Chapter 3 Some Special Distributions

3.1 The Binomial and Related Distributions
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Bernoulli Distribution'



Bernoulli experiment and Bernoulli distribution

>

A Bernoulli experiment/trial has only two possible
outcomes, e.g. success/failure, heads/tails, female/male,
life/death, nondefective/defective, etc.

The outcomes are typically coded as 0 (failure) or 1 (success).
Definition: Bernoulli distribution, X ~ Bern(p):

v

v

P(X=1)=p, P(X=0=1-p, 0<p<Ll

Properties:
The pmfis p(z) = p®(1 — p)*~* forz = 0, 1.
ThemeanisEX =pu=1-p+0-(1—p)=np.
Since E(X?) =12 -p+ 0%(1 —p) = p,

v

0® =Var(X) =E(X*) —p* =p—p* =p(1 —p).
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Binomial Distribution'



Definition of Binomial distribution

A binomial distribution is a common probability distribution that
occurs in practice. It arises in the following situation:

(1) There are n independent trials.
(2) Each trial results in a “success” or “failure”.
(3) The probability of success in each and every trial is equal to p.

If the random variable X counts the number of successes in the n
trials, then X has a binomial distribution with parameters n and p:

X ~ Bin(n, p).

Remark 1 The Bernoulli distribution is a special case of Binomial
distribution with n = 1.
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Properties of Binomial distribution

If X ~ Bin(n,p), then
The probability distribution of X is

forx =0,1,2,...,n
E(X) = pu=np.
o® =np(l—p).
Note:
M ()= ﬁ'x), . Recall that this is called a combination and is

X
read “n choose x”.

@ S, (M)prl—p T =1
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The mgf of a binomial distribution is
tx tx n x n—x
= = 1—
M(t) % ep(x) % e (x>p( P)
n t\x n—x
= 1_
Ex <x> (pe")*(1 —p)

= [(1 —p) + pe']”, Vt.
M'(t) = n[(1 — p) + pe']"* (pe"),
M'(t) = n[(1 = p) + pe'" " (pe') + n(n — D[(1 — p) + pe']" > (pe")?,
which gives that
o= M'(0) = np,

and
o? = M"(0) — > = np(1 — p).
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Theorem 3.1.1

Let X1, Xo, ..., X,, be independent random variables such that
X; has a Bin(n,, p) distribution, for i = 1,2, ..., m. Let

Then, Y ~ Bin(>"1" n;, p).

Proof.
The mgf of X; is Mx,(t) = (1 — p + pe)™. By independence, we
see

m

My (t) = H (I—p+pe")"=(1-p +pet)2?;1"i .
i=1

O
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Example
Consider the following settings. Is X a binomial random variable?

Let X equal the number times the ball lands in red in 10 spins
of a roulette wheel (on a roulette wheel, there are 38 slots: 18
red, 18 black, and 2 green). Yes, X ~ Bin(n = 10,p = 18/38)

Let X equal the number of rainy days in the month of May.
No, since trials are not independent.

Let X equal the number of black chips when drawing 2 chips
with replacement from a bowl containing 2 black and 3 red
chips. Yes, X ~ Bin(n = 2,p = 2/5).

Let X equal the number of black chips when drawing 2 chips
without replacement from a bow! containing 2 black and 3 red
chips. No, since trials are not independent and the probability
of success does not remain constant from trial to trial.

Let X equal the average weight of 20 randomly selected Ul
students. No, since X is not counting the number of
“successes’.
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Suppose that 60% of adults have had their wisdom teeth removed.
Suppose 10 adults are randomly selected. Assume independence.

» Find the probability that exactly 3 have had their wisdom teeth
removed.
Solution:
This is a “binomial setting” (i.e. it satisfies the 3 requirements
in the definition). So X ~ Bin(n = 10, p = 0.60), hence

Pex=3 = (")ra-pr

X

10
= < >0.603(10.60)1°—3

3
= 120(0.60)3(0.40)"
= 0.04247
10\ _ 10! _ 1098 __
where (1) = 30—3)1 — 321 — 120.
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» If 10 adults are randomly selected, how many do we expect to
have had their wisdom teeth pulled, on average?
Solution:
X ~ Bin(10,0.60), so

E(X) = np = 10(0.60) = 6.

» Determine o.
Solution:
X ~ Bin(10,0.60), so

o2 = np(1 — p) = 10(0.60)(1 — 0.60) = 2.40

and

o =v2.40 = 1.549.
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Example 3.1.4

Suppose a random experiment that has success probability p. Let
X be the number of successes throughout n independent
repetitions of the random experiment. Then as the number of
experiments increases to infinity, the relative frequency of success,
X/n, converges to p in the following sense:

lim P <

n—oo

Solution: Recall Chebyshev’s inequality:
P(IX — u| > ko) < 1/k?,

X
— 7P
n

25) =0. foranye > 0.

SO we see

P(|X/n —p| >¢) < Var(X/n) /2.
Interpretation: The relative frequency of success is close to the
probability of p of success, for large values of n. This is the

so-called Weak Law of Large Numbers, which will be discussed
in Chapter 5.
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Multinomial Distribution'



From binomial to multinomial

» The binomial distribution can be generalized to the
multinomial distribution. For simplicity, we consider the
trinomial distribution.

» Consider a random experiment with three mutually exclusive
and exhaustive events, C1, Cy and Cs. Let p; = P(C;) for
1=1,2,3. Thus, p1 +p2 +p3 = 1.

» Repeat the above experiment n independent times. Define
the random variable X, Y, and Z to be the number of times
that event C1, Cy, C3 occur. Then X, Y, and Z are
nonnegative random variables such that X +Y + Z = n.

» This distribution of (X, Y") is called the trinomial distribution.
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Joint pmf and joint mgf of trinomial distribution

» Joint pmf of X and Y":

n!
zlylln —z —y)

n—r—y

PIPaps

p(z,y) =

where x and y are nonnegative integers and = + y < n.

» Joint mgf of X and Y":

M (t1,t2) = (p1e™ + pae’® + p3)",

forall t1,t € R.

» We see X ~ Bin(n,p;) and Y ~ Bin(n, p2) according to
M(tl, 0) and M(O, tg).
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Hypergeometric Distribution'



From Binomial to Hypergeometric

An urn contains 6 red marbles and 4 blue marbles. We are going
to select 3 marbles from the urn with the following two different
sampling plans. Find the probability that 2 of the selected marbles
will be red?

Sampling with replacement: each time we pick a marble out,
we replace it with a marble of the same color.

Sampling without replacement: each time we pick a marble
out, it means one less marble in the urn.

Boxiang Wang, The University of lowa Chapter 3 STAT 4100 Fall 2018



Let X be the number of red marbles selected.
With replacement

» X follows binomial distribution.
» n=3,p=06/10=0.6.
» We want the probability of x = 2:

f(2) = (;’) 0.6%(1 —0.6)' = 0.432.

Without replacement: X follows hypergeometric distribution...
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Hypergeometric distribution

Sampling without replacement.
The probability of success changes from trial to trial.

\4

v

v

Trials are no longer independent.
Fixed number of trials.

v

Definition

The pmf of the hypergeometric random variable X, the number
of successes in a random sample of size n selected from NV items
of which k are labeled success and N — k labeled failure, is

G (-5
()

,max(0,n — (N — k)) <z < min(n, k).

fz) =
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Back to sampling plan 2

Example

An urn contains 6 red marbles and 4 blue marbles. If we select 3
marbles at random, what is the probability that 2 of them will be
red?

Solution:

» Usually, if we don’t mention sampling with replacement, the
scenario is without replacement as in this example.

» Let X be the number of red marbles selected. Then X follows
hypergeometric distribution.
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Binomial and hypergeometric relationship

» If IV is very large compared to n we can use the binomial
distribution to approximate the hypergeometric distribution.

» Usep =Fk/N.
» Good results if n/N < 0.05.
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Exp and var of hypergeometric distribution

» For hypergeometric distribution (i.e., without replacement):

» The term %:’f is also named finite population correction
factor (FPC).
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Negative Binomial Distribution

Assumption:
(1) The trials are independent of each other.
(2) Each trial results in a “success” or “failure”.
(3) The probability of success in each and every trial is equal to p.

Definition: The negative binomial random variable X is the total
number of trials in the sequence to produce exactly r successes
(r is a fixed positive integer):

The pmf of X ~ NB(r,p):
r—1 =T, T
f(m):<r_1>(1_p) p, IE:T,'I’+1,T+2,T+3,...
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Remark on different forms of negative binomial

Definition 1: The pmf of X ~ NB(r,p): X: total number of trials
(including the rth success)

-1
f(z) = (f_1>(1—p)x7"p7", r=rr+1L,r+2,r+3,...

A different definition of NB(r, p) is that it is the distribution of “the
number of failures in the sequence of trials before the rth
success’.

Definition 2: The pmf of X ~ NB(r,p): X total number of failures

-1
f@) = <x o )(1—p>x—’“ph 7=0,1,2,3,...

The two definitions can be distinguished by whether the support
startsatx =0oratx =r.

We stick to Definition 1 in this class.
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Geometric distribution

» The geometric distribution is a special case of a negative
binomial distribution with r = 1: X ~ NB(1,p) = Geo(p).
» The pmf for geometric random variable is

fx)=0-p)*tp, z=1,2,3,...
» The cdf for geometric random variable is
Flx)=1—-(1-p)*, z=1,2,3,...

» Expectation, variance, and mgf:

1 1
EX = — and Var(X) = —.
p p
(t) o In(1 — p)
m = _— - .
1—(1—p)et’ b
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Memoryless property of geometric distribution

» The geometric distribution has a memoryless property.
Suppose X ~ Geo(p). Let z, y be positive integers. Then

P(X>zx+4+y|X >z)=P(X >vy).

» Tossing a coin is memoryless.

» Another example on Wikipedia: thousands of safes in a long
hallway, and each safe has 500 position. An eccentric person
stops at each safe once and makes a single attempt to open it.

» Based on this property, can we simply obtain the expectation
of X?

» We see
E(X)=p-1+(1-pEX+1),

which gives E(X) = 1/p.


https://en.wikipedia.org/wiki/Memorylessness

Chapter 3 Some Special Distributions
3.2 The Poisson Distribution

Boxiang Wang, The University of lowa Chapter 3 STAT 4100 Fall 2018



Poisson distribution

Suppose X is a discrete random variable such that X equals the
number of occurrences in a given (time) interval or region where m
equals the expected number of occurrences in the given interval or
region. We assume that

(1) The number of occurrences in non-overlapping intervals or
regions are independent.

(2) The probability of exactly 1 occurrence in a sufficiently short
interval (or small region) is proportional to the length of the
interval (or size of the region).

(3) The probability of 2 or more occurrences in a sufficiently short
interval (or small region) is approximately equal to 0.

Then X has a Poisson distribution with parameter m. Using
mathematical shorthand we write

X ~ Pois(m).
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From Binomial distribution to Poisson distribution

» Binomial pmf of Bin(n, p):

Px =a) = (M) -

» Consider the limiting case when n — oo and p — 0 while
np = m:

m
n—o0, p— %

which is pmf of Pois(m).
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If X ~ Pois(m), then
(1) The probability distribution of X is

forx =0,1,2,...
(2) As usual, adding up all of the probabilities yields

> e m
;)P(X:x)zz =1

z=0

(3) The Poisson mgf:
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Example

The average number of defects per square yard of cloth is 1.2.
Assume assumptions (1)-(3) are met.

1 Find the probability of 1 defect in 1 square yard.
Solution:
Letting X equal the number of defects in 1 square yard, we
have X ~ Pois(m = 1.2). Thus,

—M T 6_1‘21.21

P(X=1)= —— = ——— = 0.3614.

2 Find the probability of 2 defects in 2 square yards.
Solution:
Letting Y equal the number of defects in 2 square yards, we
have Y ~ Pois(m = 2 x 1.2 = 2.4). Thus,

—m, Y 72.42.42
Py=2=2""_°¢ = 0.2613.
y! 2!
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Example

The average number of defects per square yard of cloth is 1.2.
Assume assumptions (1)-(3) are met.

3 Suppose we have a large pile of pieces of cloth. Each piece of
cloth is exactly 1 square yard in size. If you counted the
number of flaws in each piece and recorded this data, what
would be the standard deviation of your dataset?

Solution:
If X equals the number of flaws in 1 square yard, then
X ~ Pois(m = 1.2). Thus, the standard deviation would be

o =+vm=v12=1.095.
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Theorem 3.2.1

Suppose that X1, ..., X, are independent random variables such
that X; ~ Pois(m)fori=1,...,n.LetY =>"" | X;. Then
Y ~ Pois(d ;| my).

Proof.
We have

My (t) = B(e") = [ explma(e’ — 1)}
=1

= exp {Z m (et — 1)} .
i=1

Thus Y has a Poisson distribution with parameter »_;" | m; due to
the uniqueness of mgf. O
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Sampling from a Poisson distribution

» Let X ~ Pois(\) be the number of customers arriving in 8
hours.

» We decompose X = F'+ M, where F' and M are the number
of female and male customers and P(female) = p.

» The joint pmf of F"and M is

PJ,K(]ak) :P(F:jaM: k)
=PF=jM=kX=j+k)-P(X=j+k)
]+ k> . k 67/\>\j+k
= ) 1— R A —
< J p'(1=p) (j +k)!
e P (Ap) e MPIN(1 — p)]*
4! k! '

» We see that /' ~ Pois(\p) and M ~ Pois[A(1 — p)] are
independent.
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Chapter 3 Some Special Distributions

3.3 The T, x?, and /3 Distributions
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Gamma Function

» Gamma function:

INa) = / y* e Vdy, a> 0.
0
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Gamma Distribution

» Gamma function with y = z//:

00 a—1
INa) = /0 (Z) e /P <;> dz, a>0,8>0.

» Equivalent form:

1= /00 ;xo‘_le_z/ﬂdx.
o D(a)s®

» Gamma distribution X ~ Gamma(«, 5):

1 po—1
fla) = { T

0 elsewhere

—z/B

e 0< <o

» Parameters: « shape, 3 scale.
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Gamma(1,1) Gamma(3,1) Gamma(5,1)
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The first row depicts the pdf of exponential distribution and the second row is for Chi-square distribution.
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Properties of Gamma Distribution

» Moment generating function:

Mx (t) = —, t<1/p.

L
(1—pt)

» Expectation:

M'(t) = (—a)(1 = Bt)"*7H(=h),

px= af.
» Variance:
M"(t) = (—a)(—a — 1)(1 — 1) 2(=B)?,
03(: af?.
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Suppose that a random variable X has a probability density
function given by,

kxde=%/?2 x>0

fz) =

0 otherwise.

» Find the value of & that makes f(z) a density function.
» Find the expectation and variance.
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Exponential Distribution

» X has exponential distribution X ~ exp(5)
if XisT(a=1,0).
» pdf and cdf:

1
Zo—z/B

e x>0
B

flx) =
0 otherwise.
F(z)=1—e/8 z>0.
» Expectation: 5.
» Variance: (2.
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Memorylessness of Exponential Distribution

The exponential distribution is “memoryless”:
P(X >x)=e%/P,
Letx > 0,y > 0, then

ef(x‘i’y)/ﬁ

= e VP =P(X >y).

PX>z+y|X>2)=

» The only memoryless continuous probability distributions are
the exponential distributions.

» The only memoryless discrete probability distributions are the
geometric distributions
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Applications of Exponential Distribution

The exponential distribution is frequently used to model the
following:

» Life time of electronic components
» The time until a radioactive particle decays.

» The time until default (on payment to company debt holders)
in reduced form credit risk modeling.

» The time it takes for a bank teller to serve a customer.
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From Poisson Distribution to Exponential Distribution

Suppose the event occur in time according to a Poisson
process with parameter A, i.e., X ~ Poisson(\).
Over the time interval (0, ¢), the probability of have x

occurrence is Ny
)Fe™
P(X =z) = %
xr

» Let T be the length of time until the first arrival.
» Target: distribution of 7', i.e., '(t) = P(T < t).

» The waiting time of the first event is great than ¢, which is

equivalent to zero occurrence over time interval (0, t):

0,—\t
P(T>t)=P(X =0) = W)Of = e,
P(T<t)=1-—e*,

so T ~ exp(1/\).
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Motivation of Additivity of Gamma Distribution

What is the distribution of the waiting time of the kth occurrence?

In other words, if T7 is the waiting time of the 1st occurrence, T5 is
the waiting time of the 2nd occurrence, ... what is the distribution of

T=Ti+1T+...+ 1.

Answer: suppose each T; ~ exp(3) ~ I'(1, 5), then T" ~ I'(k, /3).

Why?
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Theorem 3.3.2

If X1,..., X, are independent random variables and that
X; ~ Gamma(ay, 5) fori=1,...,n.
LetY =>7" , X;. ThenY ~ Gamma(Z?zl a;, ﬁ).

Solution Sketch:

n

My(t) =JJ(1— Bty = (1 - pt)"Xi= t < 1/B.

=1
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Chi-square Distribution

A Chi-square distribution with parameter r, X ~ y?(r), is
defined to be Gamma(a = r/2, 5 = 2).

v

> pdf
1 r/2—1_—x
Wﬂf /2 16 /2 xTr > O
f(x) =

0 otherwise.

» mgf
Mx(t)=(1—2t)""2 t<1/2.

» Expectation: r.
» Variance: 2r.
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CDF of Chi-squared Distribution

The cdf of a Chi-squared distribution is

z 1
F _ 7157"/2—1 _t/2dt
(=) /0 tejoze ¢

which does not have a closed form expression.
Instead, at each z, the value of F'(x) can be evaluated numerically.

Example

Suppose X ~ x2(10). Determine the probability
P(3.25 < X < 20.5).
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Table I1
Chi-Square Distribution

The following table presents selected quantiles of chi-square distribution, i.e., the
values x such that
£ 1
P(X < — ri2-1 —w_,."Zd !
X<a) fo Twzr. ¢

for selected degrees of freedom r.

PX<2)
0.010 0025 0050 0100 0900 0950 0975 0.090
0.000 0001 0001 0016 2706 3841 5024  6.635
0.020 0051 0103 0211 4605 5991 7378  9.210
0.115 0216 0352 0584 6251 7815 9348 11.345
0.207 0484 0711 1064 7.779 0488 11.143 13.277
5| 0554 0831 1145 1610 9236 11.070 12.833 15086
6| 0872 1237 1635 2204 10645 12502 14449 16.812
7
8

W= L bD ==

1.239  1.690 2,167  2.833 12,017 14.067 16.013 18.475
1.646 2180  2.733  3.490 13362 15507 17.535 20.090
9] 2.088 2700 3.325 4168 14684 16919 19.023 21.666
10 | 2.558  3.247  3.940  4.865 15987 18307 20.483 23.209
11 | 3.053  3.816  4.575 5578 17276 10.675 21.920 24.725
12 | 3.571 4404 5226  6.304 18549 21.026 23.337 26.217
13| 4107 5009 5802 7.042 19812 22362 24.736 27.688
14| 4.660 5620 6571  7.790 21.064 23.685 26.119 29.141
15 | 5220  6.262 7.261 8547 22307 24.996 27488 30.578
5.812 6908 7.962 0312 23.542
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Corollary 3.3.1

If X1, ..., X, are independent random variables and that
X; ~x2(ry) fori=1,...,n.

LetY = S0, X Then ¥ ~ x* (S50, 71)
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Theorem 3.3.1

Suppose X ~ x2(r). If k > —r/2 then E (X*) exists and it is
given by
2"0(% + k)

B =1

,
ifk > ——.
ik > =3

N3
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The Beta Distribution'



Motivating example: Suppose that X; has a Gamma(a, 1)
distribution, that X» has a Gamma(g, 1), and that X, X5 are
independent, where o > 0 and 8 > 0. Let Y; = X; + X5 and
Ys = X1/(X1 + X3). Show that Y; and Y3 are independent.
Solution:

One-to-one transformation: =1 = y1y2 and zo = y1 (1 — y2),
0<z,m9 <oogives 0 <y <oo, 0 <y <1.

J = ‘ b2 . = —VY1,

11—y —mn

Joint pdf of X7 and Xs:

(67

Proxlonm) = g

TR0 < xp, a0 < 0O.

Joint pdf of Y7 and Y5:

fviva(y1,y2) = <F(1)y?+516—y1> (Wygl(l - y2)ﬂ_1> <
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Beta Distribution

We say Y, follows a beta distribution with parameters o and g.

fly) = llmya_l(l )L o<y<l.
. (87
» Mean: ot B
. af
» Variance:

(a+B+1)(a+B)*
» Beta distribution is not a special case of Gamma distribution.
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Chapter 3 Some Special Distributions
3.4 The Normal Distribution

Boxiang Wang, The University of lowa Chapter 3 STAT 4100 Fall 2018



Review of Gamma Function

» Gamma function:

» Whatis I'(0.5)?

Boxiang Wang, The University of lowa Chapter 3 STAT 4100 Fall 2018



» Target:
F(O.E)):/ y 2 Vdy.
0

» Define y = 22, s0 dy = 2zdzx, and

I'0.5) = 2/ e du :/ e da.
0

—00

» Key fact:
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Gaussian Integral

Key fact:

Proof:

{T(0.5)}* = < / xde> ( / edem)
NS
:< e ydy> (/ e ? dz)
o _
:/ / ey 2 dydz
2()7? > 5 2T [e'e) )
:/ de/ e " rdr:/ d9/ e " dr?
0 0 2 0 0
=7

In the second last inequality, polar coordinates are used such that
x =rsinf and y = rcos#.
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From

I'0.5) = /OO exp {—x2} dr = /7,

—00

00 22
/ exp {—2} dz = v/ 2m.

Can we construct a distribution related to the integral above?

we see that
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Normal Distribution, aka Gaussian Distribution

A random variable Z is said to follow a standard normal
distribution if it has pdf

f(z)—\/%exp{—zj}, —00 < 2 < 00

Write Z ~ N(0, 1).
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Density Function of Standard Normal Distribution

Normal(0,1)
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Properties of Standard Normal Distribution

Moment generating function:

My(t) = Eexp(tZ)
_ /_ O; exp(t) \/12?exp <—;z2> i
= exp <1t2> /oo 1% exp (—;(2 — t)2> dz

() [
(1) v

Expectation: M} (t) = texp (3t?) = E(Z) =
Variance: M7 (t) = exp (3t2) + t? exp (5¢2) = Var( ) =1.

= exp
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Let X = 0Z + u, where the random variable Z ~ N(0, 1), and
—00 < pu < 0o, o > 0 are two parameters. What is the pdf of X?

Answer:
» The pdf of Z is

1) = e |- 2}

> X =0+ pu<= 7=
» The Jacobian is 0!
» Then the pdf of X is

_ 2
1) = mmen{ - cico
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We say that X has a normal distribution if it has the pdf

fx) = ! exp{—w}, —00 < < 00,

V2no? 202
where —oo < ;1 < oo and o2 > 0 are two parameters. Write
X ~ N(u,o?).
Properties:

» Expectation: . We call i the location parameter
» Variance o2. We call o the scale parameter.
» Moment generating function:

Eexp(tX)=Eexp(t(cZ + p)) = exp (ut) Eexp (to Z)

1 1
= exp (ut) exp (202752) = exp </st + 202752) .
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Denote by ®(z) the cdf of the standard normal distribution N (0, 1),
that is to say,
z 1 t2
P(z) = ——exp{ —— pdt.
) /oo 27 p{ 2 }

Normal(0,1)

02 03 04

00 041

-3 2 -1 0 1 2 3
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From its picture, show that
O(—2)=1—P(z).

Table Il in Appendix C offers an abbreviated table of probabilities
for a standard normal.
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 5000 .5040 5080  .5120 .5160  .5199  .5239  .5279  .5319  .5359
0.1 5398 5438  .5478 5517  .5557  .5596  .5636  .5675 .5714  .5753
0.2 5793 5832 5871 5910  .5948 5987  .6026  .6064 .6103  .6141
0.3 6179 6217 6255 6293  .6331 .6368 .6406 .6443 .6480  .6517
0.4 6554 6591  .6628 .6664 .6700 .6736 .6772 .6808  .6844  .6879
0.5 6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190  .7224
0.6 7257 7291 7324 7357 7389  .7422 7454 .7486  .7517  .7549
0.7 7580  .7611  .7642 7673 .7704 7734 .T764 7794 7823  .7852
0.8 7881 7910 7939 7967 .7995 .8023 .8051 .8078 .8106  .8133
0.9 8159 8186  .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 8413 .8438  .8461 .8485 .8508 .8531  .8554  .8577 .8599  .8621
1.1 8643  .8665 .8686  .8708 .8729 .8749 8770 .8790 .8810  .8830
1.2 8849  .8869  .8888  .8907 .8925 .8944 .8962 .8980 .8997  .9015
1.3 9032 9049 9066  .9082 .9099 9115 9131 .9147 9162  .9177
14 9192 9207  .9222 9236 .9251 .9265 .9279  .9292 9306  .9319
1.5 9332 9345 9357 9370 .9382 .9394 .9406 .9418 9429  .9441
1.6 9452 9463 9474 9484 9495 9505 .9515  .9525 .9535  .9545
1.7 9554 9564  .9573 9582 9591 9599 9608 .9616  .9625  .9633
1.8 9641 9649 9656 9664  .9671 .9678  .9686  .9693  .9699  .9706
1.9 9713 9719 9726 9732 9738 9744 9750 .9756  .9761  .9767
2.0 9772 9778 9783 9788 9793  .9798  .9803  .9808 .9812  .9817
2.1 9821 9826 9830 9834  .9838 9842 9846  .9850 .9854  .9857
2.2 9861  .9864  .9868 .9871 .9875 9878 9881  .9884 9887  .9890
2.3 9893 9896  .9898 9901  .9904 .9906  .9909  .9911 .9913  .9916
2.4 9918 9920  .9922 .9925 9927 9929 9931 .9932 .9934  .9936
2.5 29938 .9940  .9941 9943  .9945 9946  .9948 9949  .9951  .9952
2.6 29953 19955 9956 9957  .9959  .9960  .9961  .9962 .9963  .9964
2.7 19965 9966  .9967  .9968  .9969 .9970 .9971 9972 9973  .9974
2.8 9974 9975 9976 9977 9977 9978  .9979 9979  .9980  .9981
2.9 9981 9982 9982 9983  .9984  .9984 9985  .9985 .9986  .9986
3.0 19987 9987 9987  .9988  .9988  .9989 9989  .9989  .9990  .9990
3.1 29990 19991 9991  .9991  .9992  .9992  .9992  .9992 .9993  .9993
3.2 29993 9993 .9994  .9994  .9994 9994 9994 9995 .9995  .9995
3.3 29995 19995 9995 9996  .9996  .9996  .9996  .9996  .9996  .9997
3.4 9997 9997 9997 9997  .9997  .9997  .9997  .9997  .9997  .9998
9998  .9998 9998 998 9998 998 .9998 9998 9998 9998
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Let Z denote a normal random variable with mean 0 and standard
deviation 1. Find

P(Z > 2),
P(-2<Z<2).
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Example. Let X be N(2,25). Find P(0 < X < 10).

Example. Suppose X ~ N(u,c?). Find
P(p—30 <X < pu+ 30).

f(x)
1
2o
T } T } T T X
u=3c w=20 w—o I n+o u+ 2o w4+ 3o
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Theorem 3.4.1 From Normal to Chi-square

Suppose Z ~ N(0, 1), then W = Z? follows x?(1).

Proof.

1. Since W = Z2,then Z = VW when Z > 0 and Z = —/W if
Z < 0. ,
2. The pdf of Z is f(z) = L {—Z }
3. The pdf of W is

fw (w) ) 2
S bl )

1 1 w
=————expi—— recallthatI'(0.5) = v/«
V2r Jw p{ 2} (0:5) = v

_ 1 0.5—1 w}
T1(0.5)205 " eXp{ 2

which is the pdf of I'(a = 0.5, 3 = 2), which is x2(1). O



Theorem 3.4.2

Let X1, ..., X, be independent random variables such that X;
follows N(u;, a?). Then, for constants aq, ..., a,,

n n n
Y = Z a; X; follows N (Z Qi Z a?af) .
i=1 i=1 i=1

Proof.
‘ 1
My (t) = Hexp {tai,ui + 2t2a220i2}
i=1
n 1 n
= exp {tz aip; + 5152 Z a?a?} .
i=1 i=1
Recall that the mgf of N(u, 0?) is exp(ut + 10%t?) O

Boxiang Wang, The University of lowa Chapter 3 STAT 4100 Fall 2018



Corollary 3.4.1

Let X1, ..., X, be i.i.d. with common distribution N (1, o?). Then,

1 & o2
X==-) X,; follows N — .
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Let X1, X5, and X3 be i.i.d. random variables with common mgf
exp{t + 2t*}.

Compute the probability P(X; < 3).

Derive the mgfof Y = X7 + 2X, — 2X5.

Compute the probability P(Y > 7).
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Chapter 3 Some Special Distributions

3.5 The Multivariate Normal Distribution
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Standard Bivariate Normal Distribution

A n-dim random vector Z = (Zy, Zs, ..., Z,) " is said to have a
standard bivariate normal distribution if its pdf is

- 2 1\"? 1+
H eXp 9 = % exXp —52 zZ .

It can be shown that EZ = 0 and Cov(Z) = I,,.

Write Z ~ N,,(0, I,,).
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» Let X = AZ + p where A is a (nonsingular) n x n matrix
and p is an n-dim column vector. We introduce notation
> =AA". Then
EX = AEZ + p.

Cov(X)=AAT = 3.

» Transformation:
X=AZ+pu

gives
Z=AYX —p).

Then Jocobian is |A|~! = || 2.
> The pdf of X is

fx(@) = @) PSP ep | - S@- ) 5w -}
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Definition of Multivariate Normal Distribution

A n-dim random vector X = (X, X»,...,X,,)" is said to have a
bivariate normal distribution with mean p and
variance-covariance matrix X if its pdf is given by

1

fx(@) = @n) RS e { - S@-w) = @ - m ],

Write X ~ N, (u, X).
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Non-matrix Expression of Bivariate Normal PDF

Suppose X ~ Ny(u, X), then we write

> = Cov(X) = [ Cov(X1,Xo)  Var(Xs) |

Var(Xl) COV(Xl, XQ) :|
pPo102 O'%

|: O'% pPo102 :|

Hence the pdf of X can be expressed as

F (@1, 22) !
T1,T9) =
b 2wo1094/1 — p?
1 (21 — p1)? (21— 1) (22 — p2) | (22 — po)?
— -2 .
o { 2(1 = p?) [ of g 0102 T
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Multivariate Normal Distribution
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The plot is from Wikipedia https://en.wikipedia.org/wiki/Multivariate_normal_distribution.
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Marginal Distributions'





https://en.wikipedia.org/wiki/Multivariate_normal_distribution

What is the marginal distribution of bivariate normal distribution?
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Moment Generating Functions

» Multivariate standard normal distribution, Z ~ N,,(0, I):

HE (exp(tiZ;))

Mz(t) = E(exp(t' Z)) [H exp(tiZ;)
i=1

1
= exp {222&3} = exp {2tTt}.
=1

» Multivariate normal distribution, X ~ N, (u, ),
recall X = AZ+pand AAT = 3

Mx (t) = E(exp(t X))
= E(exp(t' AZ +t"p))

=exp(t' p)E [exp {(ATt)TZH
= exp(tTu) [; exp {tTAATt}]

= exp(t' p)exp[(1/2)t" ).




Suppose X ~ N, (p,X). LetY = CX + b where C is a full rank
m X n matrix and b is an m x 1 vector. Then
Y ~N,,(Cu+b, CECT).

Proof.
My (t) = Blexp(tY))
= E(exp(t'CX +1t'b))
= exp(t' b)E [exp {(CTt)TXH
1
= exp(t' b) [exp {(CTt)Tp, + 2tTcz:CTtH
—exp(t' (Cp+ b)) exp[(1/2)t'CEC "]

O

Linear combinations of hormal random vector is still normally
distributed.
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Corollary

Suppose X = (X1, X2)"T ~ No(u, 2). Then X1 ~ N(uy,0?).

Proof.
Take C = (1,0). O
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Corollary 3.5.1

Extension: Suppose X ~ N, (i, X). Then X1 ~ N, (111, =3),

where
_ | X
x=[ %]
and
_ | M1
5 [ " ] ,
Y X2
Y= .
{ o1 XYoo }

Marginal distributions of multivariate normal vector are still
normal distributions.

Boxiang Wang, The University of lowa Chapter 3 STAT 4100 Fall 2018



Independence'



Recall that if X; and X are independent, then
Cov(Xy, X2) =0.

However, if Cov(X;, X2) = 0, then X; and X is not
necessarily independent.

However, if Cov(X;, X2) = 0, and both X; and X, are
normally distributed, then X; and X5 must be independent.
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Theorem 3.5.2

Suppose X has a N, (u, 3) distribution, partitioned as
X4 I } [ Y1 X9 ]
X = = 2= .
[ X } a [ o o1 Yoo

Then X; and X5 are independent if and only if 315 = 0.
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Conditional Distributions'



Theorem 3.5.3
Suppose X has a N, (u, X) distribution, partitioned as
X oy } [ Y1 Yo ]
X = s b= ,2 = .
[ X } a [ Mo o1 Yoo
Assume that 3 is positive definite. Then the conditional distribution
of X1|X2 is

Non (g + Z10255 (X2 — o), Ti1 — T12 X5, Toy).

The conditional distributions of a multivariate normal vector
are also normal.
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Example 3.5.2

Consider a bivariate normal random variable (X1, X2), with pdf

1

201094/ 1 — p?

Xexp{_2( 1 [(ﬂﬂl—m)g_2/)(:61—#1)(962—#2)+(x2—u2)2]}.

f(x1,$2) -

2 2
1—p?) oy 0109 o5

The conditional distribution of X7 given Xy = x4 is

g1
N (m+pa2<x—u2> o1 —p2>)
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Multivariate Normal and X2I



Theorem 3.5.4

Suppose X has a N,,(u, X) distribution, where X is positive
definite. Then the random variable W = (X — p) 'S 71X — p)
has a x%(n) distribution.
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Chapter 3 Some Special Distributions
3.6 t- and F'-Distributions
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t-Distribution I



» If X1,...,X, is arandom sample from N(u, 02), then
X—p
7 =——
o/v/n
follows the standard normal distribution.
» Thus
P(—Z0.025 < 7Z< Z0.025) = 95%,
P(X T cu<X+ 7 95%
0.025\/5 1 0.025 \/ﬁ 0,

which is actually a 95% confidence interval for the location
parameter u. The confidence interval will be discussed in
Chapter 4.2.
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In practice, o is unknown, we may use
P St
S/
But P(—z0.025 < t < 20.025) = 95% does not hold anymore.

What is the distribution of ¢?

W.S.Gosset (who published the result with the name of
Student) derived the distribution of ¢, which is named
Student’s ¢-distribution.

The resulting confidence interval
P(—tp025 <t < to.025) = 95% is wider than the one based on
normal distribution, because we have less information on o.
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Definition of ¢- Distribution

Suppose W ~ N(0,1), V ~ x?(r) and that W and V are
independent. The pdf of

This distribution is called t-distribution with » degrees of freedom.
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1. The joint pdf of W and V' is

fwv(w,v) ( w2> L il <w< >
w,v) = exp| —— | —v2 e 2, —co < w < 00, V
v Var P\T2 ) r(g)2s
2. Transformation (w, v) — (¢,v):
t
t:%,u:véw: \/a,v:u.U\:\/E.
T G Vr
3. Joint pdf of T"and U is
1 Ut2 r u \/ﬂ
t,u) = ex —uz leT2 Y=
frotu) = —7= P( ) 5 5z Jr

() 12 r+1 2\ 7!
=—2= " (14 — df of ' 211+ —
L(5)y/mr ( N 7'> x pato 2 7’ < + r)

which gives the pdf of T'.
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Normal and t

0.2 03 04

0.0 01
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Mean and Variance of ¢-Distribution

By the definition,
T =W(V/r)~2, W and V are independent.

()]

Suppose /2 — k/2 > 0, we have

E(T*)=E [Wk <V> _m] = E(WME

r

27k (r /2 — k/2)

=E(W* Jifk <
W)= e TE<T
Recall for X ~ x2(r). If k > —r/2, then
2kT(r/2 + k)

BN = =0 e)

Therefore E(T') = E(W) =0ifr > 1,
and Var(T) = E(T?) = L5 ifr > 2.
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Properties of ¢-Distribution

» The density function of ¢-distribution is symmetric,
bell-shaped, and centered at 0.

» The variance of t-distribution is larger than the standard
normal distribution.

» The tail of ¢-distribution is heavier (larger kurtosis).

» As the degree of freedom increases, the density function of
t-distribution converges to the density of the standard normal
distribution. This is called convergence in distribution, as
will be discussed in Example 5.2.3.
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Student’s Theorem

Suppose Xi, - -, X,, are iid N(u, 2) random variables. Define
the random variables,

Y 1 - 2 1 ~\ 2
X = nZ;X and % = 12(Xi—X)
Then

X ~ N, 2);

X and S? are independent;

(n—1)82/0% ~ X2, _;

The random variable
_X—p
- S/n

has a t-distribution with » — 1 degrees of freedom.

Boxiang Wang, The University of lowa Chapter 3 STAT 4100 Fall 2018
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Proof of (2): Key steps:
Write S2 as a function of (X2 — X, ..., X, — X).
Prove X is independent of (X5 — X,..., X, — X).
Thus X is independent of S2.

1. We observe that

: < : )

where

X1 —-X=-> (X —X)
=2

since > (X; — X) =0.
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2. We want to prove X is independent of (Xs — X, ..., X, — X).
Make the transformation:

YI=Z,Y2=T2—Z,...,Yp =Ty — T.

Inverse functions:

n
TL=U1— Y Ui T2 = Y2+ YL T = Yo+ UL

=2
Jacobian:
1 -1 -1 -1 -1
1 1 0 0 0
J=10 1 1 0 0 |=p
0 O 0 1 1
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Joint pdf of X1,..., X,:

1 1w
le,...,Xn(xl) o 7'/1"71) = exp _5 xi .

Joint pdf of Y7,...,Y,:

le,...,Yn (yb ce 7yn)

n 2 n
Z(\/%)n exp —% (yl_zyz) _%Z(yi+yl)2

i=2 i=2
n n 1 | "~ ?
2 2
SR zw(zw) oo << oo,
(V2m)" 2 2 |\= i=2

Thus Y7 is independent of (Y3, ..., Y;,). Equivalently, X is
independent of (X» — X,..., X,, — X), saying X is independent
of 2.

This proof could be simplified using matrix notations.
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Proof of (3): It is known that

" /X
- (
=1

)

2
_ M)
follows a x?(n) distribution. We observe that
V= Z ( (X M))
_Z X, — X + X —u\?
N — o o/\/n

-0 <X/?/B>2

=Vs+ Vp.

We see Vj follows a x2(1) distribution and the distribution of V4 is
our interest. We have shown that V4 and Vg are independent.

Boxiang Wang, The University of lowa Chapter 3 STAT 4100 Fall 2018



AsV ~ x%(n), Vg ~ x2(1), and V4 and V3 are independent, we
take mgfs on both sides of V' = V4 + V5. We then have
My (t) = My, (t) My (t),
(1—20)/2 = My, (1)(1 - 20) /2,
My, (t) = (1 —2t)~ (=172,

We thus know that
Vi~ x3(n—1).
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Proof of (4): We write
_Xop
T= SZ\/H
_ X =w)/(e/vn)

N (n—1)52/o?
n—1

where the numerator follows a standard normal distribution, the
denominator is y/x2(n — 1)/n — 1, and the numerator and the
denominator are independent. Thus T follows ¢(n — 1).
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0.900 0950 0975 0.990  0.995 0.999
3.078 6314 12706 31.821 63.657 318.309
1.886 2920 4303 6965 9925  22.327
1.638 2353 3182 4541 5841 10215
1.533 2132 2776  3.747  4.604 7.173
1476 2015 2571 3365  4.032 5.893
1.440 1943 2447 3143 3.707 5.208
1415 1.895 2365 2998  3.499 4.785
1.397 1.860 2306 2.896  3.355 4.501
1.383 1.833 2262 2.821 3.250 4.297
10 | 1.372 1812 2228 2764  3.169 4.144
11 ] 1.363 1.796 2201 2718  3.106 4.025
12| 1.356  1.782 2179 2681  3.055 3.930
13 ] 1.350 1771 2160  2.650  3.012 3.852
14| 1.345 1761 2145 2624 2977 3.787
15 ] 1.341 1.753 2131  2.602  2.947 3.733
16 | 1.337 1.746 2120 2583 2921 3.686
171 1.333 1.740 2110 2567  2.898 3.646
18 | 1.330 1.734 2101 2552 2878 3.610
19| 1.328 1.729 2093 2539 2861 3.579
20 | 1.325 1.725 2,086 2528  2.845 3.552
21| 1.323 1721 2080 2518 2831 3.527
22| 1.321 1717 2074 2508 2819 3.505
23 | 1.319 1.714  2.069 2500  2.807 3.485
24 | 1.318  1.711  2.064 2492 2797 3.467
25| 1.316 1.708 2.060 2485 2787 3.450
26 | 1.315 1.706  2.056 2479 2779 3.435
27 | 1.314 1703 2052 2473 2771 3421
28 | 1.313  1.701 2,048 2467 2763 3.408
29 | 1.311 1.699  2.045 2462 2756 3.396
30 | 1.310 1.697  2.042  2.457  2.750 3.385
1.282 1645 1.960

D00 =IO W N
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Assume that 1" has a student ¢-distribution with 5 degrees of
freedom. Find P(|T'| > 2.571).

Suppose that the five random variables X1, X, ..., X5 are
i.i.d. and each has a standard normal distribution. Determine
a constant ¢ such that the random variable

C(Xl + XQ)
(X3 + X7+ X3)1/2

will have a t-distribution.

Let X1,..., Xg be iid random variables each having a normal
distribution with mean 1 and variance o2. Find

. S _ S
P(X—-2571" = <u< X +2571— ).
( V6 H \/6>
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F-Distribution I



Suppose X1, ..., X, is a random sample from N(y1,0%), and
Y1, ..., Yy, is independently drawn from N(us, 03).

v

v

If our interest is 02 /03, then a nature choice is

5% /8%

v

The F'-distribution gives us

S%/Sy _ Sk/ox

oklot  SYot

~F(n—-1m-1).

v

This problem is frequently encountered in regression and
analysis of variance (ANOVA).
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Let U and V are two independent x? random variables with
degrees of freedom r; and r9, respectively. The pdf of

U/Tl
W =
V/TQ
is
F(T1+T2)(%)r1/2 w %1_
flu) = =2 W o<w<n
2+ 2 (I+wil) =
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This plot is from Wikipedia: https://en.wikipedia.org/wiki/F-distribution
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https://en.wikipedia.org/wiki/F-distribution

Moments of F'-Distributions

» Let F' have an F'-distribution with 1 and ro degrees of
freedom. We write

T9 U
F="2
T1 V,
where U ~ x%(r1), V ~ x*(r2), and U and V are
independent.
» Thus N
E(FF) = <:2> E(UME(VH).
1

» Recall, again, for X ~ x%(r). If k > —r/2, then

B(XH) = 2K0(r/2 + k)

I'(r/2)
» We have
) 271F(%2 -1)
E(F) == =
(F) o T

, being large when r5 is large
Tro — 2
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Facts on F-Distributions

If X ~ F. o, thenl/X ~ F,, ...
If X ~ ty, then X% ~ Fy,,.
If X ~ Fy, r,, then

1

X T T2
" . Bet (71 7)
L+ 0X a9
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