We are going
to select 3 marbles from the urn with the following two different
sampling plans. Find the probability that 2 of the selected marbles
will be red?

1 Sampling with replacement: each time we pick a marble out,
we replace it with a marble of the same color.

2 Sampling without replacement: each time we pick a marble
out, it means one less marble in the urn.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018



15/111

Solution:

Let X be the number of red marbles selected.
1 With replacement

I X follows binomial distribution.
I n = 3, p = 6/10 = 0.6.
I We want the probability of x = 2:

f(2) =

(
3

2

)
0.62(1− 0.6)1 = 0.432.

2 Without replacement: X follows hypergeometric distribution...

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Hypergeometric distribution

I Sampling without replacement.
I The probability of success changes from trial to trial.
I Trials are no longer independent.
I Fixed number of trials.

Definition
The pmf of the hypergeometric random variable X, the number
of successes in a random sample of size n selected from N items
of which k are labeled success and N − k labeled failure, is

f(x) =

(
k
x

)(
N−k
n−x

)(
N
n

) ,max(0, n− (N − k)) ≤ x ≤ min(n, k).

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Back to sampling plan 2

Example
An urn contains 6 red marbles and 4 blue marbles. If we select 3
marbles at random, what is the probability that 2 of them will be
red?

Solution:

I Usually, if we don’t mention sampling with replacement, the
scenario is without replacement as in this example.

I Let X be the number of red marbles selected. Then X follows
hypergeometric distribution.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Binomial and hypergeometric relationship

I If N is very large compared to n we can use the binomial
distribution to approximate the hypergeometric distribution.

I Use p = k/N .

I Good results if n/N ≤ 0.05.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Exp and var of hypergeometric distribution

I For hypergeometric distribution (i.e., without replacement):

E(X) = n
k

N
and Var(X) = n

k

N

N − k
N

N − n
N − 1

.

I For binomial distribution (i.e., with replacement):

E(X) = n
k

N
and Var(X) = n

k

N

N − k
N

.

I The term N−n
N−1 is also named finite population correction

factor (FPC).

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Negative Binomial Distribution

Assumption:

(1) The trials are independent of each other.

(2) Each trial results in a “success” or “failure”.

(3) The probability of success in each and every trial is equal to p.

Definition: The negative binomial random variable X is the total
number of trials in the sequence to produce exactly r successes
(r is a fixed positive integer):

The pmf of X ∼ NB(r, p):

f(x) =

(
x− 1

r − 1

)
(1− p)x−rpr, x = r, r + 1, r + 2, r + 3, . . .

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Remark on different forms of negative binomial

Definition 1: The pmf of X ∼ NB(r, p): X: total number of trials
(including the rth success)

f(x) =

(
x− 1

r − 1

)
(1− p)x−rpr, x = r, r + 1, r + 2, r + 3, . . .

A different definition of NB(r, p) is that it is the distribution of “the
number of failures in the sequence of trials before the rth
success”.

Definition 2: The pmf of X ∼ NB(r, p): X: total number of failures

f(x) =

(
x+ r − 1

r − 1

)
(1− p)x−rpr, x = 0, 1, 2, 3, . . .

The two definitions can be distinguished by whether the support
starts at x = 0 or at x = r.

We stick to Definition 1 in this class.
Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Geometric distribution

I The geometric distribution is a special case of a negative
binomial distribution with r = 1 : X ∼ NB(1, p) = Geo(p).

I The pmf for geometric random variable is

f(x) = (1− p)x−1p, x = 1, 2, 3, . . .

I The cdf for geometric random variable is

F (x) = 1− (1− p)x, x = 1, 2, 3, . . .

I Expectation, variance, and mgf:

EX =
1

p
and Var(X) =

1− p
p2

.

m(t) =
pet

1− (1− p)et
, t < − ln(1− p).

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Memoryless property of geometric distribution

I The geometric distribution has a memoryless property.
Suppose X ∼ Geo(p). Let x, y be positive integers. Then

P (X > x+ y |X > x) = P (X > y).

I Tossing a coin is memoryless.
I Another example on Wikipedia: thousands of safes in a long

hallway, and each safe has 500 position. An eccentric person
stops at each safe once and makes a single attempt to open it.

I Based on this property, can we simply obtain the expectation
of X?

I We see
E(X) = p · 1 + (1− p)E(X + 1),

which gives E(X) = 1/p.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Chapter 3 Some Special Distributions

3.2 The Poisson Distribution

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Poisson distribution

Suppose X is a discrete random variable such that X equals the
number of occurrences in a given (time) interval or region where m
equals the expected number of occurrences in the given interval or
region. We assume that

(1) The number of occurrences in non-overlapping intervals or
regions are independent.

(2) The probability of exactly 1 occurrence in a sufficiently short
interval (or small region) is proportional to the length of the
interval (or size of the region).

(3) The probability of 2 or more occurrences in a sufficiently short
interval (or small region) is approximately equal to 0.

Then X has a Poisson distribution with parameter m. Using
mathematical shorthand we write

X ∼ Pois(m).

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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From Binomial distribution to Poisson distribution

I Binomial pmf of Bin(n, p):

P (X = x) =

(
n

x

)
px(1− p)n−x.

I Consider the limiting case when n→∞ and p→ 0 while
np = m:

lim
n→∞, p→m

n

P (X = x) =

(
n

x

)
px(1− p)n−x

=
e−mmx

x!
,

which is pmf of Pois(m).

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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If X ∼ Pois(m), then
(1) The probability distribution of X is

P (X = x) =
e−mmx

x!

for x = 0, 1, 2, . . .

(2) As usual, adding up all of the probabilities yields
∞∑
x=0

P (X = x) =

∞∑
x=0

e−mmx

x!
= 1.

(3) The Poisson mgf:

M(t) = em(et−1) ∀t,

M ′(t) = em(et−1)(met),

M ′′(t) = em(et−1)(met) + em(et−1)(met)2.

(3) µ = E(X) = m.
(4) σ2 = m.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Example
The average number of defects per square yard of cloth is 1.2.
Assume assumptions (1)-(3) are met.

1 Find the probability of 1 defect in 1 square yard.
Solution:
Letting X equal the number of defects in 1 square yard, we
have X ∼ Pois(m = 1.2). Thus,

P (X = 1) =
e−mmx

x!
=
e−1.21.21

1!
= 0.3614.

2 Find the probability of 2 defects in 2 square yards.
Solution:
Letting Y equal the number of defects in 2 square yards, we
have Y ∼ Pois(m = 2× 1.2 = 2.4). Thus,

P (Y = 2) =
e−mmy

y!
=
e−2.42.42

2!
= 0.2613.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Example
The average number of defects per square yard of cloth is 1.2.
Assume assumptions (1)-(3) are met.

3 Suppose we have a large pile of pieces of cloth. Each piece of
cloth is exactly 1 square yard in size. If you counted the
number of flaws in each piece and recorded this data, what
would be the standard deviation of your dataset?
Solution:
If X equals the number of flaws in 1 square yard, then
X ∼ Pois(m = 1.2). Thus, the standard deviation would be

σ =
√
m =

√
1.2 = 1.095.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Theorem 3.2.1

Suppose that X1, . . . , Xn are independent random variables such
that Xi ∼ Pois(m) for i = 1, . . . , n. Let Y =

∑n
i=1Xi. Then

Y ∼ Pois(
∑n

i=1mi).

Proof.
We have

MY (t) = E(etY ) =

n∏
i=1

exp{mi(e
t − 1)}

= exp

{
n∑
i=1

mi(e
t − 1)

}
.

Thus Y has a Poisson distribution with parameter
∑n

i=1mi due to
the uniqueness of mgf.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Sampling from a Poisson distribution

I Let X ∼ Pois(λ) be the number of customers arriving in 8
hours.

I We decompose X = F +M , where F and M are the number
of female and male customers and P (female) = p.

I The joint pmf of F and M is

PJ,K(j, k) = P (F = j,M = k)

= P (F = j,M = k|X = j + k) · P (X = j + k)

=

(
j + k

j

)
pj(1− p)k · e

−λλj+k

(j + k)!

=
e−λp(λp)j

j!

e−λ(1−p)[λ(1− p)]k

k!
.

I We see that F ∼ Pois(λp) and M ∼ Pois[λ(1− p)] are
independent.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Chapter 3 Some Special Distributions

3.3 The Γ, χ2, and β Distributions

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018



The Gamma Distribution

35/111



35/111

Gamma Function

I Gamma function:

Γ(α) =

∫ ∞
0

yα−1e−ydy, α > 0.

I Properties:

Γ(1) =

∫ ∞
0

e−ydy = 1,

Γ(α) = (α− 1)

∫ ∞
0

yα−2e−ydy = (α− 1)Γ(α− 1),

Γ(n) = (n− 1)!

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Gamma Distribution

I Gamma function with y = x/β:

Γ(α) =

∫ ∞
0

(
x

β

)α−1

e−x/β
(

1

β

)
dx, α > 0, β > 0.

I Equivalent form:

1 =

∫ ∞
0

1

Γ(α)βα
xα−1e−x/βdx.

I Gamma distribution X ∼ Gamma(α, β):

f(x) =


1

Γ(α)βα
xα−1e−x/β 0 < x <∞

0 elsewhere

I Parameters: α shape, β scale.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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The first row depicts the pdf of exponential distribution and the second row is for Chi-square distribution.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Properties of Gamma Distribution

I Moment generating function:

MX(t) =
1

(1− βt)α
, t < 1/β.

I Expectation:

M ′(t) = (−α)(1− βt)−α−1(−β),

µX= αβ.

I Variance:

M ′′(t) = (−α)(−α− 1)(1− βt)−α−2(−β)2,

σ2
X= αβ2.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Suppose that a random variable X has a probability density
function given by,

f(x) =


kx3e−x/2 x > 0

0 otherwise.

I Find the value of k that makes f(x) a density function.
I Find the expectation and variance.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Exponential Distribution

I X has exponential distribution X ∼ exp(β)
if X is Γ(α = 1, β).

I pdf and cdf:

f(x) =


1

β
e−x/β x > 0

0 otherwise.

F (x) = 1− e−x/β x > 0.

I Expectation: β.
I Variance: β2.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Memorylessness of Exponential Distribution

The exponential distribution is “memoryless”:

P (X > x) = e−x/β.

Let x > 0, y > 0, then

P (X > x+ y |X > x) =
e−(x+y)/β

e−x/β
= e−y/β = P (X > y).

I The only memoryless continuous probability distributions are
the exponential distributions.

I The only memoryless discrete probability distributions are the
geometric distributions

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Applications of Exponential Distribution

The exponential distribution is frequently used to model the
following:

I Life time of electronic components
I The time until a radioactive particle decays.
I The time until default (on payment to company debt holders)

in reduced form credit risk modeling.
I The time it takes for a bank teller to serve a customer.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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From Poisson Distribution to Exponential Distribution

I Suppose the event occur in time according to a Poisson
process with parameter λ, i.e., X ∼ Poisson(λ).

I Over the time interval (0, t), the probability of have x
occurrence is

P (X = x) =
(λt)xe−λt

x!
.

I Let T be the length of time until the first arrival.
I Target: distribution of T , i.e., F (t) = P (T ≤ t).
I The waiting time of the first event is great than t, which is

equivalent to zero occurrence over time interval (0, t):

P (T > t) = P (X = 0) =
(λt)0e−λt

0!
= e−λt.

P (T ≤ t) = 1− e−λt,
so T ∼ exp(1/λ).

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Motivation of Additivity of Gamma Distribution

What is the distribution of the waiting time of the kth occurrence?

In other words, if T1 is the waiting time of the 1st occurrence, T2 is
the waiting time of the 2nd occurrence, ... what is the distribution of

T = T1 + T2 + . . .+ Tk.

Answer: suppose each Ti ∼ exp(β) ∼ Γ(1, β), then T ∼ Γ(k, β).

Why?

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Theorem 3.3.2

If X1, . . . , Xn are independent random variables and that

Xi ∼ Gamma(αi, β) for i = 1, . . . , n.

Let Y =
∑n

i=1Xi. Then Y ∼ Gamma
(∑n

i=1 αi, β
)

.

Solution Sketch:

MY (t) =

n∏
i=1

(1− βt)−αi = (1− βt)−
∑n

i=1 αi , t < 1/β.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Chi-square Distribution

I A Chi-square distribution with parameter r, X ∼ χ2(r), is
defined to be Gamma(α = r/2, β = 2).

I pdf

f(x) =


1

Γ(r/2)2r/2
xr/2−1e−x/2 x > 0

0 otherwise.

I mgf:
MX(t) = (1− 2t)−r/2, t < 1/2.

I Expectation: r.
I Variance: 2r.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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CDF of Chi-squared Distribution

The cdf of a Chi-squared distribution is

F (x) =

∫ x

0

1

Γ(r/2)2r/2
tr/2−1e−t/2dt ,

which does not have a closed form expression.

Instead, at each x, the value of F (x) can be evaluated numerically.

Example

Suppose X ∼ χ2(10). Determine the probability
P (3.25 ≤ X ≤ 20.5).

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Corollary 3.3.1

If X1, . . . , Xn are independent random variables and that

Xi ∼ χ2(ri) for i = 1, . . . , n.

Let Y =
∑n

i=1Xi. Then Y ∼ χ2
(∑n

i=1 ri

)
.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Theorem 3.3.1

Suppose X ∼ χ2(r). If k > −r/2 then E
(
Xk
)

exists and it is
given by

E(Xk) =
2kΓ( r2 + k)

Γ( r2)
, if k > −r

2
.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018
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Motivating example: Suppose that X1 has a Gamma(α, 1)
distribution, that X2 has a Gamma(β, 1), and that X1, X2 are
independent, where α > 0 and β > 0. Let Y1 = X1 +X2 and
Y2 = X1/(X1 +X2). Show that Y1 and Y2 are independent.
Solution:
One-to-one transformation: x1 = y1y2 and x2 = y1(1− y2),
0 < x1, x2 <∞ gives 0 < y1 <∞, 0 < y2 < 1.

J =

∣∣∣∣ y2 y1

1− y2 −y1

∣∣∣∣ = −y1,

Joint pdf of X1 and X2:

fX1,X2(x1, x2) =
1

Γ(α)Γ(β)
xα−1

1 xβ12 e
−x1−x2 , 0 < x1, x2 <∞.

Joint pdf of Y1 and Y2:

fY1,Y2(y1, y2) =

(
1

Γ(α+ β)
yα+β−1

1 e−y1
)(

Γ(α+ β)

Γ(α)Γ(β)
yα−1

2 (1− y2)β−1

)
.
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Beta Distribution

We say Y2 follows a beta distribution with parameters α and β.

f(y) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1, 0 < y < 1.

I Mean:
α

α+ β
.

I Variance:
αβ

(α+ β + 1)(α+ β)2
.

I Beta distribution is not a special case of Gamma distribution.
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Chapter 3 Some Special Distributions

3.4 The Normal Distribution
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Review of Gamma Function

I Gamma function:

Γ(α) =

∫ ∞
0

yα−1e−ydy, α > 0.

I Properties:

Γ(1) =

∫ ∞
0

e−ydy = 1,

Γ(α) = (α− 1)

∫ ∞
0

yα−2e−ydy = (α− 1)Γ(α− 1),

Γ(n) = (n− 1)!

I What is Γ(0.5)?
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I Target:

Γ(0.5) =

∫ ∞
0

y−1/2e−ydy.

I Define y = x2, so dy = 2xdx, and

Γ(0.5) = 2

∫ ∞
0

e−x
2
dx =

∫ ∞
−∞

e−x
2
dx.

I Key fact:

Γ(0.5) =

∫ ∞
−∞

e−x
2
dx =

√
π.
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Gaussian Integral

Key fact:

Γ(0.5) =

∫ ∞
−∞

e−x
2
dx =

√
π.

Proof:

{Γ(0.5)}2 =

(∫ ∞
−∞

e−x
2
dx

)(∫ ∞
−∞

e−x
2
dx

)
=

(∫ ∞
−∞

e−y
2
dy

)(∫ ∞
−∞

e−z
2
dz

)
=

∫ ∞
−∞

∫ ∞
−∞

e−y
2−z2dydz

=

∫ 2π

0
dθ

∫ ∞
0

e−r
2
rdr =

1

2

∫ 2π

0
dθ

∫ ∞
0

e−r
2
dr2

= π.

In the second last inequality, polar coordinates are used such that
x = r sin θ and y = r cos θ.
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From

Γ(0.5) =

∫ ∞
−∞

exp
{
−x2

}
dx =

√
π,

we see that ∫ ∞
−∞

exp

{
−z

2

2

}
dz =

√
2π.

Can we construct a distribution related to the integral above?
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Normal Distribution, aka Gaussian Distribution

A random variable Z is said to follow a standard normal
distribution if it has pdf

f(z) =
1√
2π

exp

{
−z

2

2

}
, −∞ < z <∞

Write Z ∼ N(0, 1).
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Density Function of Standard Normal Distribution
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Properties of Standard Normal Distribution

Moment generating function:

MZ(t) = E exp(tZ)

=

∫ ∞
−∞

exp(tz)
1√
2π

exp

(
−1

2
z2

)
dz

= exp

(
1

2
t2
)∫ ∞
−∞

1√
2π

exp

(
−1

2
(z − t)2

)
dz

= exp

(
1

2
t2
)∫ ∞
−∞

1√
2π

exp

(
−1

2
w2

)
dw, w = z − t

= exp

(
1

2
t2
)
, −∞ < t <∞.

Expectation: M ′Z(t) = t exp
(

1
2 t

2
)
⇒ E(Z) = 0.

Variance: M ′′Z(t) = exp
(

1
2 t

2
)

+ t2 exp
(

1
2 t

2
)
⇒ Var(Z) = 1.
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Let X = σZ + µ, where the random variable Z ∼ N(0, 1), and
−∞ < µ <∞, σ > 0 are two parameters. What is the pdf of X?

Answer:
I The pdf of Z is

f(z) =
1√
2π

exp

{
−z

2

2

}
.

I X = σZ + µ⇐⇒ Z = X−µ
σ .

I The Jacobian is σ−1.
I Then the pdf of X is

f(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
, −∞ < x <∞.
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We say that X has a normal distribution if it has the pdf

f(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
, −∞ < x <∞,

where −∞ < µ <∞ and σ2 > 0 are two parameters. Write
X ∼ N(µ, σ2).

Properties:
I Expectation: µ. We call µ the location parameter
I Variance σ2. We call σ the scale parameter.
I Moment generating function:

E exp(tX) = E exp(t(σZ + µ)) = exp (µt) E exp (tσZ)

= exp (µt) exp

(
1

2
σ2t2

)
= exp

(
µt+

1

2
σ2t2

)
.
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Denote by Φ(z) the cdf of the standard normal distribution N(0, 1),
that is to say,

Φ(z) =

∫ z

−∞

1√
2π

exp

{
− t

2

2

}
dt.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018



65/111

From its picture, show that

Φ(−z) = 1− Φ(z).

Table III in Appendix C offers an abbreviated table of probabilities
for a standard normal.
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Example

Let Z denote a normal random variable with mean 0 and standard
deviation 1. Find

1 P (Z > 2),

2 P (−2 ≤ Z ≤ 2).
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Example. Let X be N(2, 25). Find P (0 < X < 10).

Example. Suppose X ∼ N(µ, σ2). Find
P (µ− 3σ < X < µ+ 3σ).
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Theorem 3.4.1 From Normal to Chi-square

Suppose Z ∼ N(0, 1), then W = Z2 follows χ2(1).

Proof.

1. Since W = Z2, then Z =
√
W when Z ≥ 0 and Z = −

√
W if

Z < 0.
2. The pdf of Z is fZ(z) = 1√

2π
exp

{
− z2

2

}
.

3. The pdf of W is

fW (w)

=
1√
2π

exp

{
−(
√
w)2

2

} ∣∣∣∣ 1

2
√
w

∣∣∣∣+
1√
2π

exp

{
−(−

√
w)2

2

} ∣∣∣∣− 1

2
√
w

∣∣∣∣
=

1√
2π

1√
w

exp
{
−w

2

}
recall that Γ(0.5) =

√
π

=
1

Γ(0.5)20.5
w0.5−1 exp

{
−w

2

}
,

which is the pdf of Γ(α = 0.5, β = 2), which is χ2(1).
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Theorem 3.4.2

Let X1, . . . , Xn be independent random variables such that Xi

follows N(µi, σ
2
i ). Then, for constants a1, . . . , an,

Y =

n∑
i=1

aiXi follows N

(
n∑
i=1

aiµi,

n∑
i=1

a2
iσ

2
i

)
.

Proof.

MY (t) =

n∏
i=1

exp

{
taiµi +

1

2
t2a2

iσ
2
i

}

= exp

{
t

n∑
i=1

aiµi +
1

2
t2

n∑
i=1

a2
iσ

2
i

}
.

Recall that the mgf of N(µ, σ2) is exp(µt+ 1
2σ

2t2)

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018



71/111

Corollary 3.4.1

Let X1, . . . , Xn be i.i.d. with common distribution N(µ, σ2). Then,

X =
1

n

n∑
i=1

Xi follows N

(
µ,
σ2

n

)
.
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Let X1, X2, and X3 be i.i.d. random variables with common mgf
exp{t+ 2t2}.

1 Compute the probability P (X1 < 3).

2 Derive the mgf of Y = X1 + 2X2 − 2X3.

3 Compute the probability P (Y > 7).
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Chapter 3 Some Special Distributions

3.5 The Multivariate Normal Distribution
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Standard Bivariate Normal Distribution

A n-dim random vector Z = (Z1, Z2, . . . , Zn)> is said to have a
standard bivariate normal distribution if its pdf is

fZ(z) =

n∏
i=1

1√
2π

exp

{
−z

2
i

2

}
=

(
1

2π

)n/2
exp

{
−1

2
z>z

}
.

It can be shown that EZ = 0 and Cov(Z) = In.

Write Z ∼ Nn(0, In).
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I Let X = AZ + µ where A is a (nonsingular) n× n matrix
and µ is an n-dim column vector. We introduce notation
Σ = AA>. Then

EX = AEZ + µ.

Cov(X) = AA> = Σ.

I Transformation:
X = AZ + µ

gives
Z = A−1(X − µ).

Then Jocobian is |A|−1 = |Σ|−
1
2 .

I The pdf of X is

fX(x) = (2π)−n/2
∣∣Σ∣∣− 1

2 exp
{
− 1

2
(x− µ)>Σ−1(x− µ)

}
.
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Definition of Multivariate Normal Distribution

A n-dim random vector X = (X1, X2, . . . , Xn)> is said to have a
bivariate normal distribution with mean µ and
variance-covariance matrix Σ if its pdf is given by

fX(x) = (2π)−n/2
∣∣Σ∣∣− 1

2 exp
{
− 1

2
(x− µ)>Σ−1(x− µ)

}
.

Write X ∼ Nn(µ,Σ).
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Non-matrix Expression of Bivariate Normal PDF

Suppose X ∼ N2(µ,Σ), then we write

Σ = Cov(X) =

[
Var(X1) Cov(X1, X2)

Cov(X1, X2) Var(X2)

]
=

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

Hence the pdf of X can be expressed as

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

× exp

{
− 1

2(1− ρ2)

[
(x1 − µ1)2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)2

σ2
2

]}
.

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018



78/111

The plot is from Wikipedia https://en.wikipedia.org/wiki/Multivariate_normal_distribution.
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The plot is from Wikipedia https://en.wikipedia.org/wiki/Multivariate_normal_distribution.
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What is the marginal distribution of bivariate normal distribution?
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Moment Generating Functions
I Multivariate standard normal distribution, Z ∼ Nn(0, I):

MZ(t) = E(exp(t>Z)) = E

[
n∏
i=1

exp(tiZi)

]
=

n∏
i=1

E(exp(tiZi))

= exp

{
1

2

n∑
i=1

t2i

}
= exp

{
1

2
t>t

}
.

I Multivariate normal distribution, X ∼ Nn(µ,Σ),
recall X = AZ + µ and AA> = Σ:

MX(t) = E(exp(t>X))

= E(exp(t>AZ + t>µ))

= exp(t>µ)E
[
exp

{
(A>t)>Z

}]
= exp(t>µ)

[
1

2
exp

{
t>AA>t

}]
= exp(t>µ) exp[(1/2)t>Σt].
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Theorem

Suppose X ∼ Nn(µ,Σ). Let Y = CX + b where C is a full rank
m× n matrix and b is an m× 1 vector. Then
Y ∼ Nm(Cµ+ b, CΣC>).

Proof.

MY (t) = E(exp(t>Y ))

= E(exp(t>CX + t>b))

= exp(t>b)E
[
exp

{
(C>t)>X

}]
= exp(t>b)

[
exp

{
(C>t)>µ+

1

2
t>CΣC>t

}]
= exp(t>(Cµ+ b)) exp[(1/2)t>CΣC>t].

Linear combinations of normal random vector is still normally
distributed.
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Corollary

Suppose X = (X1, X2)> ∼ N2(µ,Σ). Then X1 ∼ N(µ1, σ
2
1).

Proof.

Take C = (1, 0).
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Corollary 3.5.1

Extension: Suppose X ∼ Nn(µ,Σ). Then X1 ∼ Nm(µ1,Σ
2
11),

where

X =

[
X1

X2

]
and

µ =

[
µ1

µ2

]
,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Marginal distributions of multivariate normal vector are still
normal distributions.
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1 Recall that if X1 and X2 are independent, then
Cov(X1, X2) = 0.

2 However, if Cov(X1, X2) = 0, then X1 and X2 is not
necessarily independent.

3 However, if Cov(X1, X2) = 0, and both X1 and X2 are
normally distributed, then X1 and X2 must be independent.
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Theorem 3.5.2

Suppose X has a Nn(µ,Σ) distribution, partitioned as

X =

[
X1

X2

]
,µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then X1 and X2 are independent if and only if Σ12 = 0.
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Theorem 3.5.3

Suppose X has a Nn(µ,Σ) distribution, partitioned as

X =

[
X1

X2

]
,µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Assume that Σ is positive definite. Then the conditional distribution
of X1|X2 is

Nm(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21).

The conditional distributions of a multivariate normal vector
are also normal.
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Example 3.5.2

Consider a bivariate normal random variable (X1, X2), with pdf

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

× exp

{
− 1

2(1− ρ2)

[
(x1 − µ1)2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)2

σ2
2

]}
.

The conditional distribution of X1 given X2 = x2 is

N
(
µ1 + ρ

σ1

σ2
(x− µ2) , σ2

1(1− ρ2)

)

Boxiang Wang, The University of Iowa Chapter 3 STAT 4100 Fall 2018



Multivariate Normal and χ2

89/111



89/111

Theorem 3.5.4

Suppose X has a Nn(µ,Σ) distribution, where Σ is positive
definite. Then the random variable W = (X − µ)>Σ−1(X − µ)
has a χ2(n) distribution.
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Chapter 3 Some Special Distributions

3.6 t- and F -Distributions
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Motivation

I If X1, . . . , Xn is a random sample from N(µ, σ2), then

Z =
X̄ − µ
σ/
√
n

follows the standard normal distribution.
I Thus

P (−z0.025 < Z < z0.025) = 95%,

P

(
X̄ − z0.025

σ√
n
< µ < X̄ + z0.025

σ√
n

)
= 95%,

which is actually a 95% confidence interval for the location
parameter µ. The confidence interval will be discussed in
Chapter 4.2.
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I In practice, σ is unknown, we may use

t =
X̄ − µ
S/
√
n
.

I But P (−z0.025 < t < z0.025) = 95% does not hold anymore.
I What is the distribution of t?
I W.S.Gosset (who published the result with the name of

Student) derived the distribution of t, which is named
Student’s t-distribution.

I The resulting confidence interval
P (−t0.025 < t < t0.025) = 95% is wider than the one based on
normal distribution, because we have less information on σ.
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Definition of t- Distribution

Suppose W ∼ N(0, 1), V ∼ χ2(r) and that W and V are
independent. The pdf of

T =
W√
V/r

.

is

f(t) =

Γ

(
r + 1

2

)
Γ
(r

2

)√
πr

(
1 +

t2

r

)− r+1
2

, −∞ < t <∞.

This distribution is called t-distribution with r degrees of freedom.
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1. The joint pdf of W and V is

fW,V (w, v) =
1√
2π

exp

(
−w

2

2

)
1

Γ( r2)2
r
2

v
r
2
−1e−

v
2 , −∞ < w <∞, v > 0.

2. Transformation (w, v)→ (t, v):

t =
w√
v
r

, u = v ⇒ w =
t
√
u√
r
, v = u. |J | =

√
u√
r
.

3. Joint pdf of T and U is

fT,U (t, u) =
1√
2π

exp

(
−ut

2

2r

)
1

Γ( r2)2
r
2

u
r
2
−1e−

u
2

√
u√
r

=
Γ( r+1

2 )

Γ( r2)
√
πr

(
1 +

t2

r

)− r+1
2

× pdf of Γ

(
r + 1

2
, 2

(
1 +

t2

r

)−1
)
,

which gives the pdf of T .
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Mean and Variance of t-Distribution

By the definition,

T = W (V/r)−1/2, W and V are independent.

Suppose r/2− k/2 > 0, we have

E(T k) = E

[
W k

(
V

r

)−k/2]
= E(W k)E

[(
V

r

)−k/2]

= E(W k)
2−k/2Γ(r/2− k/2)

Γ(r/2)r−k/2
, if k < r.

Recall for X ∼ χ2(r). If k > −r/2, then

E(Xk) =
2kΓ(r/2 + k)

Γ(r/2)
.

Therefore E(T ) = E(W ) = 0 if r > 1,
and Var(T ) = E(T 2) = r

r−2 if r > 2.
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Properties of t-Distribution

I The density function of t-distribution is symmetric,
bell-shaped, and centered at 0.

I The variance of t-distribution is larger than the standard
normal distribution.

I The tail of t-distribution is heavier (larger kurtosis).
I As the degree of freedom increases, the density function of
t-distribution converges to the density of the standard normal
distribution. This is called convergence in distribution, as
will be discussed in Example 5.2.3.
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Student’s Theorem

Suppose X1, · · · , Xn are iid N(µ, σ2) random variables. Define
the random variables,

X =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
Then

1 X ∼ N(µ, σ
2

n );

2 X and S2 are independent;

3 (n− 1)S2/σ2 ∼ χ2
(n−1);

4 The random variable

T =
X − µ
S/
√
n

has a t-distribution with n− 1 degrees of freedom.
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Proof of (2): Key steps:
1 Write S2 as a function of (X2 − X̄, . . . , Xn − X̄).
2 Prove X̄ is independent of (X2 − X̄, . . . , Xn − X̄).
3 Thus X̄ is independent of S2.

1. We observe that

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

=
1

n− 1

(
(X1 − X̄)2 +

n∑
i=2

(Xi − X̄)2

)

=
1

n− 1

[ n∑
i=2

(Xi − X̄)

]2

+

n∑
i=2

(Xi − X̄)2

 ,

where

X1 − X̄ = −
n∑
i=2

(Xi − X̄)

since
∑n

i=1(Xi − X̄) = 0.
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2. We want to prove X̄ is independent of (X2 − X̄, . . . , Xn − X̄).
Make the transformation:

y1 = x̄, y2 = x2 − x̄, . . . , yn = xn − x̄.

Inverse functions:

x1 = y1 −
n∑
i=2

yi, x2 = y2 + y1, . . . , xn = yn + y1.

Jacobian:

J =

∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 . . . −1 −1
1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 1

∣∣∣∣∣∣∣∣∣∣∣
= n.
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Joint pdf of X1, . . . , Xn:

fX1,...,Xn(x1, . . . , xn) =
1

(
√

2π)n
exp

{
−1

2

n∑
i=1

x2
i

}
.

Joint pdf of Y1, . . . , Yn:

fY1,...,Yn(y1, . . . , yn)

=
n

(
√

2π)n
exp

−1

2

(
y1 −

n∑
i=2

yi

)2

− 1

2

n∑
i=2

(yi + y1)2


=

n

(
√

2π)n
exp

−n2 y2
1 −

1

2

 n∑
i=2

y2
i +

(
n∑
i=2

yi

)2
 , −∞ < yi <∞.

Thus Y1 is independent of (Y2, . . . , Yn). Equivalently, X̄ is
independent of (X2 − X̄, . . . , Xn − X̄), saying X̄ is independent
of S2.
This proof could be simplified using matrix notations.
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Proof of (3): It is known that

V =

n∑
i=1

(
Xi − µ
σ

)2

follows a χ2(n) distribution. We observe that

V =

n∑
i=1

(
(Xi − X̄) + (X̄ − µ)

σ

)2

=

n∑
i=1

(
Xi − X̄

σ

)2

+

(
X̄ − µ
σ/
√
n

)2

=
(n− 1)S2

σ2
+

(
X̄ − µ
σ/
√
n

)2

≡ VA + VB.

We see VB follows a χ2(1) distribution and the distribution of VA is
our interest. We have shown that VA and VB are independent.
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As V ∼ χ2(n), VB ∼ χ2(1), and VA and VB are independent, we
take mgfs on both sides of V = VA + VB . We then have

MV (t) = MVA(t)MVB (t),

(1− 2t)−n/2 = MVA(t)(1− 2t)−1/2,

MVA(t) = (1− 2t)−(n−1)/2.

We thus know that
VA ∼ χ2(n− 1).
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Proof of (4): We write

T =
X̄ − µ
S/
√
n

=
(X̄ − µ)/(σ/

√
n)√

(n−1)S2/σ2

n−1

,

where the numerator follows a standard normal distribution, the
denominator is

√
χ2(n− 1)/n− 1, and the numerator and the

denominator are independent. Thus T follows t(n− 1).
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Examples

1 Assume that T has a student t-distribution with 5 degrees of
freedom. Find P (|T | > 2.571).

2 Suppose that the five random variables X1, X2, . . . , X5 are
i.i.d. and each has a standard normal distribution. Determine
a constant c such that the random variable

c(X1 +X2)

(X2
3 +X2

4 +X2
5 )1/2

.

will have a t-distribution.

3 Let X1, . . . , X6 be iid random variables each having a normal
distribution with mean µ and variance σ2. Find

P

(
X̄ − 2.571

S√
6
< µ < X̄ + 2.571

S√
6

)
.
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Motivation

I Suppose X1, . . . , Xn is a random sample from N(µ1, σ
2
1), and

Y1, . . . , Ym is independently drawn from N(µ2, σ
2
2).

I If our interest is σ2
1/σ

2
2 , then a nature choice is

S2
X/S

2
Y .

I The F -distribution gives us

S2
X/S

2
Y

σ2
X/σ

2
Y

=
S2
X/σ

2
X

S2
Y /σ

2
Y

∼ F (n− 1,m− 1).

I This problem is frequently encountered in regression and
analysis of variance (ANOVA).
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Let U and V are two independent χ2 random variables with
degrees of freedom r1 and r2, respectively. The pdf of

W =
U/r1

V/r2

is

f(w) =
Γ( r1+r2

2 )( r1r2 )r1/2

Γ r1
2 Γ r2

2

(w)
r1
2
−1

(1 + w r1
r2

)
r1+r2

2

, 0 < w <∞.
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This plot is from Wikipedia: https://en.wikipedia.org/wiki/F-distribution
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Moments of F -Distributions

I Let F have an F -distribution with r1 and r2 degrees of
freedom. We write

F =
r2

r1

U

V
,

where U ∼ χ2(r1), V ∼ χ2(r2), and U and V are
independent.

I Thus

E(F k) =

(
r2

r1

)k
E(Uk)E(V −k).

I Recall, again, for X ∼ χ2(r). If k > −r/2, then

E(Xk) =
2kΓ(r/2 + k)

Γ(r/2)
.

I We have

E(F ) =
r2

r1
r1

2−1Γ( r22 − 1)

Γ r2
2

=
r2

r2 − 2
, being large when r2 is large.
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Facts on F -Distributions

1 If X ∼ Fr1,r2 , then 1/X ∼ Fr2,r1 .

2 If X ∼ tn, then X2 ∼ F1,n.

3 If X ∼ Fr1,r2 , then

r1
r2
X

1 + r1
r2
X
∼ Beta

(r1

2
,
r2

2

)
.
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