Chapter 2 Multivariate Distributions
 2.1 Distributions of Two Random Variables

Bivariate random vector

Definition

A random variable is a function from a sample space \mathcal{C} to \mathcal{R}.

Definition

An n-dim random vector is a function from \mathcal{C} to \mathcal{R}^{n}.

- A 2-dim random vector is also called a bivariate random variable.

Remark: $\quad X=\left(X_{1}, X_{2}\right)^{\prime}$ assigns to each element c of the sample space \mathcal{C} exactly one ordered pair of numbers $X_{1}(c)=x_{1}$ and $X_{2}(c)=x_{2}$.

Example

1 Height and weight of respondent.
2 Fuel consumption and hours on an engine.

Discrete Random Variables

Joint probability mass function

Definition

A joint probability mass function

$p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=p\left(X_{1}=x_{1}, X_{2}=x_{2}\right)\left(\right.$ or $\left.p\left(x_{1}, x_{2}\right)\right)$ with space $\left(x_{1}, x_{2}\right) \in S$ has the properties that
(a) $0 \leq p\left(x_{1}, x_{2}\right) \leq 1$,
(b) $\sum_{\left(x_{1}, x_{2}\right) \in S} p\left(x_{1}, x_{2}\right)=1$,
(c) $P\left[\left(X_{1}, X_{2}\right) \in A\right]=\sum_{\left(x_{1}, x_{2}\right) \in A} p\left(x_{1}, x_{2}\right)$.

Example

A restaurant serves three fixed-price dinners costing $\$ 7, \$ 9$, and $\$ 10$. For a randomly selected couple dinning at this restaurant, let $X_{1}=$ the cost of the man's dinner and
$X_{2}=$ the cost of the woman's dinner.
The joint pmf of X_{1} and X_{2} is given in the following table:

		x_{1}		
		7	9	10
x_{2}	7	0.05	0.05	0.10
	9	0.05	0.10	0.35
	10	0.00	0.20	0.10

- What is the probability of $P\left(X_{1} \geq 9, X_{2} \leq 9\right) ? \underline{0.60}$.
- Does man's dinner cost more?

Marginal probability mass function

Definition

Suppose that X_{1} and X_{2} have the joint pmf $p\left(x_{1}, x_{2}\right)$. Then the pmf for X_{i}, denoted by $p_{i}(\cdot), i=1,2$ is the marginal pmf.

Note $p_{1}\left(x_{1}\right)=\sum_{x_{2}} p\left(x_{1}, x_{2}\right)$ and $p_{2}\left(x_{2}\right)=\sum_{x_{1}} p\left(x_{1}, x_{2}\right)$.

Example Find the marginal pmf of the previous example.

| | x_{1} | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 9 | 10 | | x_{2} |
| 7 | 9 | 9 | 10 | |
| 0.10 | 0.35 | 0.55 | | |

Example

Let $X_{1}=$ Smaller die face, $X_{2}=$ Larger die face, when rolling a pair of two dice. The following table shows a partition of the sample space into 21 events.

				x_{1}			
		1	2	3	4	5	6
x_{2}	1	$1 / 36$	0	0	0	0	0
	2	$2 / 36$	$1 / 36$	0	0	0	0
	3	$2 / 36$	$2 / 36$	$1 / 36$	0	0	0
	4	$2 / 36$	$2 / 36$	$2 / 36$	$1 / 36$	0	0
	5	$2 / 36$	$2 / 36$	$2 / 36$	$2 / 36$	$1 / 36$	0
	6	$2 / 36$	$2 / 36$	$2 / 36$	$2 / 36$	$2 / 36$	$1 / 36$

Find the marginal pmf's.

Expectation - discrete random variables

Definition

Let $Y=u\left(X_{1}, X_{2}\right)$. Then, Y is a random variable and

$$
E\left[u\left(X_{1}, X_{2}\right)\right]=\sum_{x_{1}} \sum_{x_{2}} u\left(x_{1}, x_{2}\right) p\left(x_{1}, x_{2}\right)
$$

under the condition that

$$
\sum_{x_{1}} \sum_{x_{2}}\left|u\left(x_{1}, x_{2}\right)\right| p\left(x_{1}, x_{2}\right) \mid<\infty
$$

Example

Find $E\left(\max \left\{X_{1}, X_{2}\right\}\right)$ for the restaurant problem. 9.65.

Continuous Random Variables

Joint density function

A joint density function $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ (or $f\left(x_{1}, x_{2}\right)$) with space $\left(x_{1}, x_{2}\right) \in S$ has the properties that
(a) $f\left(x_{1}, x_{2}\right)>0$,
(b) $\int_{\left(x_{1}, x_{2}\right) \in S} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=1$,
(c) $P\left[\left(X_{1}, X_{2}\right) \in A\right]=\int_{\left(x_{1}, x_{2}\right) \in A} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$.

Example

Let X_{1} and X_{2} be continuous random variables with joint density function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}4 x_{1} x_{2} & \text { for } 0<x_{1}, x_{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

1 Find $P\left(1 / 4<X_{1}<3 / 4 ; 1 / 2<X_{2}<1\right)$.
2 Find $P\left(X_{1}<X_{2}\right)$.
3 Find $P\left(X_{1}+X_{2}<1\right)$.

Solution:

$$
\begin{aligned}
& \int_{1 / 2}^{1} \int_{1 / 4}^{3 / 4} 4 x_{1} x_{2} d x_{1} d x_{2}=3 / 8=0.375 \\
& \int_{0}^{1} \int_{0}^{x_{2}} 4 x_{1} x_{2} d x_{1} d x_{2}=1 / 2=0.5 \\
& \int_{0}^{1} \int_{0}^{1-x_{2}} 4 x_{1} x_{2} d x_{1} d x_{2}=1 / 6=0.167
\end{aligned}
$$

Marginal probability density function

Suppose that X_{1} and X_{2} have the joint pdf $f\left(x_{1}, x_{2}\right)$. Then the pdf for X_{i}, denoted by $f_{i}(\cdot), i=1,2$ is the marginal pdf.

Note: $f_{1}\left(x_{1}\right)=\int_{x_{2}} f\left(x_{1}, x_{2}\right) d x_{2}$ and $f_{2}\left(x_{2}\right)=\int_{x_{1}} f\left(x_{1}, x_{2}\right) d x_{1}$.

Example

Find the marginal pdf from the previous problem.
Solution:
$f_{1}(x)=f_{2}(x)=2 x$.

Example

Let X_{1} and X_{2} be continuous random variables with joint density function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}c x_{1} x_{2} & \text { for } 0<x_{1}<x_{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

1 Find c.
2 Find $P\left(X_{1}+X_{2}<1\right)$.
3 Find marginal probability density function of X_{1} and X_{2}.

Solution:

We have $c=8$ because

$$
\begin{aligned}
\int_{0}^{1} \int_{x_{1}}^{1} x_{1} x_{2} d x_{1} d x_{2} & =1 / 8=0.125 \\
\int_{0}^{1 / 2} \int_{x_{1}}^{1-x_{1}} 8 x_{1} x_{2} d x_{1} d x_{2} & =1 / 6=0.167
\end{aligned}
$$

For the marginal pdf, we have

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{x_{1}}^{1} 8 x_{1} x_{2} d x_{2}=4 x_{1}-4 x_{1}^{3} \\
& f_{X_{2}}\left(x_{2}\right)=\int_{0}^{x_{2}} 8 x_{1} x_{2} d x_{1}=4 x_{2}^{3}
\end{aligned}
$$

Let X_{1} and X_{2} be continuous random variables with joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}c x_{1} x_{2} & \text { for } 0<x_{1}<x_{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

What is $P\left\{\left[X_{1}<X_{2}\right] \cap\left[X_{2}>4\left(X_{1}-1 / 2\right)^{2}\right]\right\}$?

Solution:

We see $1 / 4$ is the solution of $x=4\left(x-\frac{1}{2}\right)^{2}$ on $0<x<1$. The range of X_{2} is $(1 / 4,1)$. When $X_{2}=x_{2}$ is given, we next get the range of X_{1}. By $X_{2}=4\left(X_{1}-1 / 2\right)^{2}$, we have

$$
X_{1}=\frac{1}{2} \pm \sqrt{\frac{X_{2}}{4}}
$$

We determine the lower bound of X_{1} is $\frac{1}{2} \pm \sqrt{\frac{X_{2}}{4}}$ because the intersection of $X_{1}=X_{2}$ and $X_{2}=4\left(X_{1}-1 / 2\right)^{2}$ is less than $1 / 2$ when $X_{1} \in(0,1)$. We also have $X_{1}<1$, so the probability is

$$
\int_{\frac{1}{4}}^{1} \int_{\frac{1}{2}-\sqrt{\frac{x_{2}}{4}}}^{x_{1}} 8 x_{1} x_{2} d x_{1} d x_{2}=0.974
$$

Expectation - continuous random variables

Let $Y=u\left(X_{1}, X_{2}\right)$. Then, Y is a random variable and

$$
E\left[u\left(X_{1}, X_{2}\right)\right]=\int_{x_{1}} \int_{x_{2}} u\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}
$$

under the condition that

$$
\int_{x_{1}} \int_{x_{2}}\left|u\left(x_{1}, x_{2}\right)\right| f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}<\infty
$$

Example

Let X_{1} and X_{2} be continuous random variables with joint density function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}(36 / 5) x_{1} x_{2}\left(1-x_{1} x_{2}\right) & \text { for } 0<x_{1}, x_{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $E\left(X_{1} X_{2}\right)$.

Solution:

$$
\int_{0}^{1} \int_{0}^{1} \frac{36}{5}\left(x_{1}^{2} x_{2}^{2}\left(1-x_{1} x_{2}\right)\right) d x_{1} d x_{2}=0.35
$$

Theorem

Let $\left(X_{1}, X_{2}\right)$ be a random vector. Let $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ be random variables whose expectations exist. Then for all real numbers k_{1} and k_{2},

$$
E\left(k_{1} Y_{1}+k_{2} Y_{2}\right)=k_{1} E\left(Y_{1}\right)+k_{2} E\left(Y_{2}\right)
$$

We also note that

$$
E g\left(X_{2}\right)=\int_{-\infty}^{\infty} g\left(x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{-\infty}^{\infty} g\left(x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}
$$

Example 2.1.5 \& 2.1.6

Let (X_{1}, X_{2}) be a random vector with pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}8 x_{1} x_{2} & 0<x_{1}<x_{2}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Let $Y_{1}=7 X_{1} X_{2}^{2}+5 X_{2}$ and $Y_{2}=X_{1} / X_{2}$. Determine $E\left(Y_{1}\right)$ and $E\left(Y_{2}\right)$.

Discrete \& Continuous R.V.

Joint cumulative distribution function

Definition

The joint cumulative distribution function of $\left(X_{1}, X_{2}\right)$ is
$F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left[\left\{X_{1} \leq x_{1}\right\} \cap\left\{X_{2} \leq x_{2}\right\}\right] \quad$ for all $\left(x_{1}, x_{2}\right) \in R^{2}$.
Relationship with pmf and pdf:
1 Discrete random variables:

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\sum_{X_{1} \leq x_{1}} \sum_{X_{2} \leq x_{2}} p\left(x_{1}, x_{2}\right) .
$$

2 Continuous random variables:

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\int_{0}^{x_{1}} \int_{0}^{x_{2}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

Joint cumulative distribution function (cont'd)

Definition
The joint cumulative distribution function of $\left(X_{1}, X_{2}\right)$ is
$F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left[\left\{X_{1} \leq x_{1}\right\} \cap\left\{X_{2} \leq x_{2}\right\}\right] \quad$ for all $\left(x_{1}, x_{2}\right) \in R^{2}$.

Properties:

$1 F\left(x_{1}, x_{2}\right)$ is nondecreasing in x_{1} and x_{2}.
$2 F\left(-\infty, x_{2}\right)=F\left(x_{1},-\infty\right)=0$.
$3 \quad F(\infty, \infty)=1$.
4 For a rectangle $\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right.$], we have

$$
\begin{aligned}
& P\left\{\left(X_{1}, X_{2}\right) \in\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right]\right\} \\
= & F\left(b_{1}, b_{2}\right)-F\left(a_{1}, b_{2}\right)-F\left(b_{1}, a_{2}\right)+F\left(a_{1}, a_{2}\right) .
\end{aligned}
$$

Example 2.1.1

Consider the discrete random vector $\left(X_{1}, X_{2}\right)$. Its pmf is given in the following table:

$X_{1} \backslash X_{2}$	0	1	2	3
0	$1 / 8$	$1 / 8$	0	0
1	0	$2 / 8$	$2 / 8$	0
2	0	0	$1 / 8$	$1 / 8$

Find the value of the joint cdf $F\left(x_{1}, x_{2}\right)$ at $(1,2)$. Solution: 3/4.

Example

1. Find the joint cdf of

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}2 e^{-x_{1}-x_{2}} & 0<x_{1}, x_{2}<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Solution:

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\int_{0}^{x_{1}} \int_{0}^{x_{2}} 2 e^{-t_{1}-t_{2}} d t_{1} d t_{2}=2\left(1-e^{-x_{1}}\right)\left(1-e^{-x_{2}}\right)
$$

2. Find the joint cdf of

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}2 e^{-x_{1}-x_{2}} & 0<x_{1}<x_{2}<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Solution:

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\int_{0}^{\min \left(x_{1}, x_{2}\right)} \int_{t_{1}}^{x_{2}} 2 e^{-t_{1}-t_{2}} d t_{2} d t_{1}
$$

Moment generating function (mgf)

Definition

Let $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\top}$ be a random vector. If

$$
M\left(t_{1}, t_{2}\right)=\mathrm{E}\left(e^{t_{1} X_{1}+t_{2} X_{2}}\right)
$$

exists for $\left|t_{1}\right|<h_{1}$ and $\left|t_{2}\right|<h_{2}$, where h_{1} and h_{2} are positive, then we call $M\left(t_{1}, t_{2}\right)$ the moment generating function (mgf) of $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\top}$.

We may write

$$
M\left(t_{1}, t_{2}\right)=\mathrm{E}\left(e^{t_{1} X_{1}+t_{2} X_{2}}\right)=\mathrm{E}\left(e^{\mathbf{t}^{\top} \mathbf{x}}\right)
$$

where \mathbf{t}^{\top} is a row vector $\left(t_{1}, t_{2}\right)$ and \mathbf{X} is a column vector $\left(X_{1}, X_{2}\right)^{\top}$.

Example 2.1.7

Let the continuous-type random variables X and Y have the joint pdf

$$
f(x, y)= \begin{cases}e^{-y} & 0<x<y<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

Determine the joint mgf.

Solution:

$$
M_{X, Y}\left(t_{1}, t_{2}\right)=\int_{0}^{\infty} \int_{x}^{\infty} \exp \left(t_{1} x+t_{2} y-y\right) d y d x=\frac{1}{\left(1-t_{1}-t_{2}\right)\left(1-t_{2}\right)}
$$

provided that $t_{1}+t_{2}<1$ and $t_{2}<1$.

Marginal mgf

Recall that

$$
M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)=\mathrm{E}\left(e^{t_{1} X_{1}+t_{2} X_{2}}\right) .
$$

The marginal mgf is given by

$$
\begin{aligned}
& M_{X_{1}}\left(t_{1}\right)=\mathrm{E}\left(e^{t_{1} X_{1}}\right)=M_{X_{1}, X_{2}}\left(t_{1}, 0\right), \\
& M_{X_{2}}\left(t_{2}\right)=\mathrm{E}\left(e^{t_{2} X_{2}}\right)=M_{X_{1}, X_{2}}\left(0, t_{2}\right)
\end{aligned}
$$

Example 2.1.7 (cont'd)

Let the continuous-type random variables X and Y have the joint pdf

$$
f(x, y)= \begin{cases}e^{-y} & 0<x<y<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

Determine the marginal mgf.

Solution:

$$
M_{X, Y}\left(t_{1}, t_{2}\right)=\int_{0}^{\infty} \int_{x}^{\infty} \exp \left(t_{1} x+t_{2} y-y\right) d y d x=\frac{1}{\left(1-t_{1}-t_{2}\right)\left(1-t_{2}\right)}
$$

provided that $t_{1}+t_{2}<1$ and $t_{2}<1$.

$$
\begin{gathered}
M_{X}\left(t_{1}\right)=M_{X, Y}\left(t_{1}, 0\right)=\frac{1}{1-t_{1}}, t_{1}<1 \\
M_{Y}\left(t_{2}\right)=M_{X, Y}\left(0, t_{2}\right)=\frac{1}{\left(1-t_{2}\right)^{2}}, t_{2}<1
\end{gathered}
$$

Example 2.1.7 (cont'd)

Let the continuous-type random variables X and Y have the joint pdf

$$
f(x, y)= \begin{cases}e^{-y} & 0<x<y<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

Determine the marginal mgf.

Solution:

$$
\begin{gathered}
M_{X}\left(t_{1}\right)=M_{X, Y}\left(t_{1}, 0\right)=\frac{1}{1-t_{1}}, t_{1}<1 \\
M_{Y}\left(t_{2}\right)=M_{X, Y}\left(0, t_{2}\right)=\frac{1}{\left(1-t_{2}\right)^{2}}, t_{2}<1
\end{gathered}
$$

Note that

$$
\begin{aligned}
& f_{1}(x)=\int_{x}^{\infty} e^{-y} d y=e^{-x}, 0<x<\infty \\
& f_{2}(x)=\int_{0}^{y} e^{-y} d x=y e^{-y}, 0<y<\infty
\end{aligned}
$$

Fact: It can be shown that

$$
\mathrm{E}(X Y)=\left.\frac{d M_{X, Y}\left(t_{1}, t_{2}\right)}{d t_{1} d t_{2}}\right|_{t_{1}=0, t_{2}=0}
$$

Example: Method 1: In the previous example,

$$
\mathrm{E}(X Y)=\int_{0}^{\infty} \int_{0}^{y} x y e^{-y} d x d y=3
$$

Method 2:

$$
\begin{gathered}
\qquad M_{X, Y}\left(t_{1}, t_{2}\right)=\frac{1}{\left(1-t_{1}-t_{2}\right)\left(1-t_{2}\right)}, \\
\frac{d M_{X, Y}\left(t_{1}, t_{2}\right)}{d t_{1} d t_{2}}=-\frac{t_{1}+3 t_{2}-3}{\left(t_{2}-1\right)^{2}\left(-t_{1}-t_{2}+1\right)^{3}}, \\
\text { where we see }\left.\frac{d M_{X, Y}\left(t_{1}, t_{2}\right)}{d t_{1} d t_{2}}\right|_{t_{1}=0, t_{2}=0}=3 \text { as well. }
\end{gathered}
$$

Chapter 2 Multivariate Distributions

2.2 Transformation: Bivariate Random Variables

Transformation of discrete random vectors

- Assume there is a one to one mapping between $X=\left(X_{1}, X_{2}\right)^{\top}$ and $Y=\left(Y_{1}, Y_{2}\right)^{\top}$:

$$
\begin{array}{ll}
Y_{1}=u_{1}\left(X_{1}, X_{2}\right), & X_{1}=w_{1}\left(Y_{1}, Y_{2}\right) \\
Y_{2}=u_{2}\left(X_{1}, X_{2}\right), & X_{2}=w_{2}\left(Y_{1}, Y_{2}\right)
\end{array}
$$

- Transformation of discrete random variable:

$$
p_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=p_{X_{1}, X_{2}}\left(w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right)
$$

Example 2.2.1

Let X and Y be independent random variables such that

$$
p_{X}(x)=\frac{\mu_{1}^{x}}{x!} e^{-\mu_{1}}, \quad x=0,1,2, \ldots
$$

and

$$
p_{Y}(y)=\frac{\mu_{2}^{y}}{y!} e^{-\mu_{2}}, \quad y=0,1,2, \ldots
$$

- Find the pmf of $U=X+Y$.
- Determine the mgf of U.

Transformation of continuous random variables

Let J denote the Jacobian of the transformation. This is the determinant of the 2×2 matrix

$$
\left(\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right)
$$

The determinant is $J\left(y_{1}, y_{2}\right)=\frac{\partial x_{1}}{\partial y_{1}} \cdot \frac{\partial x_{2}}{\partial y_{2}}-\frac{\partial x_{1}}{\partial y_{2}} \cdot \frac{\partial x_{2}}{\partial y_{1}}$.
Transformation formula: The joint pdf of the continuous random vector $Y=\left(Y_{1}, Y_{2}\right)^{\top}$ is

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{\left.X_{1}, X_{2}\right)}\left(w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right) \cdot\left|J\left(y_{1}, y_{2}\right)\right|
$$

Notice the bars around the function J, denoting absolute value.

Example

A device containing two key components fails when, and only when, both components fail. The lifetimes, X_{1} and X_{2}, of these components have a joint pdf $f\left(x_{1}, x_{2}\right)=e^{-x_{1}-x_{2}}$, where $x_{1}, x_{2}>0$ and zero otherwise. The cost Y_{1}, of operating the device until failure is $Y_{1}=2 X_{1}+X_{2}$.
1 Find the joint pdf of Y_{1}, Y_{2} where $Y_{2}=X_{2}$.
2 Find the marginal pdf for Y_{1} (Ans: $e^{-y_{1} / 2}-e^{-y_{1}}$, for $y_{1}>0$)

Example 2.2.5

Suppose (X_{1}, X_{2}) has joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}10 x_{1} x_{2}^{2} & 0<x<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Let $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{2}$. Find the joint and marginal pdf's of Y_{1} and Y_{2}.

Solution sketch

1. One to one transformation:

$$
\begin{array}{llr}
y_{1}=x_{1} / x_{2}, & y_{2}=x_{2}, & 0<x_{1}<x_{2}<1 \\
x_{1}=y_{1} y_{2}, & x_{2}=y_{2}, & 0<y_{1}<1,0<y_{2}<1
\end{array}
$$

2. Give the joint pdf:

$f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=10 y_{1} y_{2} y_{2}^{2}\left|y_{2}\right|$, where y is defined above or 0 elsewhere.
3. Give the marginal pdf of Y_{1} :

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{0}^{1} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{2}=2 y_{1}, 0<y_{1}<0
$$

Example 2.2.4

Suppose (X_{1}, X_{2}) has joint pdf
$f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{4} \exp \left(-\frac{x_{1}+x_{2}}{2}\right) & 0<x_{1}<\infty, 0<x_{2}<\infty \\ 0 & \text { elsewhere. }\end{cases}$
Let $Y_{1}=1 / 2\left(X_{1}-X_{2}\right)$ and $Y_{2}=X_{2}$. Find the joint and marginal pdf's of Y_{1} and Y_{2}.

Solution sketch

1. One to one transformation:

$$
\begin{array}{lr}
y_{1}=\frac{1}{2}\left(x_{1}-x_{2}\right), & y_{2}=x_{2}, \\
x_{1}=2 y_{1}+y_{2}, & x_{2}=y_{2}, \\
-2 y_{1}<y_{2}, & 0<y_{2}<\infty
\end{array}
$$

2. Give the joint pdf:

$f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=e^{-y_{1}-y_{2}} / 4 \times|2|$, where y is defined above or 0 elsewhere.
3. Give the marginal pdf of Y_{1} :

$$
f_{Y_{1}}\left(y_{1}\right)=\left\{\begin{array}{l}
\int_{-2 y_{1}}^{\infty} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{2}=e^{y_{1}} / 2,-\infty<y_{1}<0 \\
\int_{0}^{\infty} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{2}=e^{-y_{1}} / 2,0 \leq y_{1}<\infty
\end{array}\right.
$$

which gives $f_{Y_{1}}\left(y_{1}\right)=e^{-\left|y_{1}\right|},-\infty<y<\infty$.

Example 2.2.7

Suppose (X_{1}, X_{2}) has joint pdf
$f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{4} \exp \left(-\frac{x_{1}+x_{2}}{2}\right) & 0<x_{1}<\infty, 0<x_{2}<\infty \\ 0 & \text { elsewhere } .\end{cases}$
Let $Y_{1}=1 / 2\left(X_{1}-X_{2}\right)$. What is the mgf of Y_{1} ?

Solution sketch

$$
\begin{aligned}
\mathrm{E}\left(e^{t Y}\right) & =\int_{0}^{\infty} \int_{0}^{\infty} e^{t\left(x_{1}-x_{2}\right) / 2} \frac{1}{4} e^{-\left(x_{1}+x_{2}\right) / 2} d x_{1} d x_{2} \\
& =\left[\int_{0}^{\infty} \frac{1}{2} e^{-x_{1}(1-t) / 2} d x_{1}\right]\left[\int_{0}^{\infty} \frac{1}{2} e^{-x_{2}(1+t) / 2} d x_{2}\right] \\
& =\left[\frac{1}{1-t}\right]\left[\frac{1}{1+t}\right] \\
& =\frac{1}{1-t^{2}}
\end{aligned}
$$

provided that $1-t>0$ and $1+t>0$. This is equivalent to

$$
\int_{-\infty}^{\infty} e^{t x} \frac{e^{-|x|}}{2}=\frac{1}{1-t^{2}},-1<t<1
$$

which is the mgf of double exponential distribution.

Chapter 2 Multivariate Distributions
 2.3 Conditional Distributions and Expectations

Conditional probability for discrete r.v.

Motivating example

Let $X_{1}=$ Smaller die face, $X_{2}=$ Larger die face, when rolling a pair of two dice. The following table shows a partition of the sample space into 21 events.

				x_{1}			
		1	2	3	4	5	6
x_{2}	1	$1 / 36$	0	0	0	0	0
	2	$2 / 36$	$1 / 36$	0	0	0	0
	3	$2 / 36$	$2 / 36$	$1 / 36$	0	0	0
	4	$2 / 36$	$2 / 36$	$2 / 36$	$1 / 36$	0	0
	5	$2 / 36$	$2 / 36$	$2 / 36$	$2 / 36$	$1 / 36$	0
	6	$2 / 36$	$2 / 36$	$2 / 36$	$2 / 36$	$2 / 36$	$1 / 36$

Recalling our definition of conditional probability for events, we have (for example)

$$
P\left(X_{2}=4 \mid X_{1}=2\right)=\frac{P\left[\left\{X_{1}=2\right\} \cap\left\{X_{2}=4\right\}\right]}{P\left(X_{1}=2\right)}=\frac{2 / 36}{9 / 36}=\frac{2}{9} .
$$

- Recall that for two events A_{1} and A_{2} with $P\left(A_{1}\right)>0$, the conditional probability of A_{2} given A_{1} is

$$
P\left(A_{2} \mid A_{1}\right)=\frac{P\left(A_{1} \cap A_{2}\right)}{P\left(A_{1}\right)} .
$$

- Let X_{1} and X_{2} denote discrete random variables with joint pmf $p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ and marginal pmfs $p_{X_{1}}\left(x_{1}\right)$ and $p_{X_{2}}\left(x_{2}\right)$. Then for every x_{1} such that $p_{X_{1}}\left(x_{1}\right)>0$, we have

$$
P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right)=\frac{P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{P\left(X_{1}=x_{1}\right)}=\frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)} .
$$

We use a simple notation:

$$
p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=p_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)}
$$

- We call $p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$ the conditional pmf of X_{2}, given that $X_{1}=x_{1}$.

Verify $p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$ satisfies the condition of being a pmf.
[1 $p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \geq 0$.
2

$$
\begin{aligned}
\sum_{x_{2}} p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) & =\sum_{x_{2}} \frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)} \\
& =\frac{1}{p_{X_{1}}\left(x_{1}\right)} \sum_{x_{2}} p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \\
& =\frac{p_{X_{1}}\left(x_{1}\right)}{p_{X_{1}}\left(x_{1}\right)}=1
\end{aligned}
$$

Conditional expectation of discrete random variables:

$$
\mathrm{E}\left(X_{1} \mid X_{2}=x_{2}\right)=\sum_{x_{1}} x_{1} p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)
$$

Example

Returning to the previous example, it is straightforward to work out the conditional pmf as well as associated functions like expectations. For instance,

$$
p_{X_{1} \mid X_{2}}\left(x_{1} \mid X_{2}=3\right)= \begin{cases}2 / 5 & \text { if } x_{1}=1,2 \\ 1 / 5 & \text { if } x_{1}=3 \\ 0 & \text { if } x_{1}=4,5,6\end{cases}
$$

and $E\left(X_{1} \mid X_{2}=3\right)=9 / 5$.

Conditional probability for continuous r.v.

- Let X_{1} and X_{2} denote continuous random variables with joint pdf $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ and marginal pmfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$. Then for every x_{1} such that $f_{X_{1}}\left(x_{1}\right)>0$, we define

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)} .
$$

- Verify that $f_{X_{2} \mid X_{1}}$ satisfies the conditions of being a pdf.

$$
\text { (1) } \begin{align*}
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) & \geq 0 \tag{1}\\
\text { (2) } \int_{-\infty}^{\infty} f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) d x_{2} & =\int_{-\infty}^{\infty} \frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)} d x_{2} \\
& =\frac{1}{f_{X_{1}}\left(x_{1}\right)} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} \\
& =\frac{f_{X_{1}}\left(x_{1}\right)}{f_{X_{1}}\left(x_{1}\right)}=1 .
\end{align*}
$$

Conditional expectation of continuous random variables

- If $u\left(X_{2}\right)$ is a function of X_{2}, the conditional expectation of $u\left(X_{2}\right)$, given that $X_{1}=x_{1}$, if it exists, is given by

$$
\mathrm{E}\left[u\left(X_{2}\right) \mid x_{1}\right]=\int_{-\infty}^{\infty} u\left(x_{2}\right) f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) d x_{2}
$$

- If they do exist, then $\mathrm{E}\left(X_{2} \mid x_{1}\right)$ is the conditional mean and

$$
\operatorname{Var}\left(X_{2} \mid x_{1}\right)=\mathrm{E}\left\{\left[X_{2}-E\left(X_{2} \mid x_{1}\right)\right]^{2} \mid x_{1}\right\}
$$

is the conditional variance of X_{2}, given $X_{1}=x_{1}$.

Example

Find the conditionals $f_{X_{2} \mid X_{1}}$ and $f_{X_{1} \mid X_{2}}$ for $\left(X_{1}, X_{2}\right)$ with joint cdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}2 e^{-x_{1}-x_{2}} & 0<x_{1}<x_{2}<\infty \\ 0 & \text { otherwise }\end{cases}
$$

- Calculate $P\left(a<X_{2} \leq b \mid X_{1}=x_{1}\right)$.
- Calculate the expectation $\mathrm{E}\left[u\left(X_{2}\right) \mid X_{1}=x_{1}\right]$.
- Calculate the variance $\operatorname{Var}\left(X_{2} \mid X_{1}=x_{1}\right)$.

Example (2.3.1)

Let X_{1} and X_{2} have the joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}2 & 0<x_{1}<x_{2}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find $P\left(\left.0<X_{1}<\frac{1}{2} \right\rvert\, X_{2}=\frac{3}{4}\right)$ and $\operatorname{Var}\left(X_{1} \mid x_{2}\right)$.

Example (2.3.2)

Let X_{1} and X_{2} have the joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}6 x_{2} & 0<x_{2}<x_{1}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

1 Compute $\mathrm{E}\left(X_{2}\right)$.
2 Compute the function $h\left(x_{1}\right)=\mathrm{E}\left(X_{2} \mid x_{1}\right)$. Then compute $\mathrm{E}\left[h\left(X_{1}\right)\right]$ and $\operatorname{Var}\left[h\left(X_{1}\right)\right]$.

Theorem 2.3.1

Let (X_{1}, X_{2}) be a random vector. Then
(a) $\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right]=\mathrm{E}\left(X_{2}\right)$,
(b) $\operatorname{Var}\left(X_{2}\right)=\operatorname{Var}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right]+\mathrm{E}\left[\operatorname{Var}\left(X_{2} \mid X_{1}\right)\right]$.

Interpretation:

- Both X_{2} and $\mathrm{E}\left(X_{2} \mid X_{1}\right)$ are unbiased estimator of $\mathrm{E}\left(X_{2}\right)=\mu_{2}$.
- The part (b) shows that $\mathrm{E}\left(X_{2} \mid X_{1}\right)$ is more reliable.
- We will talk more about this when studying sufficient statistics in Chapter 7, Rao and Blackwell Theorem.

$$
\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right]=\mathrm{E}\left(X_{2}\right) .
$$

Proof.

The proof is for the continuous case. The discrete case is proved by using summations instead of integrals. We see

$$
\begin{aligned}
\mathrm{E}\left(X_{2}\right) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x_{2} \frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)} d x_{2}\right] f_{1}\left(x_{1}\right) d x_{1} \\
& =\int_{-\infty}^{\infty} \mathrm{E}\left(X_{2} \mid x_{1}\right) f_{1}\left(x_{1}\right) d x_{1} \\
& =\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right] .
\end{aligned}
$$

$$
\operatorname{Var}\left(X_{2}\right)=\operatorname{Var}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right]+\mathrm{E}\left[\operatorname{Var}\left(X_{2} \mid X_{1}\right)\right]
$$

Proof.
The proof is for both the discrete and continuous cases:

$$
\begin{aligned}
\mathrm{E}\left[\operatorname{Var}\left(X_{2} \mid X_{1}\right)\right] & =\mathrm{E}\left[\mathrm{E}\left(X_{2}^{2} \mid X_{1}\right)-\left(\mathrm{E}\left(X_{2} \mid X_{1}\right)\right)^{2}\right] \\
& =\mathrm{E}\left[\mathrm{E}\left(X_{2}^{2} \mid X_{1}\right)\right]-\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)^{2}\right] \\
& =\mathrm{E}\left(X_{2}^{2}\right)-\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)^{2}\right] ; \\
\operatorname{Var}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right] & =\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)^{2}\right]-\left\{\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right]\right\}^{2} \\
& =\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)^{2}\right]-\left[\mathrm{E}\left(X_{2}\right)\right]^{2} .
\end{aligned}
$$

Thus,
$\mathrm{E}\left[\operatorname{Var}\left(X_{2} \mid X_{1}\right)\right]+\operatorname{Var}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right]=\mathrm{E}\left(X_{2}^{2}\right)-\left[\mathrm{E}\left(X_{2}\right)\right]^{2}=\operatorname{Var}\left(X_{2}\right)$.

We further see that

$$
\operatorname{Var}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right] \leq \operatorname{Var}\left(X_{2}\right)
$$

Example 2.3.3

Let X_{1} and X_{2} be discrete random variables. Suppose the conditional pmf of X_{1} given X_{2} and the marginal distribution of X_{2} are given by

$$
\begin{aligned}
p\left(x_{1} \mid x_{2}\right) & =\binom{x_{2}}{x_{1}}\left(\frac{1}{2}\right)^{x_{2}}, x_{1}=0,1, \ldots, x_{2} \\
p\left(x_{2}\right) & =\frac{2}{3}\left(\frac{1}{3}\right)^{x_{2}-1}, x_{2}=1,2,3 \ldots
\end{aligned}
$$

Determine the mgf of X_{1}.

Example

Assume that the joint pdf for $X_{2} \mid X_{1}=x_{1}$ on the support $\mathcal{S}=\left\{0<x_{1}<1,0<x_{2}<2, x_{1}+x_{2}<2\right\}$ is

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{2 x_{1}}{2-x_{1}} & \text { in } \mathcal{S} \\ 0 & \text { otherwise }\end{cases}
$$

Find $\mathrm{E}\left(X_{2}\right)$ through $\mathrm{E}\left(X_{2}\right)=\mathrm{E}\left[\mathrm{E}\left(X_{2} \mid X_{1}\right)\right]$.

Solution:

The conditional pdf for $X_{2} \mid X_{1}=x_{1}, 0<x_{1}<1$ is

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)= \begin{cases}1 /\left(2-x_{1}\right) & \text { if } 0<x_{2}<2-x_{1} \\ 0 & \text { otherwise }\end{cases}
$$

and the marginal pdf for X_{1} is $f_{X_{1}}\left(x_{1}\right)=2 x_{1}$ for $0<x_{1}<1$ and zero otherwise.

$$
\begin{aligned}
& \mathrm{E}\left(X_{2} \mid X_{1}\right)=\int_{0}^{2-x_{1}} x_{2} \frac{1}{2-x_{1}} d x_{2}=\frac{2-x_{1}}{2} \\
& \mathrm{E}\left(\mathrm{E}\left(X_{2} \mid X_{1}\right)\right)=\int_{0}^{1} \frac{2-x_{1}}{2} 2 x_{1} d x_{1}=2 / 3
\end{aligned}
$$

We can verify this by

$$
\mathrm{E}\left(X_{2}\right)=\int_{0}^{1} \int_{0}^{2-x_{1}} x_{2} \frac{2 x_{1}}{2-x_{1}} d x_{2} d x_{1}=2 / 3
$$

Chapter 2 Multivariate Distributions

2.4 The Correlation Coefficient

Recall the definition of the variance of X :

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right] .
$$

Definition

Let X and Y be two random variables with expectations $\mu_{1}=\mathrm{E} X$ and $\mu_{2}=\mathrm{E} Y$, respectively. The covariance of X and Y, if it exists, is defined to be

$$
\operatorname{Cov}(X, Y)=\mathrm{E}\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right] .
$$

Computation shortcut:

$$
\mathrm{E}\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]=\mathrm{E}(X Y)-\mu_{1} \mu_{2} .
$$

Example 2.4.1

Let X and Y be two random variables with joint pdf

$$
f(x, y)= \begin{cases}x+y & 0<x, y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Determine the covariance of X and Y.

Definition

The correlation coefficient of X and Y is defined to be

Example

What is the correlation coefficient of the previous example?

Linear conditional mean

For two random variables X and Y, write $u(x)=E(Y \mid x)$:

$$
\mathrm{E}(Y \mid x)=\int_{-\infty}^{\infty} y f_{2 \mid 1}(y \mid x) d y=\frac{\int_{-\infty}^{\infty} y f_{X, Y}(x, y) d y}{f_{1}(x)}
$$

If $u(x)$ is a linear function of x, say

$$
u(x)=E(Y \mid x)=a+b x
$$

then we say that the conditional mean of Y is linear in x. The following theorem gives the values of a and b.

Theorem 2.4.1

Let X and Y be two random variables, with means μ_{1}, μ_{2}, variances $\sigma_{1}^{2}, \sigma_{2}^{2}$, and correlation coefficient ρ. If the conditional mean of Y is linear in x, then

$$
\begin{aligned}
& \mathrm{E}(Y \mid X)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right), \\
& \mathrm{E}[\operatorname{Var}(Y \mid X)]=\sigma_{2}^{2}\left(1-\rho^{2}\right)
\end{aligned}
$$

Example 2.4.2

Let X and Y have the linear conditional means

$$
\mathrm{E}(Y \mid x)=4 x+3
$$

and

$$
\mathrm{E}(X \mid y)=\frac{1}{16} y-3
$$

What are the values of μ_{1}, μ_{2}, ρ, and σ_{2} / σ_{1} ?

Recall that the mgf of the random vector (X, Y) is defined to be $M\left(t_{1}, t_{2}\right)=E\left[e^{t_{1} X+t_{2} Y}\right]$. It can be shown that

$$
\begin{gathered}
\frac{\partial^{k+m}}{\partial t_{1}^{k} \partial t_{2}^{m}} M\left(t_{1}, t_{2}\right)=E\left[X^{k} Y^{m} e^{t_{1} X+t_{2} Y}\right] . \\
\left.\frac{\partial^{k+m}}{\partial t_{1}^{k} \partial t_{2}^{m}} M\left(t_{1}, t_{2}\right)\right|_{t_{1}=t_{2}=0}=E\left[X^{k} Y^{m}\right] .
\end{gathered}
$$

- $\mu_{1}=\mathrm{E}(X)=\frac{\partial M(0,0)}{\partial t_{1}}$
- $\mu_{2}=\mathrm{E}(Y)=\frac{\partial M(0,0)}{\partial t_{2}}$
- $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mu_{1}^{2}=\frac{\partial^{2} M(0,0)}{\partial t_{1}^{2}}-\mu_{1}^{2}$
- $\operatorname{Var}(Y)=\mathrm{E}\left(Y^{2}\right)-\mu_{2}^{2}=\frac{\partial^{2} M(0,0)}{\partial t_{2}^{2}}-\mu_{2}^{2}$
- $\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)=\frac{\partial^{2} M(0,0)}{\partial t_{1} \partial t_{2}}-\mu_{1} \mu_{2}$
- $\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}$

Example 2.4.4

Let X and Y be two random variables with joint pdf

$$
f(x, y)= \begin{cases}e^{-y} & 0<x<y<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

Determine the correlation coefficient of X and Y.

Solution:

The mgf is

$$
M\left(t_{1}, t_{2}\right)=\frac{1}{\left(1-t_{1}-t_{2}\right)\left(1-t_{2}\right)}, t_{1}+t_{2}<1, t_{2}<1
$$

We have $\mu_{1}=1, \mu_{2}=2, \sigma_{1}^{2}=1, \sigma_{2}^{2}=2, \operatorname{Cov}(X, Y)=1$.

Chapter 2 Multivariate Distributions

2.5 Independent Random Variables

Motivation

Suppose the bivariate random variables $\left(X_{1}, X_{2}\right)$ is continuously distributed, and for all $x_{1} \in S_{X_{1}}$, and $x_{2} \in S_{X_{2}}$,

$$
\begin{equation*}
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right) \tag{1}
\end{equation*}
$$

Since, by the definition of conditional pdf,

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}
$$

it follows that

$$
\begin{equation*}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) \text { for all } x_{1} \in S_{X_{1}}, x_{2} \in S_{X_{2}} \tag{2}
\end{equation*}
$$

Clearly (1) and (2) are equivalent. Exactly the same logic applies for a discrete random variable.

Definition of independence

We say two random variables X_{1} and X_{2} are independent if

- (Continuous case) their joint pdf is equal to the product of their marginal pdf's:

$$
f\left(x_{1}, x_{2}\right) \equiv f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)
$$

- (Discrete case) their joint pmf is equal to the product of their marginal pmf's:

$$
p\left(x_{1}, x_{2}\right) \equiv p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)
$$

Immediate indicators of dependency

Suppose that X_{1} and X_{2} have a joint support $\mathcal{S}=\left\{\left(x_{1}, x_{2}\right)\right\}$ and marginal supports $\mathcal{S}_{1}=\left\{x_{1}\right\}$ and $\mathcal{S}_{2}=\left\{x_{2}\right\}$. If X_{1} and X_{2} are independent, then

$$
\mathcal{S}=\mathcal{S}_{1} \times \mathcal{S}_{2}
$$

In other words,

- (Continuous case) If the joint support \mathcal{S} is not a rectangle, then X_{1} and X_{2} are dependent.
- (Discrete case) If there is a zero entry in the table of pmf, then X_{1} and X_{2} are dependent.

Example 2.5.1

Let the joint pdf of X_{1} and X_{2} be

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}+x_{2} & 0<x_{1}<1,0<x_{2}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Are they independent?

Solution:

No, because $f\left(x_{1}, x_{2}\right) \neq f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$:

$$
\begin{aligned}
& f_{1}\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}=\int_{0}^{1}\left(x_{1}+x_{2}\right) d x_{2}=x_{1}+1 / 2,0<x_{1}<1 \\
& f_{2}\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}=\int_{0}^{1}\left(x_{1}+x_{2}\right) d x_{1}=x_{2}+1 / 2,0<x_{2}<1
\end{aligned}
$$

Theorem 2.5.1

Two random variables X_{1} and X_{2} are independent if and only if

- (Continuous case) their joint pdf can be written as a product of a nonnegative function of x_{1} and a nonnegative function of x_{2} :

$$
f\left(x_{1}, x_{2}\right) \equiv g\left(x_{1}\right) h\left(x_{2}\right) \quad \text { for all }\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

- (Discrete case) their joint pmf can be written as a product of a nonnegative function of x_{1} and a nonnegative function of x_{2} :

$$
p\left(x_{1}, x_{2}\right) \equiv g\left(x_{1}\right) h\left(x_{2}\right)
$$

Sketch of proof

- Only if: Independence $\Rightarrow f\left(x_{1}, x_{2}\right) \equiv g\left(x_{1}\right) h\left(x_{2}\right)$: This can be seen as $g\left(x_{1}\right)=f_{1}\left(x_{1}\right)$ and $h\left(x_{2}\right)=f_{2}\left(x_{2}\right)$.
- If: Independence $\Leftarrow f\left(x_{1}, x_{2}\right) \equiv g\left(x_{1}\right) h\left(x_{2}\right)$:

If we have $f\left(x_{1}, x_{2}\right) \equiv g\left(x_{1}\right) h\left(x_{2}\right)$, we have

$$
\begin{aligned}
& f_{1}\left(x_{1}\right)=\int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) d x_{2}=g\left(x_{1}\right)\left[\int_{-\infty}^{\infty} h\left(x_{2}\right) d x_{2}\right]=c_{1} g\left(x_{1}\right) \\
& f_{2}\left(x_{2}\right)=\int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) d x_{1}=h\left(x_{2}\right)\left[\int_{-\infty}^{\infty} g\left(x_{1}\right) d x_{1}\right]=c_{2} h\left(x_{2}\right)
\end{aligned}
$$

where c_{1} and c_{2} are constants. We see $c_{1} c_{2}=1$ because
$1=\int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) d x_{1} d x_{2}=\left[\int_{-\infty}^{\infty} g\left(x_{1}\right) d x_{1}\right]\left[\int_{-\infty}^{\infty} h\left(x_{2}\right) d x_{2}\right]=c_{2} c_{1}$.
Thus, $f\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right)=c_{1} g\left(x_{1}\right) c_{2} h\left(x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$.

Independence in terms of CDF

Theorem 2.5.2 Let $\left(X_{1}, X_{2}\right)$ have the joint cdf $F\left(x_{1}, x_{2}\right)$ and let X_{1} and X_{2} have the marginal cdf $F_{1}\left(x_{1}\right)$ and $F_{2}\left(x_{2}\right)$, respectively. Then X_{1} and X_{2} are independent if and only if

$$
F\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right), \forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

Theorem 2.5.3 The random variables X_{1} and X_{2} are independent random variables if and only if the following condition holds

$$
P\left(a<X_{1} \leq b, c<X_{2} \leq d\right)=P\left(a<X_{1} \leq b\right) P\left(c<X_{1} \leq d\right)
$$

for every $a<b$ and $c<d$, where a, b, c, d are constants.

Example 2.5.3

Let the joint pdf of X_{1} and X_{2} be

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}+x_{2} & 0<x_{1}<1,0<x_{2}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Are they independent?

Solution:

No, because

$$
\begin{gathered}
P\left(0<X_{1}<\frac{1}{2}, 0<X_{2}<\frac{1}{2}\right) \neq P\left(0<X_{1}<\frac{1}{2}\right) P\left(0<X_{2}<\frac{1}{2}\right): \\
P\left(0<X_{1}<\frac{1}{2}, 0<X_{2}<\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}}\left(x_{1}+x_{2}\right) d x_{1} d x_{2}=1 / 8 \\
P\left(0<X_{1}<\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}}\left(x_{1}+\frac{1}{2}\right) d x_{1}=3 / 8 \\
P\left(0<X_{2}<\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}}\left(x_{2}+\frac{1}{2}\right) d x_{2}=3 / 8
\end{gathered}
$$

Theorem 2.5.4

If X_{1} and X_{2} are independent and that $\mathrm{E}\left[u\left(X_{1}\right)\right]$ and $\mathrm{E}\left[v\left(X_{2}\right)\right]$ exist. Then

$$
\mathrm{E}\left[u\left(X_{1}\right) v\left(X_{2}\right)\right]=\mathrm{E}\left[u\left(X_{1}\right)\right] \mathrm{E}\left[v\left(X_{2}\right)\right]
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[u\left(X_{1}\right) v\left(X_{2}\right)\right] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u\left(x_{1}\right) v\left(x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u\left(x_{1}\right) v\left(x_{2}\right) f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) d x_{1} d x_{2} \\
& =\left[\int_{-\infty}^{\infty} u\left(x_{1}\right) f_{1}\left(x_{1}\right) d x_{1}\right]\left[\int_{-\infty}^{\infty} f_{2}\left(x_{2}\right) v\left(x_{2}\right) d x_{2}\right] \\
& =\mathrm{E}\left[u\left(X_{1}\right)\right] \mathrm{E}\left[v\left(X_{2}\right)\right]
\end{aligned}
$$

Two special cases

- For independent random variable:

$$
\mathrm{E}\left(X_{1} X_{2}\right)=\mathrm{E}\left(X_{1}\right) \mathrm{E}\left(X_{2}\right)
$$

- Independence implies that covariance $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$:

$$
\mathrm{E}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=\mathrm{E}\left(X_{1}-\mu_{1}\right) \mathrm{E}\left(X_{2}-\mu_{2}\right)
$$

Independence always implies zero covariance (correlation). Zero covariance (correlation) does NOT always imply independence:

Example

Assume that

$$
p_{X, Y}(-1,1)=p_{X, Y}(1,1)=1 / 4 ; \quad p_{X, Y}(0,-1)=1 / 2
$$

X and Y are not independent because (for example) $p_{Y \mid X}(-1 \mid 0)=1 \neq p_{Y}(-1)=1 / 2$ but $\operatorname{Cov}(X, Y)=0$ (check).

Theorem 2.5.5

Suppose that $\left(X_{1}, X_{2}\right)$ have the joint mgf $M\left(t_{1}, t_{2}\right)$ and marginal mgf's $M_{1}\left(t_{1}\right)$ and $M_{2}\left(t_{2}\right)$, respectively. Then, X_{1} and X_{2} are independent if and only if

$$
M\left(t_{1}, t_{2}\right) \equiv M_{1}\left(t_{1}\right) M_{2}\left(t_{2}\right)
$$

Example 2.5.5

Let X and Y be two random variables with joint pdf

$$
f(x, y)= \begin{cases}e^{-y} & 0<x<y<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

Are they independent?

Solution:

The mgf is

$$
M\left(t_{1}, t_{2}\right)=\frac{1}{\left(1-t_{1}-t_{2}\right)\left(1-t_{2}\right)}, t_{1}+t_{2}<1, t_{2}<1
$$

Because

$$
M\left(t_{1}, t_{2}\right) \neq M_{1}\left(t_{1}\right) M_{2}\left(t_{2}\right)=M\left(t_{1}, 0\right) M\left(0, t_{2}\right)
$$

they are dependent.

Chapter 2 Multivariate Distributions

2.6 Extension to Several Random Variables

Examples

1 Random experiment consists of drawing an individual c from a population \mathcal{C}.
Characteristics: height, weight, age, test scores,
2 Random experiments consists of the U.S economy at time t. Characteristics: consumer prices, unemployment rate, Dow Jones Industrial Average, Gross Domestic Product,

A note on notation. We will often use boldface letters to denote vectors. For example, we use \boldsymbol{X} to denote the random vector $\left(X_{1}, \ldots, X_{n}\right)$, and \boldsymbol{x} to denote the observed values $\left(x_{1}, \ldots, x_{n}\right)$.

Pmf and coff for the discrete case

- The joint pmf of a discrete random vector \boldsymbol{X} is defined to be

$$
p_{\mathbf{X}}(\mathbf{x})=P\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]
$$

- The joint cdf of a discrete random vector \mathbf{X} is defined to be

$$
F_{\mathbf{X}}(\mathbf{x})=P\left[X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right]
$$

- For the discrete case, $p_{\boldsymbol{X}}(\boldsymbol{x})$ can be used to calculate $P(\boldsymbol{X} \in A)$ for $A \subset \mathbb{R}^{n}$:

$$
P(\boldsymbol{X} \in A)=\sum_{\boldsymbol{x} \in A} p_{\boldsymbol{X}}(\boldsymbol{x})
$$

Pdf and cdf for the continuous case

- The joint cdf of a continuous random vector \mathbf{X} is defined to be

$$
F_{\mathbf{X}}(\mathbf{x})=P\left[X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right]
$$

- The joint pdf of a continuous random vector \boldsymbol{X} is a function $f_{\boldsymbol{X}}(\boldsymbol{x})$ such that for any $A \subset \mathbb{R}^{n}$

$$
\begin{aligned}
P(\boldsymbol{X} \in A) & =\int_{A} f_{\boldsymbol{X}}(\boldsymbol{x}) d \boldsymbol{x} \\
& =\int \ldots \int_{A} f_{X_{1}, \cdots, X_{n}}\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n}
\end{aligned}
$$

- For the continuous case, we have

$$
\frac{\partial^{n}}{\partial x_{1} \cdots \partial x_{n}} F_{\mathbf{X}}(\mathbf{x})=f_{\mathbf{X}}(\mathbf{x})
$$

Example

Let

$$
f\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}8 x_{1} x_{2} x_{3} & \text { for } 0<x_{1}, x_{2}, x_{3}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Verify that this is a legitimate pdf.

Solution:

$$
\int_{x_{1}=0}^{1} \int_{x_{2}=0}^{1} \int_{x_{3}=0}^{1} 8 x_{1} x_{2} x_{3} d x_{3} d x_{2} d x_{1}=1
$$

Expectation

- For the discrete case, the expectation of $Y=u\left(X_{1}, \ldots, X_{n}\right)$, if it exists, is defined to be

$$
E(Y)=\sum_{x_{1}, \ldots, x_{n}} \cdots \sum_{1} u\left(x_{1}, \ldots, x_{n}\right) p_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right)
$$

- For the continuous case, the expectation of $Y=u\left(X_{1}, \ldots, X_{n}\right)$, if it exists, is defined to be

$$
E(Y)=\int_{x_{1}, \ldots, x_{n}} \ldots \int_{1} u\left(x_{1}, \ldots, x_{n}\right) f_{\mathbf{X}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

As before, E is a linear operator. That is,

$$
E\left[\sum_{j=1}^{m} k_{j} Y_{j}\right]=\sum_{j=1}^{m} k_{j} E\left[Y_{j}\right] .
$$

Example

Find $E\left(5 X_{1} X_{2}^{2}+3 X_{2} X_{3}^{4}\right)$.
Solution:

$$
\begin{aligned}
E\left(X_{1} X_{2}^{2}\right) & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x_{1} x_{2}^{2}\right) 8 x_{1} x_{2} x_{3} d x_{3} d x_{2} d x_{1}=\frac{1}{3} \\
E\left(X_{2} X_{3}^{4}\right) & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x_{2} x_{3}^{4}\right) 8 x_{1} x_{2} x_{3} d x_{3} d x_{2} d x_{1}=\frac{2}{9} \\
E\left(5 X_{1} X_{2}^{2}+3 X_{2} X_{3}^{4}\right) & =5 \cdot \frac{4}{15}+3 \cdot \frac{2}{9}=\frac{4}{3}+\frac{2}{3}=2
\end{aligned}
$$

In an obvious way, we may extend the concepts of marginal pmf and marginal pdf for the multidimensional case. For the discrete case, the marginal pmf of $\left(X_{1}, X_{2}\right)$ is defined to be

$$
p_{12}\left(x_{1}, x_{2}\right)=\sum_{x_{3}} \cdots \sum_{x_{n}} p_{\mathbf{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

For the continuous case, the marginal pdf of $\left(X_{1}, X_{2}\right)$ is defined to be

$$
f_{12}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{3} \cdots d x_{n}
$$

We then extend the concept of conditional pmf and conditional pdf. For the discrete case, suppose $p_{1}\left(x_{1}\right)>0$. We define the the conditional pmf of $\left(X_{2}, \ldots, X_{n}\right)$ given $X_{1}=x_{1}$ to be

$$
p_{2, \ldots, n \mid 1}\left(x_{2}, \ldots, x_{n} \mid x_{1}\right)=\frac{p\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{p_{1}\left(x_{1}\right)}
$$

For the continuous case, suppose $f_{1}\left(x_{1}\right)>0$. We define the conditional pdf of $\left(X_{2}, \ldots, X_{n}\right)$ given $X_{1}=x_{1}$ to be

$$
f_{2, \ldots, n \mid 1}\left(x_{2}, \ldots, x_{n} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{f_{1}\left(x_{1}\right)}
$$

For the discrete case, suppose $p_{1}\left(x_{1}\right)>0$. Then we define the conditional expectation of $u\left(X_{2}, \ldots, X_{n}\right)$ given $X_{1}=x_{1}$ to be

$$
\mathrm{E}\left[u\left(X_{2}, \ldots, X_{n}\right) \mid x_{1}\right]=\sum_{x_{2}} \cdots \sum_{x_{n}} u\left(x_{2}, \ldots, x_{n}\right) p_{2, \ldots, n \mid 1}\left(x_{2}, \ldots, x_{n} \mid x_{1}\right)
$$

For the continuous case, suppose $f_{1}\left(x_{1}\right)>0$. Then we define the conditional expectation of $u\left(X_{2}, \ldots, X_{n}\right)$ given $X_{1}=x_{1}$ to be

$$
\begin{aligned}
& \mathrm{E}\left[u\left(X_{2}, \ldots, X_{n}\right) \mid x_{1}\right] \\
= & \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} u\left(x_{2}, \ldots, x_{n}\right) f_{2, \ldots, n \mid 1}\left(x_{2}, \ldots, x_{n} \mid x_{1}\right) d x_{2} \cdots d x_{n}
\end{aligned}
$$

Mutual Independence

We say that the n random variables X_{1}, \ldots, X_{n} are mutually independent if, for the discrete case,
$p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) \cdots p_{n}\left(x_{n}\right), \quad$ for all $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$, or, for the continuous case,
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right)$ for all $\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$.

If the n random variables X_{1}, \ldots, X_{n} are mutually independent, then

$$
\begin{aligned}
& P\left(a_{1}<X_{1}<b_{1}, \ldots, a_{n}<X_{n}<b_{n}\right) \\
= & P\left(a_{1}<X_{1}<b_{1}\right) \cdots P\left(a_{n}<X_{n}<b_{n}\right) .
\end{aligned}
$$

We may rewrite the above equation as

$$
P\left(\bigcap_{j=1}^{n}\left(a_{j}<X_{j}<b_{j}\right)\right)=\prod_{j=1}^{n} P\left(a_{j}<X_{j}<b_{j}\right) .
$$

If the n random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent, then
$\mathrm{E}\left[u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right) \cdots u_{n}\left(X_{n}\right)\right]=\mathrm{E}\left[u_{1}\left(X_{1}\right)\right] E\left[u_{2}\left(X_{2}\right)\right] \cdots \mathrm{E}\left[u_{n}\left(X_{n}\right)\right]$,

$$
\mathrm{E}\left[\prod_{j=1}^{n} u_{j}\left(X_{j}\right)\right]=\prod_{j=1}^{n} \mathrm{E}\left[u_{j}\left(X_{j}\right)\right]
$$

As a special case of the above, if the n random variables X_{1}, X_{2},
\ldots, X_{n} are mutually independent, then for mgf,

$$
\begin{aligned}
& M\left(t_{1}, t_{2}, \cdots, t_{n}\right)=\prod_{j=1}^{n} M_{j}\left(t_{j}\right) \text {, } \\
& \text { en from }
\end{aligned}
$$

which can be seen from

$$
\begin{aligned}
M\left(t_{1}, t_{2}, \cdots, t_{n}\right) & =\mathrm{E}\left[\exp \left(t_{1} X_{1}+t_{2} X_{2}+\ldots+t_{n} X_{n}\right)\right] \\
& =\mathrm{E}\left[\prod_{j=1}^{n} \exp \left(t_{j} X_{j}\right)\right] \\
& =\prod_{j=1}^{n} \mathrm{E}\left[\exp \left(t_{j} X_{j}\right)\right]=\prod_{j=1}^{n} M_{j}\left(t_{j}\right)
\end{aligned}
$$

Mutual independence v.s. pairwise independence

- We say the n random variables $X_{1}, X_{2}, \ldots, X_{n}$ are pairwise independent if for all pairs (i, j) with $i \neq j$, the random variables X_{i} and X_{j} are independent.
- Unless there is a possible misunderstanding between mutual independence and pairwise independence, we usually drop the modifier mutual.
- If the n random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent and have the same distribution, then we say that they are independent and identically distributed, which we abbreviate as i.i.i.d..

Compare "mutual independence" and "pairwise independence".

Example (from S. Bernstein)

Consider a random vector $\left(X_{1}, X_{2}, X_{3}\right)$ that has joint pmf $p\left(x_{1}, x_{2}, x_{3}\right)$
$= \begin{cases}\frac{1}{4} & \text { for }\left(x_{1}, x_{2}, x_{3}\right) \in\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\} . \\ 0 & \text { otherwise. }\end{cases}$
Solution:

$$
\begin{gathered}
p_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}\frac{1}{4} & \text { for }\left(x_{i}, x_{j}\right) \in\{(0,0),(1,0),(0,1),(1,1)\} . \\
0 & \text { otherwise } .\end{cases} \\
p_{i}\left(x_{i}\right)= \begin{cases}\frac{1}{2} & \text { for }\left(x_{i}\right) \in\{0,1\} . \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

pairwise independence :

$$
p_{i j}\left(x_{i}, x_{j}\right)=p_{i}\left(x_{i}\right) p_{j}\left(x_{j}\right)
$$

$$
\text { not mutual independence : } \quad p\left(x_{1}, x_{2}, x_{3}\right) \neq p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) p_{3}\left(x_{3}\right) .
$$

Multivariate Variance-Covariance Matrix

1 Let $\boldsymbol{X}=\left(X_{1}, \cdots, X_{n}\right)^{\top}$ be a random vector.
2 We define the expectation of \boldsymbol{X} as $\mathrm{E} \boldsymbol{X}=\left(\mathrm{E} X_{1}, \cdots, \mathrm{E} X_{n}\right)^{\top}$.
3 Let $\mathbf{W}=\left[W_{i j}\right]$ be a $m \times n$ matrix, where $W_{i j}$ are random variables. That is,

$$
\mathbf{W}=\left[\begin{array}{llll}
W_{11} & W_{12} & \cdots & W_{1 n} \\
W_{21} & W_{22} & & W_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
W_{m 1} & W_{m 2} & \cdots & W_{m n}
\end{array}\right]=\left[W_{i j}\right]_{m \times n}
$$

4 We define the expectation of this random matrix as $\mathbf{E}[\mathbf{W}]=\left[\mathbf{E}\left(W_{i j}\right)\right]$. That is,
$\mathrm{E}[\mathbf{W}]=\left[\begin{array}{llll}\mathrm{E}\left(W_{11}\right) & \mathrm{E}\left(W_{12}\right) & \cdots & \mathrm{E}\left(W_{1 n}\right) \\ \mathrm{E}\left(W_{21}\right) & \mathrm{E}\left(W_{22}\right) & & \mathrm{E}\left(W_{2 n}\right) \\ \cdots & \cdots & \cdots & \cdots \\ \mathrm{E}\left(W_{m 1}\right) & \mathrm{E}\left(W_{m 2}\right) & \cdots & \mathrm{E}\left(W_{m n}\right)\end{array}\right]=\left[\mathrm{E}\left(W_{i j}\right)\right]_{m \times n}$.

Theorem 2.6.2

Let \mathbf{W} and \mathbf{V} be $m \times n$ random matrices, and let \mathbf{A} and \mathbf{B} be $k \times m$ constant matrices, and let \mathbf{C} be a $n \times l$ constant matrix. Then,

$$
\mathrm{E}[\mathbf{A W}+\mathbf{B V}]=\mathbf{A E}[\mathbf{W}]+\mathbf{B E}[\mathbf{V}]
$$

and

$$
\mathrm{E}[\mathbf{A W C}]=\mathbf{A E}[\mathbf{W}] \mathbf{C}
$$

Proof sketch:

The (i, j) of the first equation:

$$
\mathrm{E}\left[\sum_{s=1}^{m} A_{i s} W_{s j}+\sum_{s=1}^{m} B_{i s} V_{s j}\right]=\sum_{s=1}^{m} A_{i s} \mathrm{E}\left[W_{s j}\right]+\sum_{s=1}^{m} B_{i s} \mathrm{E}\left[V_{s j}\right] .
$$

Let $\mathbf{X}=\left(X_{1}, \ldots X_{n}\right)^{\top}$ be an n-dimensional random vector with mean vector $\boldsymbol{\mu}$. Then the variance-covariance matrix of \boldsymbol{X} is defined to be

$$
\begin{aligned}
& \operatorname{Cov}(\mathbf{X}) \\
= & \mathrm{E}\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\top}\right] \\
= & \mathrm{E}\left[\begin{array}{llll}
\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{1}-\mu_{1}\right)\left(X_{n}-\mu_{n}\right) \\
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{2}-\mu_{2}\right)\left(X_{2}-\mu_{2}\right) & & \left(X_{2}-\mu_{2}\right)\left(X_{n}-\mu_{n}\right) \\
\cdots & \cdots & \cdots & \cdots \\
\left(X_{n}-\mu_{n}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{n}-\mu_{n}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{n}-\mu_{n}\right)\left(X_{n}-\mu_{n}\right)
\end{array}\right] \\
= & {\left[\begin{array}{llll}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{21} & \sigma_{22} & & \sigma_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
\sigma_{n 1} & \sigma_{n 2} & \cdots & \sigma_{n n}
\end{array}\right] }
\end{aligned}
$$

Example of a covariance matrix

Let X and Y be two random variables with joint pdf

$$
f(x, y)= \begin{cases}e^{-y} & 0<x<y<\infty \\ 0 & \text { elsewhere }\end{cases}
$$

We have $\mu_{1}=1, \mu_{2}=2, \sigma_{1}^{2}=1, \sigma_{2}^{2}=2, \sigma_{1,2}=\operatorname{Cov}(X, Y)=1$. Let $Z=(X, Y)^{\top}$, then

$$
\mathrm{E}(\boldsymbol{Z})=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { and } \operatorname{Cov}(\boldsymbol{Z})=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

Theorem 2.6.3 - Two properties of covariance matrix

Let $\boldsymbol{X}=\left(X_{1}, \ldots X_{n}\right)^{\top}$ be an n-dimensional random vector with mean vector μ. Then,

$$
\begin{equation*}
\operatorname{Cov}(\boldsymbol{X})=\mathrm{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top} \tag{3}
\end{equation*}
$$

If further let \mathbf{A} be an $m \times n$ constant matrix, then we have

$$
\operatorname{Cov}(\boldsymbol{A X})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{A}^{\top}
$$

Proof. $\operatorname{Cov}(\boldsymbol{X})=\mathrm{E}\left[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{\top}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[\left(\boldsymbol{X} \boldsymbol{X}^{\top}-\boldsymbol{\mu} \boldsymbol{X}^{\top}-\boldsymbol{X} \boldsymbol{\mu}^{\top}+\boldsymbol{\mu} \boldsymbol{\mu}\right)^{\top}\right] \\
& =\mathrm{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]-\boldsymbol{\mu} \mathrm{E}\left[\boldsymbol{X}^{\top}\right]-\mathrm{E}[\boldsymbol{X}] \boldsymbol{\mu}^{\top}+\boldsymbol{\mu} \boldsymbol{\mu}^{\top} .
\end{aligned}
$$

$$
\operatorname{Cov}(\boldsymbol{A} \boldsymbol{X})=\mathrm{E}\left[(\boldsymbol{A} \boldsymbol{X})(\boldsymbol{A} \boldsymbol{X})^{\top}\right]-(\boldsymbol{A} \boldsymbol{\mu})(\boldsymbol{A} \boldsymbol{\mu})^{\top}
$$

$$
=\mathrm{E}\left[\boldsymbol{A} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{A}^{\top}\right]-\boldsymbol{A} \boldsymbol{\mu} \boldsymbol{\mu}^{\top} \boldsymbol{A}^{\top}
$$

$$
=\boldsymbol{A E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right] \boldsymbol{A}^{\top}-\boldsymbol{A} \boldsymbol{\mu} \boldsymbol{\mu}^{\top} \boldsymbol{A}^{\top}
$$

Proof without matrix notation

$\operatorname{Cov}(\mathbf{X})$

$$
=E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\top}\right]
$$

$$
=\mathrm{E}\left[\begin{array}{llll}
\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{1}-\mu_{1}\right)\left(X_{n}-\mu_{n}\right) \\
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{2}-\mu_{2}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{2}-\mu_{2}\right)\left(X_{n}-\mu_{n}\right) \\
\cdots & \cdots & \cdots & \cdots \\
\left(X_{n}-\mu_{n}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{n}-\mu_{n}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{n}-\mu_{n}\right)\left(X_{n}-\mu_{n}\right)
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
\mathrm{E}\left(X_{1} X_{1}\right)-\mu_{1} \mu_{1} & \mathrm{E}\left(X_{1} X_{2}\right)-\mu_{1} \mu_{2} & \cdots & \mathrm{E}\left(X_{1} X_{n}\right)-\mu_{1} \mu_{n} \\
\mathrm{E}\left(X_{2} X_{1}\right)-\mu_{2} \mu_{1} & \mathrm{E}\left(X_{2} X_{2}\right)-\mu_{2} \mu_{2} & & \mathrm{E}\left(X_{2} X_{n}\right)-\mu_{2} \mu_{n} \\
\cdots & \cdots & \cdots \\
\mathrm{E}\left(X_{n} X_{1}\right)-\mu_{n} \mu_{1} & \mathrm{E}\left(X_{n} X_{2}\right)-\mu_{n} \mu_{2} & \cdots & \mathrm{E}\left(X_{n} X_{n}\right)-\mu_{n} \mu_{n}
\end{array}\right]
$$

$$
=\mathrm{E}\left[\begin{array}{llll}
\left(X_{1} X_{1}\right) & \left(X_{1} X_{2}\right) & \cdots & \left(X_{1} X_{n}\right) \\
\left(X_{2} X_{1}\right) & \left(X_{2} X_{2}\right) & & \left(X_{2} X_{n}\right) \\
\cdots & \cdots & \cdots & \cdots \\
\left(X_{n} X_{1}\right) & \left(X_{n} X_{2}\right) & \cdots & X_{n} X_{n}
\end{array}\right]-\left[\begin{array}{llll}
\mu_{1} \mu_{1} & \mu_{1} \mu_{2} & \cdots & \mu_{1} \mu_{n} \\
\mu_{2} \mu_{1} & \mu_{2} \mu_{2} & & \mu_{2} \mu_{n} \\
\cdots & \cdots & \cdots & \cdots \\
\mu_{n} \mu_{1} & \mu_{n} \mu_{2} & \cdots & \mu_{n} \mu_{n}
\end{array}\right]
$$

$$
=\mathrm{E}\left[\mathbf{X X}^{\top}\right]-\mu \mu^{\top}
$$

- All variance-covariance matrices are positive semi-definite, that is $\boldsymbol{a}^{\top} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{a} \geq 0$ for any $\boldsymbol{a} \in \mathbb{R}^{n}$.
- This is because

$$
\boldsymbol{a}^{\top} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{a}=\operatorname{Var}\left(\boldsymbol{a}^{\top} \boldsymbol{X}\right) \geq 0
$$

where we note that $\boldsymbol{a}^{\top} \boldsymbol{X}$ is a univariate random variable.

Chapter 2 Multivariate Distributions

2.7 Transformation for Several Random Variables

One to one transformation

- Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random vector with pdf $f_{\boldsymbol{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with support \mathcal{S}. Let

$$
\left\{\begin{array}{l}
y_{1}=g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
y_{2}=g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
y_{n}=g_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right.
$$

be a multivariate function that maps $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{S}$ to $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{T}$. Suppose that it is a one-to-one correspondence.

- Suppose that the inverse functions are given by

$$
\left\{\begin{array}{l}
x_{1}=h_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
x_{2}=h_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
\vdots \\
x_{n}=h_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
\end{array}\right.
$$

- Let the Jacobian be

$$
J=\left|\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}\right|=\left|\begin{array}{llll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{n}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdots & \frac{\partial x_{2}}{\partial y_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial x_{n}}{\partial y_{1}} & \frac{\partial x_{n}}{\partial y_{2}} & \cdots & \frac{\partial x_{n}}{\partial y_{n}}
\end{array}\right|
$$

- Then, the joint pdf of $Y_{1}, Y_{2}, \ldots, Y_{n}$ determined by the mapping above is

$$
\begin{aligned}
& f_{\boldsymbol{Y}}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
= & |J| f_{\boldsymbol{X}}\left[h_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right), h_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right), \ldots, h_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right], \\
& \text { for }\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{T} .
\end{aligned}
$$

Example 2.7.1

Suppose X_{1}, X_{2}, and X_{3} have joint pdf

$$
f\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}48 x_{1} x_{2} x_{3} & 0<x_{1}<x_{2}<x_{3}<1 \\ 0 & \text { elsewhere }\end{cases}
$$

and let

$$
\left\{\begin{array}{l}
Y_{1}=X_{1} / X_{2} \\
Y_{2}=X_{2} / X_{3} \\
Y_{3}=X_{3}
\end{array}\right.
$$

Determine the joint pdf of Y_{1}, Y_{2} and Y_{3}.

If $Y_{1}=X_{1} / X_{2}, Y_{2}=X_{2} / X_{3}$, and $Y_{3}=X_{3}$, then the inverse transformation is given by

$$
x_{1}=y_{1} y_{2} y_{3}, x_{2}=y_{2} y_{3}, \text { and } x_{3}=y_{3}
$$

The Jacobian is given by

$$
J=\left|\begin{array}{ccc}
y_{2} y_{3} & y_{1} y_{3} & y_{1} y_{2} \\
0 & y_{3} & y_{2} \\
0 & 0 & 1
\end{array}\right|=y_{2} y_{3}^{2} .
$$

Moreover, inequalities defining the support are equivalent to

$$
0<y_{1} y_{2} y_{3}, y_{1} y_{2} y_{3}<y_{2} y_{3}, y_{2} y_{3}<y_{3}, \text { and } y_{3}<1
$$

which reduces to the support \mathcal{T} of Y_{1}, Y_{2}, Y_{3} of

$$
\mathcal{T}=\left\{\left(y_{1}, y_{2}, y_{3}\right): 0<y_{i}<1, i=1,2,3\right\} .
$$

Hence the joint pdf of Y_{1}, Y_{2}, Y_{3} is

$$
\begin{align*}
g\left(y_{1}, y_{2}, y_{3}\right) & =48\left(y_{1} y_{2} y_{3}\right)\left(y_{2} y_{3}\right) y_{3}\left|y_{2} y_{3}^{2}\right| \\
& = \begin{cases}48 y_{1} y_{2}^{3} y_{3}^{5} & 0<y_{i}<1, i=1,2,3 \\
0 & \text { elsewhere. }\end{cases} \tag{2.7.2}
\end{align*}
$$

The marginal pdfs are

$$
\begin{aligned}
& g_{1}\left(y_{1}\right)=2 y_{1}, 0<y_{1}<1, \text { zero elsewhere } \\
& g_{2}\left(y_{2}\right)=4 y_{2}^{3}, 0<y_{2}<1, \text { zero elsewhere } \\
& g_{3}\left(y_{3}\right)=6 y_{3}^{5}, 0<y_{3}<1, \text { zero elsewhere. }
\end{aligned}
$$

Because $g\left(y_{1}, y_{2}, y_{3}\right)=g_{1}\left(y_{1}\right) g_{2}\left(y_{2}\right) g_{3}\left(y_{3}\right)$, the random variables Y_{1}, Y_{2}, Y_{3} are mutually independent.

Multiple to one transformation

- Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random vector with pdf $f_{\boldsymbol{X}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with support \mathcal{S}. Let

$$
\left\{\begin{array}{l}
y_{1}=g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
y_{2}=g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
y_{n}=g_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right.
$$

be a multivariate function that maps $\boldsymbol{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{S}$ to $\boldsymbol{Y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{T}$.

- Suppose that the support \mathcal{S} can be represented as the union of k mutually disjoint sets such that for each i, there is one-to-one correspondence bewteen \boldsymbol{X} and \boldsymbol{Y}.
- Suppose that the inverse functions are given by

$$
\left\{\begin{array}{l}
x_{1}=h_{1 i}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
x_{2}=h_{2 i}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
\vdots \\
x_{n}=h_{n i}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
\end{array}\right.
$$

Let the Jacobian be

$$
J_{i}=\left|\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}\right|=\left|\begin{array}{llll}
\frac{\partial h_{1 i}}{\partial y_{1}} & \frac{\partial h_{1 i}}{\partial y_{2}} & \cdots & \frac{\partial h_{1 i}}{\partial y_{n}} \\
\frac{\partial 2_{2 i}}{\partial y_{1}} & \frac{\partial h_{2 i}}{\partial y_{2}} & \cdots & \frac{\partial h_{2 i}}{\partial y_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial h_{n i}}{\partial y_{1}} & \frac{\partial h_{n i}}{\partial y_{2}} & \cdots & \frac{\partial h_{n i}}{\partial y_{n}}
\end{array}\right| .
$$

Then, the joint pdf of $Y_{1}, Y_{2}, \ldots, Y_{n}$ determined by the mapping above is

$$
\begin{aligned}
& f_{\boldsymbol{Y}}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
= & \sum_{i=1}^{k}\left|J_{i}\right| f_{\boldsymbol{X}}\left[h_{1 i}\left(y_{1}, y_{2}, \ldots, y_{n}\right), h_{2 i}\left(y_{1}, y_{2}, \ldots, y_{n}\right), \ldots, h_{n i}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right]
\end{aligned}
$$

$$
\text { for }\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{T}
$$

Example 2.7.3

Let X_{1} and X_{2} have the joint pdf defined over the unit circle given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{\pi} & 0<x_{1}^{2}+x_{2}^{2}<1 \\ 0 & \text { elsewhere. }\end{cases}
$$

Let

$$
\left\{\begin{array}{l}
Y_{1}=X_{1}^{2}+X_{2}^{2} \\
Y_{2}=X_{1}^{2} /\left(X_{1}^{2}+X_{2}^{2}\right)
\end{array}\right.
$$

Determine the joint pdf of Y_{1} and Y_{2}.

Let $Y_{1}=X_{1}^{2}+X_{2}^{2}$ and $Y_{2}=X_{1}^{2} /\left(X_{1}^{2}+X_{2}^{2}\right)$. Thus $y_{1} y_{2}=x_{1}^{2}$ and $x_{2}^{2}=y_{1}\left(1-y_{2}\right)$. The support \mathcal{S} maps onto $\mathcal{T}=\left\{\left(y_{1}, y_{2}\right): 0<y_{i}<1, i=1,2\right\}$. For each ordered pair $\left(y_{1}, y_{2}\right) \in \mathcal{T}$, there are four points in \mathcal{S}, given by

$$
\begin{array}{rll}
\left(x_{1}, x_{2}\right) & \text { such that } & x_{1}=\sqrt{y_{1} y_{2}} \text { and } x_{2}=\sqrt{y_{1}\left(1-y_{2}\right)} \\
\left(x_{1}, x_{2}\right) & \text { such that } & x_{1}=\sqrt{y_{1} y_{2}} \text { and } x_{2}=-\sqrt{y_{1}\left(1-y_{2}\right)} \\
\left(x_{1}, x_{2}\right) & \text { such that } & x_{1}=-\sqrt{y_{1} y_{2}} \text { and } x_{2}=\sqrt{y_{1}\left(1-y_{2}\right)} \\
\text { and }\left(x_{1}, x_{2}\right) \text { such that } & x_{1}=-\sqrt{y_{1} y_{2}} \text { and } x_{2}=-\sqrt{y_{1}\left(1-y_{2}\right)} .
\end{array}
$$

The value of the first Jacobian is

$$
\begin{aligned}
J_{1} & =\left|\begin{array}{cc}
\frac{1}{2} \sqrt{y_{2} / y_{1}} & \frac{1}{2} \sqrt{y_{1} / y_{2}} \\
\frac{1}{2} \sqrt{\left(1-y_{2}\right) / y_{1}} & -\frac{1}{2} \sqrt{y_{1} /\left(1-y_{2}\right)}
\end{array}\right| \\
& =\frac{1}{4}\left\{-\sqrt{\frac{1-y_{2}}{y_{2}}}-\sqrt{\frac{y_{2}}{1-y_{2}}}\right\}=-\frac{1}{4} \frac{1}{\sqrt{y_{2}\left(1-y_{2}\right)}}
\end{aligned}
$$

It is easy to see that the absolute value of each of the four Jacobians equals $1 / 4 \sqrt{y_{2}\left(1-y_{2}\right)}$. Hence, the joint pdf of Y_{1} and Y_{2} is the sum of four terms and can be written as

$$
g\left(y_{1}, y_{2}\right)=4 \frac{1}{\pi} \frac{1}{4 \sqrt{y_{2}\left(1-y_{2}\right)}}=\frac{1}{\pi \sqrt{y_{2}\left(1-y_{2}\right)}}, \quad\left(y_{1}, y_{2}\right) \in \mathcal{T} .
$$

Thus Y_{1} and Y_{2} are independent random variables by Theorem 2.5.1.

Chapter 2 Multivariate Distributions
 2.8 Linear Combinations of Random Variables

Motivation

- We are interested in a function of $T=T\left(X_{1}, \ldots, X_{n}\right)$ where X_{1}, \ldots, X_{n} is a random vector.
- For example, we let each X_{i} denote the final percentage of STAT 4100 grade. Assume we know the distribution of each X_{i}, can we know the distribution of the average percentage \bar{X} ?
- In this section, we focus on linear combination of these variables, i.e.,

$$
T=\sum_{i=1}^{n} a_{i} X_{i}
$$

Expectation of linear combinations

Theorem 2.8.1. Let $T=\sum_{i=1}^{n} a_{i} X_{i}$. Provided that $\mathrm{E}\left[\left|X_{i}\right|\right]<\infty$, for all $i=1, \ldots, n$, then

$$
\mathrm{E}(T)=\sum_{i=1}^{n} a_{i} \mathrm{E}\left(X_{i}\right) .
$$

This theorem follows immediately from the linearity of the expectation operation.

Variance and covariance of linear combinations

Theorem 2.8.2. Let $T=\sum_{i=1}^{n} a_{i} X_{i}$ and $W=\sum_{j=1}^{m} b_{j} Y_{j}$. If
$\mathrm{E}\left[X_{i}^{2}\right]<\infty$ and $\mathrm{E}\left[Y_{j}^{2}\right]<\infty$, for $i=1, \ldots, n$ and $j=1, \ldots, m$, then

$$
\operatorname{Cov}(T, W)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Proof:

$$
\begin{aligned}
\operatorname{Cov}(T, W) & =\mathrm{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i} X_{i}-a_{i} \mathrm{E}\left(X_{i}\right)\right)\left(b_{j} Y_{j}-b_{j} \mathrm{E}\left(Y_{j}\right)\right)\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{E}\left[\left(a_{i} X_{i}-a_{i} \mathrm{E}\left(X_{i}\right)\right)\left(b_{j} Y_{j}-b_{j} \mathrm{E}\left(Y_{j}\right)\right)\right] .
\end{aligned}
$$

Corollary 2.8.1. Let $T=\sum_{i=1}^{n} a_{i} X_{i}$. Provided $\mathrm{E}\left[X_{i}^{2}\right]<\infty$, for $i=1, \ldots, n$, then

$$
\operatorname{Var}(T)=\operatorname{Cov}(T, T)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j}^{m} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Corollary 2.8.2. If X_{1}, \ldots, X_{n} are independent random variables with finite variances, then

$$
\operatorname{Var}(T)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
$$

Special case If X_{1} and X_{2} have finite variances, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

If they are also independent, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Note that $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$ regardless of independence.

Example 2.8.1 - Sample mean

Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with common mean μ and variance σ^{2}. The sample mean is defined by $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$. This is a linear combination of the sample observations with $a_{i} \equiv n^{-1}$; hence by Theorem 2.8.1 and Corollary 2.8.2, we have

$$
\mathrm{E}(\bar{X})=\mu \text { and } \operatorname{Var}(\bar{X})=\sigma^{2} / n
$$

Example 2.8.2 - Sample variance

Define the sample variance by

$$
S^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=(n-1)^{-1}\left(\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right)
$$

Following from the fact that $\mathrm{E}\left(X^{2}\right)=\sigma^{2}+\mu^{2}$,

$$
\begin{aligned}
\mathrm{E}\left(S^{2}\right) & =(n-1)^{-1}\left(\sum_{i=1}^{n} \mathrm{E}\left(X_{i}^{2}\right)-n \mathrm{E}\left(\bar{X}^{2}\right)\right) \\
& =(n-1)^{-1}\left\{n \sigma^{2}+n \mu^{2}-n\left[\left(\sigma^{2} / n+\mu^{2}\right)\right]\right\} \\
& =\sigma^{2}
\end{aligned}
$$

