Chapter 2 Multivariate Distributions

2.1 Distributions of Two Random Variables

Definition

A random variable is a function from a sample space C to \mathcal{R} .

Definition

An *n*-dim random vector is a function from C to \mathbb{R}^n .

► A 2-dim random vector is also called a bivariate random variable.

Remark: $X = (X_1, X_2)'$ assigns to each element c of the sample space C exactly one ordered pair of numbers $X_1(c) = x_1$ and $X_2(c) = x_2$.

Example

- 1 Height and weight of respondent.
- 2 Fuel consumption and hours on an engine.

Discrete Random Variables

Definition

A joint probability mass function

 $p_{X_1,X_2}(x_1,x_2) = p(X_1 = x_1, X_2 = x_2)$ (or $p(x_1,x_2)$) with space $(x_1,x_2) \in S$ has the properties that

(a)
$$0 \le p(x_1, x_2) \le 1$$
,
(b) $\sum_{(x_1, x_2) \in S} p(x_1, x_2) = 1$,
(c) $P[(X_1, X_2) \in A] = \sum_{(x_1, x_2) \in A} p(x_1, x_2)$.

Example

A restaurant serves three fixed-price dinners costing \$7, \$9, and \$10. For a randomly selected couple dinning at this restaurant, let X_1 = the cost of the man's dinner and X_2 = the cost of the woman's dinner.

The joint pmf of X_1 and X_2 is given in the following table:

			x_1	
		7	9	10
	7	0.05	0.05	0.10
x_2	9	0.05	0.10	0.35
	10	0.00	0.20	0.10

- What is the probability of $P(X_1 \ge 9, X_2 \le 9)$? <u>0.60</u>.
- Does man's dinner cost more?

Definition

Suppose that X_1 and X_2 have the joint pmf $p(x_1, x_2)$. Then the pmf for X_i , denoted by $p_i(\cdot)$, i = 1, 2 is the marginal pmf.

Note
$$p_1(x_1) = \sum_{x_2} p(x_1, x_2)$$
 and $p_2(x_2) = \sum_{x_1} p(x_1, x_2)$.

Example Find the marginal pmf of the previous example.

	x_1			x_2	
7	9	10	7	9	10
0.10	0.35	0.55	0.20	0.50	0.30

Let X_1 =Smaller die face, X_2 =Larger die face, when rolling a pair of two dice. The following table shows a partition of the sample space into 21 events.

				x_1			
		1	2	3	4	5	6
	1	1/36	0	0	0	0	0
	2	2/36	1/36	0	0	0	0
x_2	3	2/36	2/36	1/36	0	0	0
	4	2/36	2/36	2/36	1/36	0	0
	5	2/36	2/36	2/36	2/36	1/36	0
	6	2/36	2/36	2/36	2/36	2/36	1/36

Find the marginal pmf's.

Definition

Let $Y = u(X_1, X_2)$. Then, Y is a random variable and

$$E[u(X_1, X_2)] = \sum_{x_1} \sum_{x_2} u(x_1, x_2) p(x_1, x_2)$$

under the condition that

$$\sum_{x_1} \sum_{x_2} |u(x_1, x_2)| p(x_1, x_2)| < \infty$$

Example

Find $E(\max\{X_1, X_2\})$ for the restaurant problem. <u>9.65</u>.

Continuous Random Variables

A joint density function $f_{X_1,X_2}(x_1,x_2)$ (or $f(x_1,x_2)$) with space $(x_1,x_2) \in S$ has the properties that (a) $f(x_1,x_2) > 0$, (b) $\int_{(x_1,x_2)\in S} f(x_1,x_2)dx_1dx_2 = 1$, (c) $P[(X_1,X_2) \in A] = \int_{(x_1,x_2)\in A} f(x_1,x_2)dx_1dx_2$.

Example

Let X_1 and X_2 be continuous random variables with joint density function

$$f(x_1, x_2) = \begin{cases} 4x_1x_2 & \text{for } 0 < x_1, x_2 < 1\\ 0 & \text{otherwise.} \end{cases}$$

1 Find
$$P(1/4 < X_1 < 3/4; 1/2 < X_2 < 1)$$
.
2 Find $P(X_1 < X_2)$.
3 Find $P(X_1 + X_2 < 1)$.

Solution:

$$\int_{1/2}^{1} \int_{1/4}^{3/4} 4x_1 x_2 dx_1 dx_2 = 3/8 = 0.375.$$
$$\int_{0}^{1} \int_{0}^{x_2} 4x_1 x_2 dx_1 dx_2 = 1/2 = 0.5.$$
$$\int_{0}^{1} \int_{0}^{1-x_2} 4x_1 x_2 dx_1 dx_2 = 1/6 = 0.167.$$

Marginal probability density function

Suppose that X_1 and X_2 have the joint pdf $f(x_1, x_2)$. Then the pdf for X_i , denoted by $f_i(\cdot)$, i = 1, 2 is the marginal pdf.

Note:
$$f_1(x_1) = \int_{x_2} f(x_1, x_2) dx_2$$
 and $f_2(x_2) = \int_{x_1} f(x_1, x_2) dx_1$.

Example

Find the marginal pdf from the previous problem.

Solution:

$$f_1(x) = f_2(x) = 2x.$$

Let X_1 and X_2 be continuous random variables with joint density function

$$f(x_1, x_2) = \begin{cases} cx_1x_2 & \text{for } 0 < x_1 < x_2 < 1 \\ 0 & \text{otherwise.} \end{cases}$$

1 Find *c*.

- **2** Find $P(X_1 + X_2 < 1)$.
- **3** Find marginal probability density function of X_1 and X_2 .

We have c = 8 because

$$\int_{0}^{1} \int_{x_{1}}^{1} x_{1}x_{2}dx_{1}dx_{2} = 1/8 = 0.125.$$
$$\int_{0}^{1/2} \int_{x_{1}}^{1-x_{1}} 8x_{1}x_{2}dx_{1}dx_{2} = 1/6 = 0.167.$$

For the marginal pdf, we have

$$f_{X_1}(x_1) = \int_{x_1}^1 8x_1 x_2 dx_2 = 4x_1 - 4x_1^3,$$

$$f_{X_2}(x_2) = \int_0^{x_2} 8x_1 x_2 dx_1 = 4x_2^3.$$

Let X_1 and X_2 be continuous random variables with joint pdf

$$f(x_1, x_2) = \begin{cases} cx_1x_2 & \text{for } 0 < x_1 < x_2 < 1 \\ 0 & \text{otherwise.} \end{cases}$$

What is $P\{[X_1 < X_2] \cap [X_2 > 4(X_1 - 1/2)^2]\}$?

Solution:

We see 1/4 is the solution of $x = 4(x - \frac{1}{2})^2$ on 0 < x < 1. The range of X_2 is (1/4, 1). When $X_2 = x_2$ is given, we next get the range of X_1 . By $X_2 = 4(X_1 - 1/2)^2$, we have

$$X_1 = \frac{1}{2} \pm \sqrt{\frac{X_2}{4}}$$

We determine the lower bound of X_1 is $\frac{1}{2} \pm \sqrt{\frac{X_2}{4}}$ because the intersection of $X_1 = X_2$ and $X_2 = 4(X_1 - 1/2)^2$ is less than 1/2 when $X_1 \in (0, 1)$. We also have $X_1 < 1$, so the probability is

$$\int_{\frac{1}{4}}^{1} \int_{\frac{1}{2}-\sqrt{\frac{x_2}{4}}}^{x_1} 8x_1 x_2 dx_1 dx_2 = 0.974.$$

Let $Y = u(X_1, X_2)$. Then, Y is a random variable and

$$E[u(X_1, X_2)] = \int_{x_1} \int_{x_2} u(x_1, x_2) f(x_1, x_2) dx_2 dx_1$$

under the condition that

$$\int_{x_1} \int_{x_2} |u(x_1, x_2)| f(x_1, x_2) dx_2 dx_1 < \infty$$

Let X_1 and X_2 be continuous random variables with joint density function

$$f(x_1, x_2) = \begin{cases} (36/5)x_1x_2(1 - x_1x_2) & \text{for } 0 < x_1, x_2 < 1 \\ \\ 0 & \text{otherwise.} \end{cases}$$

Find $E(X_1X_2)$.

Solution:

$$\int_0^1 \int_0^1 \frac{36}{5} (x_1^2 x_2^2 (1 - x_1 x_2)) dx_1 dx_2 = 0.35.$$

Theorem

Let (X_1, X_2) be a random vector. Let $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$ be random variables whose expectations exist. Then for all real numbers k_1 and k_2 ,

$$E(k_1Y_1 + k_2Y_2) = k_1E(Y_1) + k_2E(Y_2).$$

We also note that

$$Eg(X_2) = \int_{-\infty}^{\infty} g(x_2) f(x_1, x_2) dx_1 dx_2 = \int_{-\infty}^{\infty} g(x_2) f_{X_2}(x_2) dx_2.$$

Let (X_1, X_2) be a random vector with pdf

$$f(x_1, x_2) = \begin{cases} 8x_1x_2 & 0 < x_1 < x_2 < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Let $Y_1 = 7X_1X_2^2 + 5X_2$ and $Y_2 = X_1/X_2$. Determine $E(Y_1)$ and $E(Y_2)$.

Discrete & Continuous R.V.

Definition

The joint cumulative distribution function of (X_1, X_2) is

 $F_{X_1,X_2}(x_1,x_2) = P\left[\{X_1 \le x_1\} \cap \{X_2 \le x_2\} \right] \quad \text{for all } (x_1,x_2) \in R^2.$

Relationship with pmf and pdf:

Discrete random variables:

$$F_{X_1,X_2}(x_1,x_2) = \sum_{X_1 \le x_1} \sum_{X_2 \le x_2} p(x_1,x_2).$$

2 Continuous random variables:

$$F_{X_1,X_2}(x_1,x_2) = \int_0^{x_1} \int_0^{x_2} f_{X_1,X_2}(x_1,x_2) dx_1 dx_2.$$

Definition

The joint cumulative distribution function of (X_1, X_2) is

 $F_{X_1,X_2}(x_1,x_2) = P\left[\{X_1 \le x_1\} \cap \{X_2 \le x_2\}\right] \quad \text{for all } (x_1,x_2) \in R^2.$

Properties:

- **1** $F(x_1, x_2)$ is nondecreasing in x_1 and x_2 .
- 2 $F(-\infty, x_2) = F(x_1, -\infty) = 0.$
- $F(\infty,\infty) = 1.$
- 4 For a rectangle $(a_1, b_1] \times (a_2, b_2]$, we have

$$P\{ (X_1, X_2) \in (a_1, b_1] \times (a_2, b_2] \}$$

= $F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2).$

Consider the discrete random vector (X_1, X_2) . Its pmf is given in the following table:

$X_1 \setminus X_2$	0	1	2	3
0	1/8	1/8	0	0
1	0	2/8	2/8	0
2	0	0	1/8	1/8

Find the value of the joint cdf $F(x_1, x_2)$ at (1, 2). Solution: 3/4.

Example

1. Find the joint cdf of

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 2e^{-x_1-x_2} & 0 < x_1, x_2 < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Solution:

$$F_{X_1,X_2}(x_1,x_2) = \int_0^{x_1} \int_0^{x_2} 2e^{-t_1-t_2} dt_1 dt_2 = 2(1-e^{-x_1})(1-e^{-x_2}).$$

2. Find the joint cdf of

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 2e^{-x_1-x_2} & 0 < x_1 < x_2 < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Solution:

$$F_{X_1,X_2}(x_1,x_2) = \int_0^{\min(x_1,x_2)} \int_{t_1}^{x_2} 2e^{-t_1-t_2} dt_2 dt_1.$$

Definition

Let $\mathbf{X} = (X_1, X_2)^\top$ be a random vector. If

$$M(t_1, t_2) = \mathsf{E}\left(e^{t_1 X_1 + t_2 X_2}\right)$$

exists for $|t_1| < h_1$ and $|t_2| < h_2$, where h_1 and h_2 are positive, then we call $M(t_1, t_2)$ the moment generating function (mgf) of $\mathbf{X} = (X_1, X_2)^{\top}$.

We may write

$$M(t_1, t_2) = \mathsf{E}\left(e^{t_1 X_1 + t_2 X_2}\right) = \mathsf{E}\left(e^{\mathbf{t}^\top \mathbf{X}}\right)$$

where \mathbf{t}^{\top} is a row vector (t_1, t_2) and \mathbf{X} is a column vector $(X_1, X_2)^{\top}$.

Let the continuous-type random variables \boldsymbol{X} and \boldsymbol{Y} have the joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Determine the joint mgf.

Solution:

$$M_{X,Y}(t_1, t_2) = \int_0^\infty \int_x^\infty \exp(t_1 x + t_2 y - y) dy dx = \frac{1}{(1 - t_1 - t_2)(1 - t_2)},$$

provided that $t_1 + t_2 < 1$ and $t_2 < 1$.

Recall that

$$M_{X_1,X_2}(t_1,t_2) = \mathsf{E}\left(e^{t_1X_1 + t_2X_2}\right).$$

The marginal mgf is given by

$$M_{X_1}(t_1) = \mathsf{E}\left(e^{t_1X_1}\right) = M_{X_1,X_2}(t_1,0),$$
$$M_{X_2}(t_2) = \mathsf{E}\left(e^{t_2X_2}\right) = M_{X_1,X_2}(0,t_2).$$

Example 2.1.7 (cont'd)

Let the continuous-type random variables \boldsymbol{X} and \boldsymbol{Y} have the joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Determine the marginal mgf.

Solution:

$$M_{X,Y}(t_1,t_2) = \int_0^\infty \int_x^\infty \exp(t_1 x + t_2 y - y) dy dx = \frac{1}{(1 - t_1 - t_2)(1 - t_2)},$$

provided that $t_1 + t_2 < 1$ and $t_2 < 1$.

$$M_X(t_1) = M_{X,Y}(t_1, 0) = \frac{1}{1 - t_1}, \ t_1 < 1,$$

$$M_Y(t_2) = M_{X,Y}(0, t_2) = \frac{1}{(1 - t_2)^2}, \ t_2 < 1.$$

Example 2.1.7 (cont'd)

Let the continuous-type random variables \boldsymbol{X} and \boldsymbol{Y} have the joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Determine the marginal mgf.

Solution:

$$M_X(t_1) = M_{X,Y}(t_1, 0) = \frac{1}{1 - t_1}, \ t_1 < 1,$$

$$M_Y(t_2) = M_{X,Y}(0, t_2) = \frac{1}{(1 - t_2)^2}, \ t_2 < 1.$$

Note that

$$f_1(x) = \int_x^\infty e^{-y} dy = e^{-x}, 0 < x < \infty,$$

$$f_2(x) = \int_0^y e^{-y} dx = y e^{-y}, 0 < y < \infty.$$

Fact: It can be shown that

$$\mathsf{E}(XY) = \frac{dM_{X,Y}(t_1, t_2)}{dt_1 dt_2} \Big|_{t_1 = 0, t_2 = 0}.$$

Example: Method 1: In the previous example,

$$\mathsf{E}(XY) = \int_0^\infty \int_0^y xy e^{-y} dx dy = 3.$$

Method 2:

$$\begin{split} M_{X,Y}(t_1,t_2) &= \frac{1}{(1-t_1-t_2)(1-t_2)},\\ \frac{dM_{X,Y}(t_1,t_2)}{dt_1dt_2} &= -\frac{t_1+3t_2-3}{(t_2-1)^2(-t_1-t_2+1)^3}, \end{split}$$
 where we see $\frac{dM_{X,Y}(t_1,t_2)}{dt_1dt_2}\Big|_{t_1=0,t_2=0} = 3$ as well.

Chapter 2 Multivariate Distributions

2.2 Transformation: Bivariate Random Variables

Transformation of discrete random vectors

• Assume there is a one to one mapping between $X = (X_1, X_2)^\top$ and $Y = (Y_1, Y_2)^\top$:

$$Y_1 = u_1(X_1, X_2), \qquad X_1 = w_1(Y_1, Y_2), Y_2 = u_2(X_1, X_2), \qquad X_2 = w_2(Y_1, Y_2).$$

Transformation of discrete random variable:

$$p_{Y_1,Y_2}(y_1,y_2) = p_{X_1,X_2}(w_1(y_1,y_2),w_2(y_1,y_2)).$$

Let X and Y be independent random variables such that

$$p_X(x) = \frac{\mu_1^x}{x!} e^{-\mu_1}, \qquad x = 0, 1, 2, \dots$$

and

$$p_Y(y) = \frac{\mu_2^y}{y!} e^{-\mu_2}, \qquad y = 0, 1, 2, \dots$$

- Find the pmf of U = X + Y.
- ► Determine the mgf of *U*.

Let J denote the Jacobian of the transformation. This is the determinant of the 2×2 matrix

$$\begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{pmatrix}$$

The determinant is $J(y_1, y_2) = \frac{\partial x_1}{\partial y_1} \cdot \frac{\partial x_2}{\partial y_2} - \frac{\partial x_1}{\partial y_2} \cdot \frac{\partial x_2}{\partial y_1}$.

Transformation formula: The joint pdf of the continuous random vector $Y = (Y_1, Y_2)^\top$ is

 $f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(w_1(y_1,y_2),w_2(y_1,y_2)) \cdot |J(y_1,y_2)|.$

Notice the bars around the function J, denoting absolute value.

Example

A device containing two key components fails when, and only when, both components fail. The lifetimes, X_1 and X_2 , of these components have a joint pdf $f(x_1, x_2) = e^{-x_1 - x_2}$, where $x_1, x_2 > 0$ and zero otherwise. The cost Y_1 , of operating the device until failure is $Y_1 = 2X_1 + X_2$.

- **1** Find the joint pdf of Y_1, Y_2 where $Y_2 = X_2$.
- 2 Find the marginal pdf for Y_1 (Ans: $e^{-y_1/2} e^{-y_1}$, for $y_1 > 0$)

Suppose (X_1, X_2) has joint pdf

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 10x_1x_2^2 & 0 < x < y < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Let $Y_1 = X_1/X_2$ and $Y_2 = X_2$. Find the joint and marginal pdf's of Y_1 and Y_2 .

1. One to one transformation:

$$\begin{aligned} y_1 &= x_1/x_2, \quad y_2 &= x_2, & 0 < x_1 < x_2 < 1 \\ x_1 &= y_1y_2, & x_2 &= y_2, & 0 < y_1 < 1, \ 0 < y_2 < 1. \end{aligned}$$

2. Give the joint pdf:

 $f_{Y_1,Y_2}(y_1,y_2) = 10y_1y_2y_2^2|y_2|$, where y is defined above or 0 elsewhere.

3. Give the marginal pdf of Y_1 :

$$f_{Y_1}(y_1) = \int_0^1 f_{Y_1, Y_2}(y_1, y_2) dy_2 = 2y_1, \ 0 < y_1 < 0.$$

Suppose (X_1, X_2) has joint pdf

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{1}{4} \exp(-\frac{x_1 + x_2}{2}) & 0 < x_1 < \infty, 0 < x_2 < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Let $Y_1 = 1/2(X_1 - X_2)$ and $Y_2 = X_2$. Find the joint and marginal pdf's of Y_1 and Y_2 .

1. One to one transformation:

$$y_1 = \frac{1}{2}(x_1 - x_2), \quad y_2 = x_2, \quad 0 < x_1 < \infty, \quad 0 < x_2 < \infty.$$

$$x_1 = 2y_1 + y_2, \qquad x_2 = y_2, \qquad -2y_1 < y_2, \quad 0 < y_2 < \infty.$$

2. Give the joint pdf:

 $f_{Y_1,Y_2}(y_1,y_2) = e^{-y_1-y_2}/4 \times |2|$, where y is defined above or 0 elsewhere.

3. Give the marginal pdf of Y_1 :

$$f_{Y_1}(y_1) = \begin{cases} \int_{-2y_1}^{\infty} f_{Y_1, Y_2}(y_1, y_2) dy_2 = e^{y_1}/2, \ -\infty < y_1 < 0, \\ \int_0^{\infty} f_{Y_1, Y_2}(y_1, y_2) dy_2 = e^{-y_1}/2, \ 0 \le y_1 < \infty, \end{cases}$$

which gives $f_{Y_1}(y_1) = e^{-|y_1|}, -\infty < y < \infty.$

Suppose (X_1, X_2) has joint pdf

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{1}{4} \exp(-\frac{x_1+x_2}{2}) \\ 0 \end{cases}$$

 $0 < x_1 < \infty, 0 < x_2 < \infty$ elsewhere.

Let $Y_1 = 1/2(X_1 - X_2)$. What is the mgf of Y_1 ?

$$\begin{split} \mathsf{E}(e^{tY}) &= \int_0^\infty \int_0^\infty e^{t(x_1 - x_2)/2} \frac{1}{4} e^{-(x_1 + x_2)/2} dx_1 dx_2 \\ &= \left[\int_0^\infty \frac{1}{2} e^{-x_1(1 - t)/2} dx_1 \right] \left[\int_0^\infty \frac{1}{2} e^{-x_2(1 + t)/2} dx_2 \right] \\ &= \left[\frac{1}{1 - t} \right] \left[\frac{1}{1 + t} \right] \\ &= \frac{1}{1 - t^2}, \end{split}$$

provided that 1 - t > 0 and 1 + t > 0. This is equivalent to

$$\int_{-\infty}^{\infty} e^{tx} \frac{e^{-|x|}}{2} = \frac{1}{1 - t^2}, \ -1 < t < 1,$$

which is the mgf of double exponential distribution.

Chapter 2 Multivariate Distributions

2.3 Conditional Distributions and Expectations

Conditional probability for discrete r.v.

Motivating example

Let X_1 =Smaller die face, X_2 =Larger die face, when rolling a pair of two dice. The following table shows a partition of the sample space into 21 events.

				x_1			
		1	2	3	4	5	6
	1	1/36	0	0	0	0	0
	2	2/36	1/36	0	0	0	0
x_2	3	2/36	2/36	1/36	0	0	0
	4	2/36	2/36	2/36	1/36	0	0
	5	2/36	2/36	2/36	2/36	1/36	0
	6	2/36	2/36	2/36	2/36	2/36	1/36

Recalling our definition of conditional probability for events, we have (for example)

$$P(X_2 = 4 | X_1 = 2) = \frac{P[\{X_1 = 2\} \cap \{X_2 = 4\}]}{P(X_1 = 2)} = \frac{2/36}{9/36} = \frac{2}{9}.$$
Boxing Wang. The University of Jowa Chapter 2 STAT 4100 Fall 2018

• Recall that for two events A_1 and A_2 with $P(A_1) > 0$, the conditional probability of A_2 given A_1 is

$$P(A_2|A_1) = \frac{P(A_1 \cap A_2)}{P(A_1)}.$$

• Let X_1 and X_2 denote **discrete** random variables with joint pmf $p_{X_1,X_2}(x_1,x_2)$ and marginal pmfs $p_{X_1}(x_1)$ and $p_{X_2}(x_2)$. Then for every x_1 such that $p_{X_1}(x_1) > 0$, we have

$$P(X_2 = x_2 | X_1 = x_1) = \frac{P(X_1 = x_1, X_2 = x_2)}{P(X_1 = x_1)} = \frac{p_{X_1, X_2}(x_1, x_2)}{p_{X_1}(x_1)}.$$

We use a simple notation:

$$p_{X_2|X_1}(x_2|x_1) = p_{2|1}(x_2|x_1) = \frac{p_{X_1,X_2}(x_1,x_2)}{p_{X_1}(x_1)}.$$

• We call $p_{X_2|X_1}(x_2|x_1)$ the conditional pmf of X_2 , given that $X_1 = x_1$.

Verify $p_{X_2|X_1}(x_2|x_1)$ satisfies the condition of being a pmf. 1 $p_{X_2|X_1}(x_2|x_1) \ge 0.$

2

$$\sum_{x_2} p_{X_2|X_1}(x_2|x_1) = \sum_{x_2} \frac{p_{X_1,X_2}(x_1,x_2)}{p_{X_1}(x_1)}$$
$$= \frac{1}{p_{X_1}(x_1)} \sum_{x_2} p_{X_1,X_2}(x_1,x_2)$$
$$= \frac{p_{X_1}(x_1)}{p_{X_1}(x_1)} = 1.$$

Conditional expectation of discrete random variables:

$$\mathsf{E}(X_1|X_2 = x_2) = \sum_{x_1} x_1 p_{X_1|X_2}(x_1|x_2).$$

Example

Returning to the previous example, it is straightforward to work out the conditional pmf as well as associated functions like expectations. For instance,

$$p_{X_1|X_2}(x_1|X_2=3) = \begin{cases} 2/5 & \text{if } x_1 = 1, 2\\ 1/5 & \text{if } x_1 = 3\\ 0 & \text{if } x_1 = 4, 5, 6. \end{cases}$$

and $E(X_1|X_2 = 3) = 9/5$.

Conditional probability for continuous r.v.

▶ Let X_1 and X_2 denote **continuous** random variables with joint pdf $f_{X_1,X_2}(x_1,x_2)$ and marginal pmfs $f_{X_1}(x_1)$ and $f_{X_2}(x_2)$. Then for every x_1 such that $f_{X_1}(x_1) > 0$, we define

$$f_{X_2|X_1}(x_2|x_1) = f_{2|1}(x_2|x_1) = \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_1}(x_1)}.$$

• Verify that $f_{X_2|X_1}$ satisfies the conditions of being a pdf.

(1)
$$f_{X_2|X_1}(x_2|x_1) \ge 0.$$

(2) $\int_{-\infty}^{\infty} f_{X_2|X_1}(x_2|x_1) dx_2 = \int_{-\infty}^{\infty} \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_1}(x_1)} dx_2$
 $= \frac{1}{f_{X_1}(x_1)} \int_{-\infty}^{\infty} f_{X_1,X_2}(x_1,x_2) dx_2$
 $= \frac{f_{X_1}(x_1)}{f_{X_1}(x_1)} = 1.$

Conditional expectation of continuous random variables

► If u(X₂) is a function of X₂, the conditional expectation of u(X₂), given that X₁ = x₁, if it exists, is given by

$$\mathsf{E}[u(X_2)|x_1] = \int_{-\infty}^{\infty} u(x_2) f_{2|1}(x_2|x_1) \, dx_2.$$

▶ If they do exist, then $E(X_2|x_1)$ is the conditional mean and

$$Var(X_2|x_1) = \mathsf{E}\{[X_2 - E(X_2|x_1)]^2 | x_1\}$$

is the conditional variance of X_2 , given $X_1 = x_1$.

Example

Find the conditionals $f_{X_2|X_1}$ and $f_{X_1|X_2}$ for (X_1, X_2) with joint cdf

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 2e^{-x_1-x_2} & 0 < x_1 < x_2 < \infty \\ 0 & \text{otherwise.} \end{cases}$$

- Calculate $P(a < X_2 \le b | X_1 = x_1)$.
- Calculate the expectation $E[u(X_2)|X_1 = x_1]$.
- Calculate the variance $Var(X_2|X_1 = x_1)$.

Example (2.3.1)

Let X_1 and X_2 have the joint pdf

$$f(x_1, x_2) = \begin{cases} 2 & 0 < x_1 < x_2 < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Find $P(0 < X_1 < \frac{1}{2} | X_2 = \frac{3}{4})$ and $Var(X_1|x_2)$.

Example (2.3.2)

Let X_1 and X_2 have the joint pdf

$$f(x_1, x_2) = \begin{cases} 6x_2 & 0 < x_2 < x_1 < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

- **1** Compute $E(X_2)$.
- **2** Compute the function $h(x_1) = \mathsf{E}(X_2|x_1)$. Then compute $\mathsf{E}[h(X_1)]$ and $\mathsf{Var}[h(X_1)]$.

Let
$$(X_1, X_2)$$
 be a random vector. Then
(a) $E[E(X_2|X_1)] = E(X_2)$,
(b) $Var(X_2) = Var[E(X_2|X_1)] + E[Var(X_2|X_1)]$.

Interpretation:

- Both X₂ and E(X₂|X₁) are unbiased estimator of E(X₂) = µ₂.
- The part (b) shows that $E(X_2|X_1)$ is more reliable.
- We will talk more about this when studying sufficient statistics in Chapter 7, Rao and Blackwell Theorem.

$$\mathsf{E}\left[\mathsf{E}\left(X_{2}|X_{1}\right)\right]=\mathsf{E}\left(X_{2}\right).$$

Proof.

The proof is for the continuous case. The discrete case is proved by using summations instead of integrals. We see

$$\begin{aligned} \mathsf{E}(X_2) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_2 f(x_1, x_2) dx_2 dx_1 \\ &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x_2 \frac{f(x_1, x_2)}{f_1(x_1)} dx_2 \right] f_1(x_1) dx_1 \\ &= \int_{-\infty}^{\infty} \mathsf{E}(X_2 | x_1) f_1(x_1) dx_1 \\ &= \mathsf{E}[\mathsf{E}(X_2 | X_1)]. \end{aligned}$$

$$Var(X_2) = Var[E(X_2|X_1)] + E[Var(X_2|X_1)].$$

Proof.

The proof is for both the discrete and continuous cases:

$$\begin{split} \mathsf{E}[\mathsf{Var}(X_2|X_1)] &= \mathsf{E}[\mathsf{E}(X_2^2|X_1) - (\mathsf{E}(X_2|X_1))^2] \\ &= \mathsf{E}[\mathsf{E}(X_2^2|X_1)] - \mathsf{E}[\mathsf{E}(X_2|X_1)^2] \\ &= \mathsf{E}(X_2^2) - \mathsf{E}[\mathsf{E}(X_2|X_1)^2]; \end{split}$$

$$Var[\mathsf{E}(X_2|X_1)] = \mathsf{E}[\mathsf{E}(X_2|X_1)^2] - \{\mathsf{E}[\mathsf{E}(X_2|X_1)]\}^2$$

= $\mathsf{E}[\mathsf{E}(X_2|X_1)^2] - [\mathsf{E}(X_2)]^2.$

Thus,

$$\mathsf{E}[\mathsf{Var}(X_2|X_1)] + \mathsf{Var}[\mathsf{E}(X_2|X_1)] = \mathsf{E}(X_2^2) - [\mathsf{E}(X_2)]^2 = \mathsf{Var}(X_2).$$

We further see that

 $\operatorname{Var}\left[\operatorname{\mathsf{E}}(X_2|X_1)\right] \leq \operatorname{Var}(X_2).$

Let X_1 and X_2 be discrete random variables. Suppose the conditional pmf of X_1 given X_2 and the marginal distribution of X_2 are given by

$$p(x_1|x_2) = {\binom{x_2}{x_1}} \left(\frac{1}{2}\right)^{x_2}, \ x_1 = 0, 1, \dots, x_2,$$
$$p(x_2) = \frac{2}{3} \left(\frac{1}{3}\right)^{x_2-1}, \ x_2 = 1, 2, 3 \dots$$

Determine the mgf of X_1 .

Boxiang Wang, The University of Iowa

Example

Assume that the joint pdf for $X_2|X_1 = x_1$ on the support $\mathcal{S} = \{0 < x_1 < 1, 0 < x_2 < 2, x_1 + x_2 < 2\}$ is

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{2x_1}{2-x_1} & \text{in } \mathcal{S}, \\ 0 & \text{otherwise.} \end{cases}$$

Find $E(X_2)$ through $E(X_2) = E[E(X_2|X_1)]$.

Solution:

The conditional pdf for $X_2 | X_1 = x_1, 0 < x_1 < 1$ is

$$f_{X_2|X_1}(x_2|x_1) = \begin{cases} 1/(2-x_1) & \text{if } 0 < x_2 < 2-x_1 \\ 0 & \text{otherwise.} \end{cases}$$

and the marginal pdf for X_1 is $f_{X_1}(x_1) = 2x_1$ for $0 < x_1 < 1$ and zero otherwise.

$$E(X_2|X_1) = \int_0^{2-x_1} x_2 \frac{1}{2-x_1} dx_2 = \frac{2-x_1}{2},$$

$$E(E(X_2|X_1)) = \int_0^1 \frac{2-x_1}{2} 2x_1 dx_1 = 2/3.$$

We can verify this by

$$\mathbf{E}(X_2) = \int_0^1 \int_0^{2-x_1} x_2 \frac{2x_1}{2-x_1} dx_2 dx_1 = 2/3.$$

Chapter 2 Multivariate Distributions

2.4 The Correlation Coefficient

Recall the definition of the variance of *X*:

$$\operatorname{Var}(X) = \mathsf{E}[(X - \mu)^2].$$

Definition

Let *X* and *Y* be two random variables with expectations $\mu_1 = EX$ and $\mu_2 = EY$, respectively. The covariance of *X* and *Y*, if it exists, is defined to be

$$Cov(X, Y) = E[(X - \mu_1)(Y - \mu_2)].$$

Computation shortcut:

$$\mathsf{E}[(X - \mu_1)(Y - \mu_2)] = \mathsf{E}(XY) - \mu_1\mu_2.$$

Let X and Y be two random variables with joint pdf

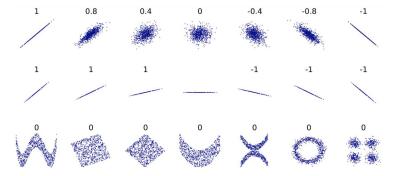
$$f(x,y) = \begin{cases} x+y & 0 < x, y < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Determine the covariance of X and Y.

Definition

The correlation coefficient of X and Y is defined to be

$$p = \frac{\mathsf{Cov}(X, Y)}{\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)}}$$



Example

What is the correlation coefficient of the previous example?

The plot is from Wikipedia https://en.wikipedia.org/wiki/Correlation_and_dependence Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018 For two random variables X and Y, write u(x) = E(Y|x):

$$\mathsf{E}(Y|x) = \int_{-\infty}^{\infty} y f_{2|1}(y|x) dy = \frac{\int_{-\infty}^{\infty} y f_{X,Y}(x,y) dy}{f_1(x)}$$

If u(x) is a linear function of x, say

$$u(x) = E\left(Y|x\right) = a + bx,$$

then we say that the conditional mean of Y is linear in x. The following theorem gives the values of a and b.

Let X and Y be two random variables , with means μ_1 , μ_2 , variances σ_1^2 , σ_2^2 , and correlation coefficient ρ . If the conditional mean of Y is linear in x, then

$$E(Y|X) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (X - \mu_1),$$
$$E[Var(Y|X)] = \sigma_2^2 (1 - \rho^2).$$

Let X and Y have the linear conditional means

$$\mathsf{E}(Y|x) = 4x + 3$$

and

$$\mathsf{E}(X|y) = \frac{1}{16}y - 3.$$

What are the values of μ_1 , μ_2 , ρ , and σ_2/σ_1 ?

Recall that the mgf of the random vector (X, Y) is defined to be $M(t_1, t_2) = E\left[e^{t_1X+t_2Y}\right]$. It can be shown that

$$\frac{\partial^{k+m}}{\partial t_1^k \partial t_2^m} M(t_1, t_2) = E\left[X^k Y^m e^{t_1 X + t_2 Y}\right]$$

٠

$$\left. \frac{\partial^{k+m}}{\partial t_1^k \partial t_2^m} M(t_1, t_2) \right|_{t_1 = t_2 = 0} = E\left[X^k Y^m \right].$$

Let X and Y be two random variables with joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Determine the correlation coefficient of X and Y.

Solution:

The mgf is

$$M(t_1, t_2) = \frac{1}{(1 - t_1 - t_2)(1 - t_2)}, \ t_1 + t_2 < 1, \ t_2 < 1.$$

We have $\mu_1 = 1, \, \mu_2 = 2, \, \sigma_1^2 = 1, \, \sigma_2^2 = 2, \, \operatorname{Cov}(X,Y) = 1.$

Chapter 2 Multivariate Distributions

2.5 Independent Random Variables

Suppose the bivariate random variables (X_1, X_2) is continuously distributed, and for all $x_1 \in S_{X_1}$, and $x_2 \in S_{X_2}$,

$$f_{X_1|X_2}(x_1|x_2) = f_{X_1}(x_1).$$
(1)

Since, by the definition of conditional pdf,

$$f_{X_1|X_2}(x_1|x_2) = \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_2}(x_2)},$$

it follows that

 $f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$ for all $x_1 \in S_{X_1}, x_2 \in S_{X_2}$. (2)

Clearly (1) and (2) are equivalent. Exactly the same logic applies for a discrete random variable.

We say two random variables X_1 and X_2 are **independent** if

 (Continuous case) their joint pdf is equal to the product of their marginal pdf's:

$$f(x_1, x_2) \equiv f_1(x_1) f_2(x_2).$$

 (Discrete case) their joint pmf is equal to the product of their marginal pmf's:

$$p(x_1, x_2) \equiv p_1(x_1)p_2(x_2).$$

Suppose that X_1 and X_2 have a joint support $S = \{(x_1, x_2)\}$ and marginal supports $S_1 = \{x_1\}$ and $S_2 = \{x_2\}$. If X_1 and X_2 are independent, then

$$\mathcal{S} = \mathcal{S}_1 \times \mathcal{S}_2.$$

In other words,

- ► (Continuous case) If the joint support S is not a rectangle, then X₁ and X₂ are dependent.
- (Discrete case) If there is a zero entry in the table of pmf, then X₁ and X₂ are dependent.

Let the joint pdf of X_1 and X_2 be

$$f(x_1, x_2) = \begin{cases} x_1 + x_2 & 0 < x_1 < 1, \ 0 < x_2 < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Are they independent?

Solution:

No, because $f(x_1, x_2) \neq f_1(x_1)f_2(x_2)$:

$$f_1(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2 = \int_0^1 (x_1 + x_2) dx_2 = x_1 + 1/2, \ 0 < x_1 < 1$$

$$f_2(x_2) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_1 = \int_0^1 (x_1 + x_2) dx_1 = x_2 + 1/2, \ 0 < x_2 < 1$$

68/115

Two random variables X_1 and X_2 are independent if and only if

 (Continuous case) their joint pdf can be written as a product of a nonnegative function of x₁ and a nonnegative function of x₂:

$$f(x_1, x_2) \equiv g(x_1)h(x_2)$$
 for all $(x_1, x_2) \in \mathbb{R}^2$

► (Discrete case) their joint pmf can be written as a product of a nonnegative function of x₁ and a nonnegative function of x₂:

$$p(x_1, x_2) \equiv g(x_1)h(x_2).$$

Sketch of proof

- ▶ Only if: Independence $\Rightarrow f(x_1, x_2) \equiv g(x_1)h(x_2)$: This can be seen as $g(x_1) = f_1(x_1)$ and $h(x_2) = f_2(x_2)$.
- ► If: Independence $\Leftarrow f(x_1, x_2) \equiv g(x_1)h(x_2)$: If we have $f(x_1, x_2) \equiv g(x_1)h(x_2)$, we have

$$f_1(x_1) = \int_{-\infty}^{\infty} g(x_1)h(x_2)dx_2 = g(x_1) \left[\int_{-\infty}^{\infty} h(x_2)dx_2 \right] = c_1g(x_1),$$

$$f_2(x_2) = \int_{-\infty}^{\infty} g(x_1)h(x_2)dx_1 = h(x_2) \left[\int_{-\infty}^{\infty} g(x_1)dx_1 \right] = c_2h(x_2),$$

where c_1 and c_2 are constants. We see $c_1c_2 = 1$ because

$$1 = \int_{-\infty}^{\infty} g(x_1)h(x_2)dx_1dx_2 = \left[\int_{-\infty}^{\infty} g(x_1)dx_1\right] \left[\int_{-\infty}^{\infty} h(x_2)dx_2\right] = c_2c_1$$

Thus, $f(x_1, x_2) = g(x_1)h(x_2) = c_1g(x_1)c_2h(x_2) = f_1(x_1)f_2(x_2).$

Theorem 2.5.2 Let (X_1, X_2) have the joint cdf $F(x_1, x_2)$ and let X_1 and X_2 have the marginal cdf $F_1(x_1)$ and $F_2(x_2)$, respectively. Then X_1 and X_2 are independent if and only if

 $F(x_1, x_2) = F_1(x_1)F_2(x_2), \ \forall (x_1, x_2) \in \mathbb{R}^2.$

Theorem 2.5.3 The random variables X_1 and X_2 are independent random variables if and only if the following condition holds

 $P(a < X_1 \le b, c < X_2 \le d) = P(a < X_1 \le b)P(c < X_1 \le d),$

for every a < b and c < d, where a, b, c, d are constants.

Example 2.5.3

Let the joint pdf of X_1 and X_2 be

$$f(x_1, x_2) = \begin{cases} x_1 + x_2 \\ 0 \end{cases}$$

 $0 < x_1 < 1, \ 0 < x_2 < 1$ elsewhere.

Are they independent?

Solution:

No, because

$$P(0 < X_1 < \frac{1}{2}, 0 < X_2 < \frac{1}{2}) \neq P(0 < X_1 < \frac{1}{2})P(0 < X_2 < \frac{1}{2}):$$

$$P(0 < X_1 < \frac{1}{2}, 0 < X_2 < \frac{1}{2}) = \int_0^{\frac{1}{2}} \int_0^{\frac{1}{2}} (x_1 + x_2) dx_1 dx_2 = 1/8,$$

$$P(0 < X_1 < \frac{1}{2}) = \int_0^{\frac{1}{2}} (x_1 + \frac{1}{2}) dx_1 = 3/8,$$

$$P(0 < X_2 < \frac{1}{2}) = \int_0^{\frac{1}{2}} (x_2 + \frac{1}{2}) dx_2 = 3/8.$$

Chapter 2 STAT 4100 Fall 2018

Theorem 2.5.4

If X_1 and X_2 are independent and that $E[u(X_1)]$ and $E[v(X_2)]$ exist. Then

$$\mathsf{E}[u(X_1)v(X_2)] = \mathsf{E}[u(X_1)] \mathsf{E}[v(X_2)].$$

Proof.

$$\mathsf{E}[u(X_1)v(X_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x_1)v(x_2)f(x_1, x_2)dx_1dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x_1)v(x_2)f_1(x_1)f_2(x_2)dx_1dx_2 = \left[\int_{-\infty}^{\infty} u(x_1)f_1(x_1)dx_1\right] \left[\int_{-\infty}^{\infty} f_2(x_2)v(x_2)dx_2\right] = \mathsf{E}[u(X_1)] \mathsf{E}[v(X_2)].$$

For independent random variable:

$$\mathsf{E}(X_1X_2) = \mathsf{E}(X_1)\mathsf{E}(X_2).$$

• Independence implies that covariance $Cov(X_1, X_2) = 0$:

$$\mathsf{E}[(X_1 - \mu_1)(X_2 - \mu_2)] = \mathsf{E}(X_1 - \mu_1)\mathsf{E}(X_2 - \mu_2).$$

Independence always implies zero covariance (correlation). Zero covariance (correlation) does NOT always imply independence:

Example

Assume that

$$p_{X,Y}(-1,1) = p_{X,Y}(1,1) = 1/4; \quad p_{X,Y}(0,-1) = 1/2.$$

X and Y are not independent because (for example) $p_{Y|X}(-1|0)=1\neq p_Y(-1)=1/2$ but ${\rm Cov}(X,Y)=0$ (check).

Suppose that (X_1, X_2) have the joint mgf $M(t_1, t_2)$ and marginal mgf's $M_1(t_1)$ and $M_2(t_2)$, respectively. Then, X_1 and X_2 are independent if and only if

 $M(t_1, t_2) \equiv M_1(t_1)M_2(t_2).$

Let X and Y be two random variables with joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Are they independent?

Solution:

The mgf is

$$M(t_1, t_2) = \frac{1}{(1 - t_1 - t_2)(1 - t_2)}, \ t_1 + t_2 < 1, \ t_2 < 1.$$

Because

$$M(t_1, t_2) \neq M_1(t_1)M_2(t_2) = M(t_1, 0)M(0, t_2),$$

they are dependent.

Chapter 2 Multivariate Distributions

2.6 Extension to Several Random Variables

- Random experiment consists of drawing an individual *c* from a population *C*.
 Characteristics: height, weight, age, test scores,
- Random experiments consists of the U.S economy at time t. Characteristics: consumer prices, unemployment rate, Dow Jones Industrial Average, Gross Domestic Product,

A note on notation. We will often use boldface letters to denote vectors. For example, we use X to denote the random vector (X_1, \ldots, X_n) , and x to denote the observed values (x_1, \ldots, x_n) .

The joint pmf of a discrete random vector X is defined to be

$$p_{\mathbf{X}}(\mathbf{x}) = P[X_1 = x_1, \dots, X_n = x_n].$$

The joint cdf of a discrete random vector X is defined to be

$$F_{\mathbf{X}}(\mathbf{x}) = P[X_1 \le x_1, \dots, X_n \le x_n].$$

For the discrete case, $p_X(x)$ can be used to calculate $P(X \in A)$ for $A \subset \mathbb{R}^n$:

$$P(\boldsymbol{X} \in A) = \sum_{\boldsymbol{x} \in A} p_{\boldsymbol{X}}(\boldsymbol{x}) \,.$$

Pdf and cdf for the continuous case

The joint cdf of a continuous random vector X is defined to be

$$F_{\mathbf{X}}(\mathbf{x}) = P[X_1 \le x_1, \dots, X_n \le x_n].$$

• The joint pdf of a continuous random vector X is a function $f_X(x)$ such that for any $A \subset \mathbb{R}^n$

$$P(\boldsymbol{X} \in A) = \int_{A} f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x}$$

= $\int \dots \int_{A} f_{X_{1},\dots,X_{n}}(x_{1},\dots,x_{n}) dx_{1} \dots dx_{n}.$

For the continuous case, we have

$$\frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}).$$

Example

Let

$$f(x_1, x_2, x_3) = \begin{cases} 8x_1x_2x_3 & \text{for } 0 < x_1, x_2, x_3 < 1 \\ \\ 0 & \text{otherwise.} \end{cases}$$

Verify that this is a legitimate pdf.

Solution:

$$\int_{x_1=0}^1 \int_{x_2=0}^1 \int_{x_3=0}^1 8x_1 x_2 x_3 dx_3 dx_2 dx_1 = 1.$$

For the discrete case, the expectation of $Y = u(X_1, \ldots, X_n)$, if it exists, is defined to be

$$E(Y) = \sum_{x_1,\dots,x_n} \dots \sum_{x_n,\dots,x_n} u(x_1,\dots,x_n) p_{\mathbf{X}}(x_1,\dots,x_n).$$

For the continuous case, the expectation of $Y = u(X_1, \ldots, X_n)$, if it exists, is defined to be

$$E(Y) = \int_{x_1,\dots,x_n} \cdots \int u(x_1,\dots,x_n) f_{\mathbf{X}}(x_1,\dots,x_n) dx_1 \cdots dx_n.$$

As before, E is a linear operator. That is,

$$E\left[\sum_{j=1}^{m} k_j Y_j\right] = \sum_{j=1}^{m} k_j E\left[Y_j\right].$$

Example

Find $E(5X_1X_2^2 + 3X_2X_3^4)$. Solution:

$$E(X_1X_2^2) = \int_0^1 \int_0^1 \int_0^1 (x_1x_2^2) 8x_1x_2x_3dx_3dx_2dx_1 = \frac{1}{3},$$

$$E(X_2X_3^4) = \int_0^1 \int_0^1 \int_0^1 (x_2x_3^4) 8x_1x_2x_3dx_3dx_2dx_1 = \frac{2}{9},$$

$$E(5X_1X_2^2 + 3X_2X_3^4) = 5 \cdot \frac{4}{15} + 3 \cdot \frac{2}{9} = \frac{4}{3} + \frac{2}{3} = 2$$

In an obvious way, we may extend the concepts of marginal pmf and marginal pdf for the multidimensional case. For the discrete case, the marginal pmf of (X_1, X_2) is defined to be

$$p_{12}(x_1, x_2) = \sum_{x_3} \cdots \sum_{x_n} p_{\mathbf{X}}(x_1, x_2, \dots, x_n).$$

For the continuous case, the marginal pdf of (X_1, X_2) is defined to be

$$f_{12}(x_1, x_2) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, x_2, \dots, x_n) dx_3 \cdots dx_n.$$

We then extend the concept of conditional pmf and conditional pdf. For the discrete case, suppose $p_1(x_1) > 0$. We define the the conditional pmf of (X_2, \ldots, X_n) given $X_1 = x_1$ to be

$$p_{2,\dots,n|1}(x_2,\dots,x_n|x_1) = \frac{p(x_1,x_2,\dots,x_n)}{p_1(x_1)}$$

For the continuous case, suppose $f_1(x_1) > 0$. We define the conditional pdf of (X_2, \ldots, X_n) given $X_1 = x_1$ to be

$$f_{2,\dots,n|1}(x_2,\dots,x_n|x_1) = \frac{f(x_1,x_2,\dots,x_n)}{f_1(x_1)}.$$

For the discrete case, suppose $p_1(x_1) > 0$. Then we define the conditional expectation of $u(X_2, ..., X_n)$ given $X_1 = x_1$ to be

$$\mathsf{E}\left[u(X_2,\ldots,X_n)|x_1\right] = \sum_{x_2}\cdots\sum_{x_n}u(x_2,\ldots,x_n)p_{2,\ldots,n|1}(x_2,\ldots,x_n|x_1).$$

For the continuous case, suppose $f_1(x_1) > 0$. Then we define the conditional expectation of $u(X_2, ..., X_n)$ given $X_1 = x_1$ to be

$$\mathsf{E}\left[u(X_2,\ldots,X_n)|x_1\right]$$

= $\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}u(x_2,\ldots,x_n)f_{2,\ldots,n|1}(x_2,\ldots,x_n|x_1)dx_2\cdots dx_n.$

Mutual Independence

We say that the *n* random variables X_1, \ldots, X_n are **mutually independent** if, for the discrete case,

 $p(x_1, x_2, \dots, x_n) = p_1(x_1)p_2(x_2)\cdots p_n(x_n), \text{ for all } (x_1, \cdots, x_n) \in \mathbb{R}^n,$

or, for the continuous case,

 $f(x_1,x_2,\ldots,x_n)=f_1(x_1)f_2(x_2)\cdots f_n(x_n) \quad \text{for all } (x_1,\cdots,x_n)\in\mathbb{R}^n.$

If the *n* random variables X_1, \ldots, X_n are **mutually independent**, then

$$P(a_1 < X_1 < b_1, \dots, a_n < X_n < b_n)$$

= $P(a_1 < X_1 < b_1) \cdots P(a_n < X_n < b_n).$

We may rewrite the above equation as

$$P\left(\bigcap_{j=1}^{n} (a_j < X_j < b_j)\right) = \prod_{j=1}^{n} P(a_j < X_j < b_j).$$

If the *n* random variables X_1, X_2, \ldots, X_n are mutually independent, then

$$\mathsf{E}\left[u_1(X_1)u_2(X_2)\cdots u_n(X_n)\right] = \mathsf{E}\left[u_1(X_1)\right] E\left[u_2(X_2)\right]\cdots \mathsf{E}\left[u_n(X_n)\right],$$
$$\mathsf{E}\left[\prod_{j=1}^n u_j(X_j)\right] = \prod_{j=1}^n \mathsf{E}\left[u_j(X_j)\right].$$

As a special case of the above, if the *n* random variables X_1, X_2, \dots, X_n are mutually independent, then for mgf,

$$M(t_1, t_2, \cdots, t_n) = \prod_{j=1}^n M_j(t_j),$$

which can be seen from

$$M(t_1, t_2, \cdots, t_n) = \mathsf{E}[\exp(t_1 X_1 + t_2 X_2 + \ldots + t_n X_n)]$$
$$= \mathsf{E}\left[\prod_{j=1}^n \exp(t_j X_j)\right]$$
$$= \prod_{j=1}^n \mathsf{E}\left[\exp(t_j X_j)\right] = \prod_{j=1}^n M_j(t_j).$$

Chapter 2 STAT 4100 Fall 2018

Mutual independence v.s. pairwise independence

- We say the *n* random variables X₁, X₂, ..., X_n are pairwise independent if for all pairs (*i*, *j*) with *i* ≠ *j*, the random variables X_i and X_j are independent.
- Unless there is a possible misunderstanding between mutual independence and pairwise independence, we usually drop the modifier mutual.
- ► If the *n* random variables X₁, X₂, ..., X_n are independent and have the same distribution, then we say that they are independent and identically distributed, which we abbreviate as i.i.d..

Compare "mutual independence" and "pairwise independence".

Example (from S. Bernstein)

Consider a random vector (X_1,X_2,X_3) that has joint pmf $p(\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3)$

 $= \left\{ \begin{array}{ll} \frac{1}{4} & \quad \text{for } (x_1, x_2, x_3) \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)\} \, . \\ 0 & \quad \text{otherwise.} \end{array} \right.$

Solution:

$$p_{ij}(x_i, x_j) = \begin{cases} \frac{1}{4} & \text{ for } (x_i, x_j) \in \{(0, 0), (1, 0), (0, 1), (1, 1)\} \\ 0 & \text{ otherwise.} \end{cases}$$

$$p_i(x_i) = \begin{cases} \frac{1}{2} & \text{ for } (x_i) \in \{0,1\} \\ 0 & \text{ otherwise.} \end{cases}$$

pairwise independence : not mutual independence :

 $p_{ij}(x_i, x_j) = p_i(x_i)p_j(x_j).$ $p(x_1, x_2, x_3) \neq p_1(x_1)p_2(x_2)p_3(x_3).$

Multivariate Variance-Covariance Matrix

- 1 Let $\boldsymbol{X} = (X_1, \cdots, X_n)^\top$ be a random vector.
- **2** We define the expectation of X as $EX = (EX_1, \dots, EX_n)^\top$.
- 3 Let $\mathbf{W} = [W_{ij}]$ be a $m \times n$ matrix, where W_{ij} are random variables. That is,

$$\mathbf{W} = \begin{bmatrix} W_{11} & W_{12} & \cdots & W_{1n} \\ W_{21} & W_{22} & & W_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ W_{m1} & W_{m2} & \cdots & W_{mn} \end{bmatrix} = [W_{ij}]_{m \times n}.$$

4 We define the expectation of this random matrix as $E[W] = [E(W_{ij})]$. That is,

$$\mathsf{E}[\mathbf{W}] = \begin{bmatrix} \mathsf{E}(W_{11}) & \mathsf{E}(W_{12}) & \cdots & \mathsf{E}(W_{1n}) \\ \mathsf{E}(W_{21}) & \mathsf{E}(W_{22}) & & \mathsf{E}(W_{2n}) \\ \cdots & \cdots & \cdots & \cdots \\ \mathsf{E}(W_{m1}) & \mathsf{E}(W_{m2}) & \cdots & \mathsf{E}(W_{mn}) \end{bmatrix} = \left[\mathsf{E}(W_{ij})\right]_{m \times n}$$

Let W and V be $m \times n$ random matrices, and let A and B be $k \times m$ constant matrices, and let C be a $n \times l$ constant matrix. Then,

$$\mathsf{E}\left[\mathbf{A}\mathbf{W}+\mathbf{B}\mathbf{V}\right]=\mathbf{A}\mathsf{E}\left[\mathbf{W}\right]+\mathbf{B}\mathsf{E}\left[\mathbf{V}\right]$$

and

$$\mathsf{E}\left[\mathbf{AWC}\right] = \mathbf{A}\mathsf{E}\left[\mathbf{W}\right]\mathbf{C}.$$

Proof sketch:

The (i, j) of the first equation:

$$\mathsf{E}\left[\sum_{s=1}^{m} A_{is}W_{sj} + \sum_{s=1}^{m} B_{is}V_{sj}\right] = \sum_{s=1}^{m} A_{is}\mathsf{E}[W_{sj}] + \sum_{s=1}^{m} B_{is}\mathsf{E}[V_{sj}].$$

Let $\mathbf{X} = (X_1, \dots, X_n)^\top$ be an *n*-dimensional random vector with mean vector $\boldsymbol{\mu}$. Then the variance-covariance matrix of \boldsymbol{X} is defined to be

$$Cov(\mathbf{X}) = \mathsf{E}\left[(\mathbf{X} - \mu) (\mathbf{X} - \mu)^{\mathsf{T}} \right]$$

= $\mathsf{E}\left[(\mathbf{X} - \mu) (\mathbf{X} - \mu_1) (X_1 - \mu_1) (X_1 - \mu_1) (X_2 - \mu_2) \cdots (X_1 - \mu_1) (X_n - \mu_n) (X_2 - \mu_2) (X_n - \mu_n) (X_1 - \mu_n) (X_1 - \mu_1) (X_n - \mu_n) (X_2 - \mu_2) \cdots (X_n - \mu_n) (X_n - \mu_n) \right]$
= $\begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \sigma_{2n} \\ \cdots & \cdots & \cdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$

Let X and Y be two random variables with joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

We have $\mu_1 = 1$, $\mu_2 = 2$, $\sigma_1^2 = 1$, $\sigma_2^2 = 2$, $\sigma_{1,2} = \text{Cov}(X, Y) = 1$. Let $Z = (X, Y)^{\top}$, then

$$\mathsf{E}(\boldsymbol{Z}) = \left[egin{array}{c} 1 \\ 2 \end{array}
ight]$$
 and $\mathsf{Cov}(\boldsymbol{Z}) = \left[egin{array}{c} 1 & 1 \\ 1 & 2 \end{array}
ight]$

Theorem 2.6.3 – Two properties of covariance matrix

Let $\boldsymbol{X} = (X_1, \dots, X_n)^\top$ be an *n*-dimensional random vector with mean vector $\boldsymbol{\mu}$. Then,

$$\operatorname{Cov}(\boldsymbol{X}) = \mathsf{E}\left[\boldsymbol{X}\boldsymbol{X}^{\top}\right] - \boldsymbol{\mu}\boldsymbol{\mu}^{\top}.$$
(3)

If further let A be an $m \times n$ constant matrix, then we have

 $\mathsf{Cov}\left(\boldsymbol{A}\boldsymbol{X}\right) = \boldsymbol{A}\mathsf{Cov}\left(\boldsymbol{X}\right)\boldsymbol{A}^{\top}.$

Proof.
$$\operatorname{Cov}(X) = \operatorname{E}[(X - \mu)(X - \mu)^{\top}]$$

 $= \operatorname{E}[(XX^{\top} - \mu X^{\top} - X\mu^{\top} + \mu\mu)^{\top}]$
 $= \operatorname{E}[XX^{\top}] - \mu \operatorname{E}[X^{\top}] - \operatorname{E}[X]\mu^{\top} + \mu\mu^{\top}.$
 $\operatorname{Cov}(AX) = \operatorname{E}\left[(AX)(AX)^{\top}\right] - (A\mu)(A\mu)^{\top}$
 $= \operatorname{E}\left[AXX^{\top}A^{\top}\right] - A\mu\mu^{\top}A^{\top}$
 $= A\operatorname{E}\left[XX^{\top}\right]A^{\top} - A\mu\mu^{\top}A^{\top}$

Proof without matrix notation

$$\begin{aligned} &\mathsf{Cov}(\mathbf{X}) \\ &= \mathsf{E} \left[(\mathbf{X} - \mu) (\mathbf{X} - \mu)^{\mathsf{T}} \right] \\ &= \mathsf{E} \left[\begin{pmatrix} X_1 - \mu_1 (X_1 - \mu_1) (X_1 - \mu_1) (X_2 - \mu_2) \cdots (X_1 - \mu_1) (X_n - \mu_n) \\ (X_2 - \mu_2) (X_1 - \mu_1) (X_2 - \mu_2) (X_2 - \mu_2) \cdots (X_n - \mu_n) \\ \cdots \cdots \cdots \cdots \\ (X_n - \mu_n) (X_1 - \mu_1) (X_n - \mu_n) (X_2 - \mu_2) \cdots (X_n - \mu_n) (X_n - \mu_n) \\ &= \begin{bmatrix} \mathsf{E} (X_1 X_1) - \mu_1 \mu_1 & \mathsf{E} (X_1 X_2) - \mu_1 \mu_2 \cdots & \mathsf{E} (X_1 X_n) - \mu_1 \mu_n \\ \mathsf{E} (X_2 X_1) - \mu_2 \mu_1 & \mathsf{E} (X_2 X_2) - \mu_2 \mu_2 & \mathsf{E} (X_2 X_n) - \mu_2 \mu_n \\ \cdots \cdots \cdots & \cdots & \cdots \\ \mathsf{E} (X_n X_1) - \mu_n \mu_1 & \mathsf{E} (X_n X_2) - \mu_n \mu_2 \cdots & \mathsf{E} (X_n X_n) - \mu_n \mu_n \\ \end{bmatrix} \\ &= \mathsf{E} \begin{bmatrix} (X_1 X_1) & (X_1 X_2) \cdots & (X_1 X_n) \\ (X_2 X_1) & (X_2 X_2) & (X_2 X_n) \\ \cdots & \cdots & \cdots \\ (X_n X_1) & (X_n X_2) \cdots & X_n X_n \\ \end{bmatrix} - \begin{bmatrix} \mu_1 \mu_1 & \mu_1 \mu_2 \cdots & \mu_1 \mu_n \\ \mu_2 \mu_1 & \mu_2 \mu_2 & \mu_2 \mu_n \\ \cdots & \cdots & \cdots \\ \mu_n \mu_1 & \mu_n \mu_2 \cdots & \mu_n \mu_n \\ \end{bmatrix} \\ &= \mathsf{E} \begin{bmatrix} \mathsf{X} \mathsf{X}^{\mathsf{T}} \end{bmatrix} - \mu \mu^{\mathsf{T}}. \end{aligned}$$

- All variance-covariance matrices are positive semi-definite, that is a^TCov(X)a ≥ 0 for any a ∈ ℝⁿ.
- This is because

$$\boldsymbol{a}^{\top} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{a} = \operatorname{Var}(\boldsymbol{a}^{\top} \boldsymbol{X}) \geq 0,$$

where we note that $a^{\top}X$ is a univariate random variable.

Chapter 2 Multivariate Distributions

2.7 Transformation for Several Random Variables

One to one transformation

► Let $X = (X_1, X_2, ..., X_n)$ be a random vector with pdf $f_X(x_1, x_2, ..., x_n)$ with support S. Let

$$\begin{cases} y_1 = g_1(x_1, x_2, \dots, x_n) \\ y_2 = g_2(x_1, x_2, \dots, x_n) \\ \vdots \\ y_n = g_n(x_1, x_2, \dots, x_n) \end{cases}$$

be a multivariate function that maps $(x_1, x_2, \ldots, x_n) \in S$ to $(y_1, y_2, \ldots, y_n) \in T$. Suppose that it is a one-to-one correspondence.

Suppose that the inverse functions are given by

$$\begin{cases} x_1 = h_1(y_1, y_2, \dots, y_n) \\ x_2 = h_2(y_1, y_2, \dots, y_n) \\ \vdots \\ x_n = h_n(y_1, y_2, \dots, y_n) \end{cases}$$

Let the Jacobian be

$$J = \left| \frac{\partial (x_1, x_2, \dots, x_n)}{\partial (y_1, y_2, \dots, y_n)} \right| = \left| \begin{array}{cccc} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \dots & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \dots & \frac{\partial x_2}{\partial y_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \dots & \frac{\partial x_n}{\partial y_n} \end{array} \right|$$

► Then, the joint pdf of Y₁, Y₂, ..., Y_n determined by the mapping above is

$$f_{\mathbf{Y}}(y_1, y_2, \dots, y_n) = |J| f_{\mathbf{X}} [h_1(y_1, y_2, \dots, y_n), h_2(y_1, y_2, \dots, y_n), \dots, h_n(y_1, y_2, \dots, y_n)],$$

for $(y_1, y_2, \dots, y_n) \in \mathcal{T}.$

.

Suppose X_1 , X_2 , and X_3 have joint pdf

$$f(x_1, x_2, x_3) = \begin{cases} 48x_1x_2x_3 & 0 < x_1 < x_2 < x_3 < 1\\ 0 & \text{elsewhere,} \end{cases}$$

and let

$$\begin{cases} Y_1 = X_1 / X_2 \\ Y_2 = X_2 / X_3 \\ Y_3 = X_3. \end{cases}$$

Determine the joint pdf of Y_1 , Y_2 and Y_3 .

If $Y_1 = X_1/X_2$, $Y_2 = X_2/X_3$, and $Y_3 = X_3$, then the inverse transformation is given by

$$x_1 = y_1 y_2 y_3$$
, $x_2 = y_2 y_3$, and $x_3 = y_3$.

The Jacobian is given by

$$J = \begin{vmatrix} y_2 y_3 & y_1 y_3 & y_1 y_2 \\ 0 & y_3 & y_2 \\ 0 & 0 & 1 \end{vmatrix} = y_2 y_3^2.$$

Moreover, inequalities defining the support are equivalent to

$$0 < y_1y_2y_3, y_1y_2y_3 < y_2y_3, y_2y_3 < y_3, and y_3 < 1,$$

which reduces to the support \mathcal{T} of Y_1, Y_2, Y_3 of

$$T = \{(y_1, y_2, y_3): 0 < y_i < 1, i = 1, 2, 3\}.$$

Hence the joint pdf of Y_1, Y_2, Y_3 is

$$g(y_1, y_2, y_3) = 48(y_1y_2y_3)(y_2y_3)y_3|y_2y_3^2|$$

=
$$\begin{cases} 48y_1y_2^3y_3^5 & 0 < y_i < 1, i = 1, 2, 3\\ 0 & \text{elsewhere.} \end{cases}$$
(2.7.2)

The marginal pdfs are

Because $g(y_1, y_2, y_3) = g_1(y_1)g_2(y_2)g_3(y_3)$, the random variables Y_1, Y_2, Y_3 are mutually independent.

104/115

Multiple to one transformation

► Let $X = (X_1, X_2, ..., X_n)$ be a random vector with pdf $f_X(x_1, x_2, ..., x_n)$ with support S. Let

$$\begin{cases} y_1 = g_1(x_1, x_2, \dots, x_n) \\ y_2 = g_2(x_1, x_2, \dots, x_n) \\ \vdots \\ y_n = g_n(x_1, x_2, \dots, x_n) \end{cases}$$

be a multivariate function that maps $X = (x_1, x_2, \dots, x_n) \in S$ to $Y = (y_1, y_2, \dots, y_n) \in \mathcal{T}$.

- Suppose that the support S can be represented as the union of k mutually disjoint sets such that for each i, there is one-to-one correspondence bewteen X and Y.
- Suppose that the inverse functions are given by

$$\begin{cases} x_1 = h_{1i}(y_1, y_2, \dots, y_n) \\ x_2 = h_{2i}(y_1, y_2, \dots, y_n) \\ \vdots \\ x_n = h_{ni}(y_1, y_2, \dots, y_n) \end{cases}$$

Let the Jacobian be

$$J_{i} = \left| \frac{\partial (x_{1}, x_{2}, \dots, x_{n})}{\partial (y_{1}, y_{2}, \dots, y_{n})} \right| = \left| \begin{array}{ccc} \frac{\partial h_{1i}}{\partial y_{1}} & \frac{\partial h_{1i}}{\partial y_{2}} & \dots & \frac{\partial h_{1i}}{\partial y_{n}} \\ \frac{\partial h_{2i}}{\partial y_{1}} & \frac{\partial h_{2i}}{\partial y_{2}} & \dots & \frac{\partial h_{2i}}{\partial y_{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial h_{ni}}{\partial y_{1}} & \frac{\partial h_{ni}}{\partial y_{2}} & \dots & \frac{\partial h_{ni}}{\partial y_{n}} \end{array} \right|$$

Then, the joint pdf of Y_1, Y_2, \ldots, Y_n determined by the mapping above is

$$f_{\mathbf{Y}}(y_1, y_2, \dots, y_n) = \sum_{i=1}^k |J_i| f_{\mathbf{X}} [h_{1i}(y_1, y_2, \dots, y_n), h_{2i}(y_1, y_2, \dots, y_n), \dots, h_{ni}(y_1, y_2, \dots, y_n)],$$

for
$$(y_1, y_2, \ldots, y_n) \in \mathcal{T}$$
.

•

Let X_1 and X_2 have the joint pdf defined over the unit circle given by

$$f(x_1, x_2) = \begin{cases} \frac{1}{\pi} & 0 < x_1^2 + x_2^2 < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Let

$$\begin{cases} Y_1 = X_1^2 + X_2^2 \\ Y_2 = X_1^2 / (X_1^2 + X_2^2). \end{cases}$$

Determine the joint pdf of Y_1 and Y_2 .

Let $Y_1 = X_1^2 + X_2^2$ and $Y_2 = X_1^2/(X_1^2 + X_2^2)$. Thus $y_1y_2 = x_1^2$ and $x_2^2 = y_1(1 - y_2)$. The support S maps onto $T = \{(y_1, y_2) : 0 < y_i < 1, i = 1, 2\}$. For each ordered pair $(y_1, y_2) \in T$, there are four points in S, given by

$$\begin{array}{ll} (x_1,x_2) & \text{such that} & x_1=\sqrt{y_1y_2} \text{ and } x_2=\sqrt{y_1(1-y_2)}\\ (x_1,x_2) & \text{such that} & x_1=\sqrt{y_1y_2} \text{ and } x_2=-\sqrt{y_1(1-y_2)}\\ (x_1,x_2) & \text{such that} & x_1=-\sqrt{y_1y_2} \text{ and } x_2=\sqrt{y_1(1-y_2)}\\ \text{and} & (x_1,x_2) & \text{such that} & x_1=-\sqrt{y_1y_2} \text{ and } x_2=-\sqrt{y_1(1-y_2)}. \end{array}$$

The value of the first Jacobian is

$$J_{1} = \begin{vmatrix} \frac{1}{2}\sqrt{y_{2}/y_{1}} & \frac{1}{2}\sqrt{y_{1}/y_{2}} \\ \frac{1}{2}\sqrt{(1-y_{2})/y_{1}} & -\frac{1}{2}\sqrt{y_{1}/(1-y_{2})} \end{vmatrix}$$
$$= \frac{1}{4}\left\{-\sqrt{\frac{1-y_{2}}{y_{2}}} - \sqrt{\frac{y_{2}}{1-y_{2}}}\right\} = -\frac{1}{4}\frac{1}{\sqrt{y_{2}(1-y_{2})}}$$

It is easy to see that the absolute value of each of the four Jacobians equals $1/4\sqrt{y_2(1-y_2)}$. Hence, the joint pdf of Y_1 and Y_2 is the sum of four terms and can be written as

$$g(y_1, y_2) = 4 \frac{1}{\pi} \frac{1}{4\sqrt{y_2(1-y_2)}} = \frac{1}{\pi\sqrt{y_2(1-y_2)}}, \quad (y_1, y_2) \in T.$$

Thus Y_1 and Y_2 are independent random variables by Theorem 2.5.1.

Chapter 2 Multivariate Distributions

2.8 Linear Combinations of Random Variables

- ▶ We are interested in a function of $T = T(X_1, ..., X_n)$ where $X_1, ..., X_n$ is a random vector.
- For example, we let each X_i denote the final percentage of STAT 4100 grade. Assume we know the distribution of each X_i , can we know the distribution of the average percentage \bar{X} ?
- In this section, we focus on linear combination of these variables, i.e.,

$$T = \sum_{i=1}^{n} a_i X_i.$$

Theorem 2.8.1. Let $T = \sum_{i=1}^{n} a_i X_i$. Provided that $E[|X_i|] < \infty$, for all i = 1, ..., n, then

$$\mathsf{E}(T) = \sum_{i=1}^{n} a_i \mathsf{E}(X_i).$$

This theorem follows immediately from the linearity of the expectation operation.

Variance and covariance of linear combinations

Theorem 2.8.2. Let $T = \sum_{i=1}^{n} a_i X_i$ and $W = \sum_{j=1}^{m} b_j Y_j$. If $\mathsf{E}[X_i^2] < \infty$ and $\mathsf{E}[Y_j^2] < \infty$, for $i = 1, \dots, n$ and $j = 1, \dots, m$, then

$$\operatorname{Cov}(T,W) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \operatorname{Cov}(X_i, Y_j).$$

Proof:

$$\begin{aligned} \mathsf{Cov}(T,W) &= \mathsf{E}\left[\sum_{i=1}^{n}\sum_{j=1}^{m}(a_{i}X_{i}-a_{i}\mathsf{E}(X_{i}))(b_{j}Y_{j}-b_{j}\mathsf{E}(Y_{j}))\right] \\ &= \sum_{i=1}^{n}\sum_{j=1}^{m}\mathsf{E}[(a_{i}X_{i}-a_{i}\mathsf{E}(X_{i}))(b_{j}Y_{j}-b_{j}\mathsf{E}(Y_{j}))]. \end{aligned}$$

Corollary 2.8.1. Let $T = \sum_{i=1}^{n} a_i X_i$. Provided $E[X_i^2] < \infty$, for i = 1, ..., n, then

$$\operatorname{Var}(T) = \operatorname{Cov}(T, T) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i) + 2 \sum_{i < j}^{m} a_i a_j \operatorname{Cov}(X_i, Y_j).$$

Corollary 2.8.2. If X_1, \ldots, X_n are independent random variables with finite variances, then

$$\operatorname{Var}(T) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i).$$

Special case If X_1 and X_2 have finite variances, then

 $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y).$

If they are also independent, then

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y).$$

Note that E(X + Y) = E(X) + E(Y) regardless of independence.

Let X_1, \ldots, X_n be independent and identically distributed random variables with common mean μ and variance σ^2 . The sample mean is defined by $\overline{X} = n^{-1} \sum_{i=1}^n X_i$. This is a linear combination of the sample observations with $a_i \equiv n^{-1}$; hence by Theorem 2.8.1 and Corollary 2.8.2, we have

$$\mathsf{E}(ar{X})=\mu$$
 and $\mathsf{Var}(ar{X})=\sigma^2/n.$

Define the sample variance by

$$S^{2} = (n-1)^{-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = (n-1)^{-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right).$$

Following from the fact that $\mathsf{E}(X^2)=\sigma^2+\mu^2$,

$$\mathsf{E}(S^2) = (n-1)^{-1} \left(\sum_{i=1}^n \mathsf{E}(X_i^2) - n\mathsf{E}(\bar{X}^2) \right)$$

= $(n-1)^{-1} \{ n\sigma^2 + n\mu^2 - n[(\sigma^2/n + \mu^2)] \}$
= σ^2 .