# **Chapter 2 Multivariate Distributions**

# 2.1 Distributions of Two Random Variables

#### Definition

A random variable is a function from a sample space C to  $\mathcal{R}$ .

#### Definition

An *n*-dim random vector is a function from C to  $\mathbb{R}^n$ .

► A 2-dim random vector is also called a bivariate random variable.

**Remark:**  $X = (X_1, X_2)'$  assigns to each element c of the sample space C exactly one ordered pair of numbers  $X_1(c) = x_1$  and  $X_2(c) = x_2$ .

#### **Example**

- 1 Height and weight of respondent.
- 2 Fuel consumption and hours on an engine.

# **Discrete Random Variables**

#### Definition

#### A joint probability mass function

 $p_{X_1,X_2}(x_1,x_2) = p(X_1 = x_1, X_2 = x_2)$  (or  $p(x_1,x_2)$ ) with space  $(x_1,x_2) \in S$  has the properties that

(a) 
$$0 \le p(x_1, x_2) \le 1$$
,  
(b)  $\sum_{(x_1, x_2) \in S} p(x_1, x_2) = 1$ ,  
(c)  $P[(X_1, X_2) \in A] = \sum_{(x_1, x_2) \in A} p(x_1, x_2)$ .

### Example

A restaurant serves three fixed-price dinners costing \$7, \$9, and \$10. For a randomly selected couple dinning at this restaurant, let  $X_1$  = the cost of the man's dinner and  $X_2$  = the cost of the woman's dinner.

The joint pmf of  $X_1$  and  $X_2$  is given in the following table:

|       |    |      | $x_1$ |      |
|-------|----|------|-------|------|
|       |    | 7    | 9     | 10   |
|       | 7  | 0.05 | 0.05  | 0.10 |
| $x_2$ | 9  | 0.05 | 0.10  | 0.35 |
|       | 10 | 0.00 | 0.20  | 0.10 |

- What is the probability of  $P(X_1 \ge 9, X_2 \le 9)$ ? <u>0.60</u>.
- Does man's dinner cost more?

#### Definition

Suppose that  $X_1$  and  $X_2$  have the joint pmf  $p(x_1, x_2)$ . Then the pmf for  $X_i$ , denoted by  $p_i(\cdot)$ , i = 1, 2 is the marginal pmf.

Note 
$$p_1(x_1) = \sum_{x_2} p(x_1, x_2)$$
 and  $p_2(x_2) = \sum_{x_1} p(x_1, x_2)$ .

Example Find the marginal pmf of the previous example.

|      | $x_1$ |      |      | $x_2$ |      |
|------|-------|------|------|-------|------|
| 7    | 9     | 10   | 7    | 9     | 10   |
| 0.10 | 0.35  | 0.55 | 0.20 | 0.50  | 0.30 |

Let  $X_1$  =Smaller die face,  $X_2$  =Larger die face, when rolling a pair of two dice. The following table shows a partition of the sample space into 21 events.

|       |   |      |      | $x_1$ |      |      |      |
|-------|---|------|------|-------|------|------|------|
|       |   | 1    | 2    | 3     | 4    | 5    | 6    |
|       | 1 | 1/36 | 0    | 0     | 0    | 0    | 0    |
|       | 2 | 2/36 | 1/36 | 0     | 0    | 0    | 0    |
| $x_2$ | 3 | 2/36 | 2/36 | 1/36  | 0    | 0    | 0    |
|       | 4 | 2/36 | 2/36 | 2/36  | 1/36 | 0    | 0    |
|       | 5 | 2/36 | 2/36 | 2/36  | 2/36 | 1/36 | 0    |
|       | 6 | 2/36 | 2/36 | 2/36  | 2/36 | 2/36 | 1/36 |

Find the marginal pmf's.

Definition

Let  $Y = u(X_1, X_2)$ . Then, Y is a random variable and

$$E[u(X_1, X_2)] = \sum_{x_1} \sum_{x_2} u(x_1, x_2) p(x_1, x_2)$$

under the condition that

$$\sum_{x_1} \sum_{x_2} |u(x_1, x_2)| p(x_1, x_2)| < \infty$$

#### Example

Find  $E(\max\{X_1, X_2\})$  for the restaurant problem. <u>9.65</u>.

# **Continuous Random Variables**

A joint density function  $f_{X_1,X_2}(x_1,x_2)$  (or  $f(x_1,x_2)$ ) with space  $(x_1,x_2) \in S$  has the properties that (a)  $f(x_1,x_2) > 0$ , (b)  $\int_{(x_1,x_2)\in S} f(x_1,x_2)dx_1dx_2 = 1$ , (c)  $P[(X_1,X_2) \in A] = \int_{(x_1,x_2)\in A} f(x_1,x_2)dx_1dx_2$ .

## Example

Let  $X_1$  and  $X_2$  be continuous random variables with joint density function

$$f(x_1, x_2) = \begin{cases} 4x_1x_2 & \text{for } 0 < x_1, x_2 < 1\\ 0 & \text{otherwise.} \end{cases}$$

1 Find 
$$P(1/4 < X_1 < 3/4; 1/2 < X_2 < 1)$$
.  
2 Find  $P(X_1 < X_2)$ .  
3 Find  $P(X_1 + X_2 < 1)$ .

Solution:

$$\int_{1/2}^{1} \int_{1/4}^{3/4} 4x_1 x_2 dx_1 dx_2 = 3/8 = 0.375.$$
$$\int_{0}^{1} \int_{0}^{x_2} 4x_1 x_2 dx_1 dx_2 = 1/2 = 0.5.$$
$$\int_{0}^{1} \int_{0}^{1-x_2} 4x_1 x_2 dx_1 dx_2 = 1/6 = 0.167.$$

# Marginal probability density function

Suppose that  $X_1$  and  $X_2$  have the joint pdf  $f(x_1, x_2)$ . Then the pdf for  $X_i$ , denoted by  $f_i(\cdot)$ , i = 1, 2 is the marginal pdf.

Note: 
$$f_1(x_1) = \int_{x_2} f(x_1, x_2) dx_2$$
 and  $f_2(x_2) = \int_{x_1} f(x_1, x_2) dx_1$ .

#### Example

Find the marginal pdf from the previous problem.

#### Solution:

$$f_1(x) = f_2(x) = 2x.$$

# Let $X_1$ and $X_2$ be continuous random variables with joint density function

$$f(x_1, x_2) = \begin{cases} cx_1x_2 & \text{for } 0 < x_1 < x_2 < 1 \\ 0 & \text{otherwise.} \end{cases}$$

1 Find *c*.

- **2** Find  $P(X_1 + X_2 < 1)$ .
- **3** Find marginal probability density function of  $X_1$  and  $X_2$ .

We have c = 8 because

$$\int_{0}^{1} \int_{x_{1}}^{1} x_{1}x_{2}dx_{1}dx_{2} = 1/8 = 0.125.$$
$$\int_{0}^{1/2} \int_{x_{1}}^{1-x_{1}} 8x_{1}x_{2}dx_{1}dx_{2} = 1/6 = 0.167.$$

For the marginal pdf, we have

$$f_{X_1}(x_1) = \int_{x_1}^1 8x_1 x_2 dx_2 = 4x_1 - 4x_1^3,$$
  
$$f_{X_2}(x_2) = \int_0^{x_2} 8x_1 x_2 dx_1 = 4x_2^3.$$

Let  $X_1$  and  $X_2$  be continuous random variables with joint pdf

$$f(x_1, x_2) = \begin{cases} cx_1x_2 & \text{for } 0 < x_1 < x_2 < 1 \\ 0 & \text{otherwise.} \end{cases}$$

What is  $P\{[X_1 < X_2] \cap [X_2 > 4(X_1 - 1/2)^2]\}$ ?

#### Solution:

We see 1/4 is the solution of  $x = 4(x - \frac{1}{2})^2$  on 0 < x < 1. The range of  $X_2$  is (1/4, 1). When  $X_2 = x_2$  is given, we next get the range of  $X_1$ . By  $X_2 = 4(X_1 - 1/2)^2$ , we have

$$X_1 = \frac{1}{2} \pm \sqrt{\frac{X_2}{4}}$$

We determine the lower bound of  $X_1$  is  $\frac{1}{2} \pm \sqrt{\frac{X_2}{4}}$  because the intersection of  $X_1 = X_2$  and  $X_2 = 4(X_1 - 1/2)^2$  is less than 1/2 when  $X_1 \in (0, 1)$ . We also have  $X_1 < 1$ , so the probability is

$$\int_{\frac{1}{4}}^{1} \int_{\frac{1}{2}-\sqrt{\frac{x_2}{4}}}^{x_1} 8x_1 x_2 dx_1 dx_2 = 0.974.$$

Let  $Y = u(X_1, X_2)$ . Then, Y is a random variable and

$$E[u(X_1, X_2)] = \int_{x_1} \int_{x_2} u(x_1, x_2) f(x_1, x_2) dx_2 dx_1$$

under the condition that

$$\int_{x_1} \int_{x_2} |u(x_1, x_2)| f(x_1, x_2) dx_2 dx_1 < \infty$$

Let  $X_1$  and  $X_2$  be continuous random variables with joint density function

$$f(x_1, x_2) = \begin{cases} (36/5)x_1x_2(1 - x_1x_2) & \text{for } 0 < x_1, x_2 < 1 \\ \\ 0 & \text{otherwise.} \end{cases}$$

Find  $E(X_1X_2)$ .

Solution:

$$\int_0^1 \int_0^1 \frac{36}{5} (x_1^2 x_2^2 (1 - x_1 x_2)) dx_1 dx_2 = 0.35.$$

#### Theorem

Let  $(X_1, X_2)$  be a random vector. Let  $Y_1 = g_1(X_1, X_2)$  and  $Y_2 = g_2(X_1, X_2)$  be random variables whose expectations exist. Then for all real numbers  $k_1$  and  $k_2$ ,

$$E(k_1Y_1 + k_2Y_2) = k_1E(Y_1) + k_2E(Y_2).$$

We also note that

$$Eg(X_2) = \int_{-\infty}^{\infty} g(x_2) f(x_1, x_2) dx_1 dx_2 = \int_{-\infty}^{\infty} g(x_2) f_{X_2}(x_2) dx_2.$$

#### Let $(X_1, X_2)$ be a random vector with pdf

$$f(x_1, x_2) = \begin{cases} 8x_1x_2 & 0 < x_1 < x_2 < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Let  $Y_1 = 7X_1X_2^2 + 5X_2$  and  $Y_2 = X_1/X_2$ . Determine  $E(Y_1)$  and  $E(Y_2)$ .

# Discrete & Continuous R.V.

#### Definition

The joint cumulative distribution function of  $(X_1, X_2)$  is

 $F_{X_1,X_2}(x_1,x_2) = P\left[ \{X_1 \le x_1\} \cap \{X_2 \le x_2\} \right] \quad \text{for all } (x_1,x_2) \in R^2.$ 

#### Relationship with pmf and pdf:

Discrete random variables:

$$F_{X_1,X_2}(x_1,x_2) = \sum_{X_1 \le x_1} \sum_{X_2 \le x_2} p(x_1,x_2).$$

2 Continuous random variables:

$$F_{X_1,X_2}(x_1,x_2) = \int_0^{x_1} \int_0^{x_2} f_{X_1,X_2}(x_1,x_2) dx_1 dx_2.$$

#### Definition

#### The joint cumulative distribution function of $(X_1, X_2)$ is

 $F_{X_1,X_2}(x_1,x_2) = P\left[\{X_1 \le x_1\} \cap \{X_2 \le x_2\}\right] \quad \text{for all } (x_1,x_2) \in R^2.$ 

#### **Properties:**

- **1**  $F(x_1, x_2)$  is nondecreasing in  $x_1$  and  $x_2$ .
- 2  $F(-\infty, x_2) = F(x_1, -\infty) = 0.$
- $F(\infty,\infty) = 1.$
- 4 For a rectangle  $(a_1, b_1] \times (a_2, b_2]$ , we have

$$P\{ (X_1, X_2) \in (a_1, b_1] \times (a_2, b_2] \}$$
  
=  $F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2).$ 

Consider the discrete random vector  $(X_1, X_2)$ . Its pmf is given in the following table:

| $X_1 \setminus X_2$ | 0   | 1   | 2   | 3   |
|---------------------|-----|-----|-----|-----|
| 0                   | 1/8 | 1/8 | 0   | 0   |
| 1                   | 0   | 2/8 | 2/8 | 0   |
| 2                   | 0   | 0   | 1/8 | 1/8 |

Find the value of the joint cdf  $F(x_1, x_2)$  at (1, 2). Solution: 3/4.

# Example

1. Find the joint cdf of

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 2e^{-x_1-x_2} & 0 < x_1, x_2 < \infty \\ 0 & \text{otherwise.} \end{cases}$$

#### Solution:

$$F_{X_1,X_2}(x_1,x_2) = \int_0^{x_1} \int_0^{x_2} 2e^{-t_1-t_2} dt_1 dt_2 = 2(1-e^{-x_1})(1-e^{-x_2}).$$

2. Find the joint cdf of

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 2e^{-x_1-x_2} & 0 < x_1 < x_2 < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Solution:

$$F_{X_1,X_2}(x_1,x_2) = \int_0^{\min(x_1,x_2)} \int_{t_1}^{x_2} 2e^{-t_1-t_2} dt_2 dt_1.$$

#### Definition

Let  $\mathbf{X} = (X_1, X_2)^\top$  be a random vector. If

$$M(t_1, t_2) = \mathsf{E}\left(e^{t_1 X_1 + t_2 X_2}\right)$$

exists for  $|t_1| < h_1$  and  $|t_2| < h_2$ , where  $h_1$  and  $h_2$  are positive, then we call  $M(t_1, t_2)$  the moment generating function (mgf) of  $\mathbf{X} = (X_1, X_2)^{\top}$ .

We may write

$$M(t_1, t_2) = \mathsf{E}\left(e^{t_1 X_1 + t_2 X_2}\right) = \mathsf{E}\left(e^{\mathbf{t}^\top \mathbf{X}}\right)$$

where  $\mathbf{t}^{\top}$  is a row vector  $(t_1, t_2)$  and  $\mathbf{X}$  is a column vector  $(X_1, X_2)^{\top}$ .

Let the continuous-type random variables  $\boldsymbol{X}$  and  $\boldsymbol{Y}$  have the joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Determine the joint mgf.

Solution:

$$M_{X,Y}(t_1, t_2) = \int_0^\infty \int_x^\infty \exp(t_1 x + t_2 y - y) dy dx = \frac{1}{(1 - t_1 - t_2)(1 - t_2)},$$

provided that  $t_1 + t_2 < 1$  and  $t_2 < 1$ .

Recall that

$$M_{X_1,X_2}(t_1,t_2) = \mathsf{E}\left(e^{t_1X_1 + t_2X_2}\right).$$

The marginal mgf is given by

$$M_{X_1}(t_1) = \mathsf{E}\left(e^{t_1X_1}\right) = M_{X_1,X_2}(t_1,0),$$
$$M_{X_2}(t_2) = \mathsf{E}\left(e^{t_2X_2}\right) = M_{X_1,X_2}(0,t_2).$$

# Example 2.1.7 (cont'd)

Let the continuous-type random variables  $\boldsymbol{X}$  and  $\boldsymbol{Y}$  have the joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Determine the marginal mgf.

Solution:

$$M_{X,Y}(t_1,t_2) = \int_0^\infty \int_x^\infty \exp(t_1 x + t_2 y - y) dy dx = \frac{1}{(1 - t_1 - t_2)(1 - t_2)},$$

provided that  $t_1 + t_2 < 1$  and  $t_2 < 1$ .

$$M_X(t_1) = M_{X,Y}(t_1, 0) = \frac{1}{1 - t_1}, \ t_1 < 1,$$
  
$$M_Y(t_2) = M_{X,Y}(0, t_2) = \frac{1}{(1 - t_2)^2}, \ t_2 < 1.$$

# Example 2.1.7 (cont'd)

Let the continuous-type random variables  $\boldsymbol{X}$  and  $\boldsymbol{Y}$  have the joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Determine the marginal mgf.

Solution:

$$M_X(t_1) = M_{X,Y}(t_1, 0) = \frac{1}{1 - t_1}, \ t_1 < 1,$$
  
$$M_Y(t_2) = M_{X,Y}(0, t_2) = \frac{1}{(1 - t_2)^2}, \ t_2 < 1.$$

Note that

$$f_1(x) = \int_x^\infty e^{-y} dy = e^{-x}, 0 < x < \infty,$$
  
$$f_2(x) = \int_0^y e^{-y} dx = y e^{-y}, 0 < y < \infty.$$

Fact: It can be shown that

$$\mathsf{E}(XY) = \frac{dM_{X,Y}(t_1, t_2)}{dt_1 dt_2} \Big|_{t_1 = 0, t_2 = 0}.$$

**Example**: Method 1: In the previous example,

$$\mathsf{E}(XY) = \int_0^\infty \int_0^y xy e^{-y} dx dy = 3.$$

Method 2:

$$\begin{split} M_{X,Y}(t_1,t_2) &= \frac{1}{(1-t_1-t_2)(1-t_2)},\\ \frac{dM_{X,Y}(t_1,t_2)}{dt_1dt_2} &= -\frac{t_1+3t_2-3}{(t_2-1)^2(-t_1-t_2+1)^3}, \end{split}$$
 where we see  $\frac{dM_{X,Y}(t_1,t_2)}{dt_1dt_2}\Big|_{t_1=0,t_2=0} = 3$  as well.

# **Chapter 2 Multivariate Distributions**

2.2 Transformation: Bivariate Random Variables

## Transformation of discrete random vectors

• Assume there is a one to one mapping between  $X = (X_1, X_2)^\top$  and  $Y = (Y_1, Y_2)^\top$ :

$$Y_1 = u_1(X_1, X_2), \qquad X_1 = w_1(Y_1, Y_2), Y_2 = u_2(X_1, X_2), \qquad X_2 = w_2(Y_1, Y_2).$$

Transformation of discrete random variable:

$$p_{Y_1,Y_2}(y_1,y_2) = p_{X_1,X_2}(w_1(y_1,y_2),w_2(y_1,y_2)).$$

#### Let X and Y be independent random variables such that

$$p_X(x) = \frac{\mu_1^x}{x!} e^{-\mu_1}, \qquad x = 0, 1, 2, \dots$$

and

$$p_Y(y) = \frac{\mu_2^y}{y!} e^{-\mu_2}, \qquad y = 0, 1, 2, \dots$$

- Find the pmf of U = X + Y.
- ► Determine the mgf of *U*.

Let J denote the Jacobian of the transformation. This is the determinant of the  $2 \times 2$  matrix

$$\begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{pmatrix}$$

The determinant is  $J(y_1, y_2) = \frac{\partial x_1}{\partial y_1} \cdot \frac{\partial x_2}{\partial y_2} - \frac{\partial x_1}{\partial y_2} \cdot \frac{\partial x_2}{\partial y_1}$ .

Transformation formula: The joint pdf of the continuous random vector  $Y = (Y_1, Y_2)^\top$  is

 $f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(w_1(y_1,y_2),w_2(y_1,y_2)) \cdot |J(y_1,y_2)|.$ 

Notice the bars around the function J, denoting absolute value.

#### Example

A device containing two key components fails when, and only when, both components fail. The lifetimes,  $X_1$  and  $X_2$ , of these components have a joint pdf  $f(x_1, x_2) = e^{-x_1 - x_2}$ , where  $x_1, x_2 > 0$  and zero otherwise. The cost  $Y_1$ , of operating the device until failure is  $Y_1 = 2X_1 + X_2$ .

- **1** Find the joint pdf of  $Y_1, Y_2$  where  $Y_2 = X_2$ .
- 2 Find the marginal pdf for  $Y_1$  (Ans:  $e^{-y_1/2} e^{-y_1}$ , for  $y_1 > 0$ )

Suppose  $(X_1, X_2)$  has joint pdf

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 10x_1x_2^2 & 0 < x < y < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Let  $Y_1 = X_1/X_2$  and  $Y_2 = X_2$ . Find the joint and marginal pdf's of  $Y_1$  and  $Y_2$ .

#### 1. One to one transformation:

$$\begin{aligned} y_1 &= x_1/x_2, \quad y_2 &= x_2, & 0 < x_1 < x_2 < 1 \\ x_1 &= y_1y_2, & x_2 &= y_2, & 0 < y_1 < 1, \ 0 < y_2 < 1. \end{aligned}$$

#### 2. Give the joint pdf:

 $f_{Y_1,Y_2}(y_1,y_2) = 10y_1y_2y_2^2|y_2|$ , where y is defined above or 0 elsewhere.

**3.** Give the marginal pdf of  $Y_1$ :

$$f_{Y_1}(y_1) = \int_0^1 f_{Y_1, Y_2}(y_1, y_2) dy_2 = 2y_1, \ 0 < y_1 < 0.$$

Suppose  $(X_1, X_2)$  has joint pdf

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{1}{4} \exp(-\frac{x_1 + x_2}{2}) & 0 < x_1 < \infty, 0 < x_2 < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Let  $Y_1 = 1/2(X_1 - X_2)$  and  $Y_2 = X_2$ . Find the joint and marginal pdf's of  $Y_1$  and  $Y_2$ .

#### 1. One to one transformation:

$$y_1 = \frac{1}{2}(x_1 - x_2), \quad y_2 = x_2, \quad 0 < x_1 < \infty, \quad 0 < x_2 < \infty.$$
  
$$x_1 = 2y_1 + y_2, \qquad x_2 = y_2, \qquad -2y_1 < y_2, \quad 0 < y_2 < \infty.$$

### 2. Give the joint pdf:

 $f_{Y_1,Y_2}(y_1,y_2) = e^{-y_1-y_2}/4 \times |2|$ , where y is defined above or 0 elsewhere.

#### 3. Give the marginal pdf of $Y_1$ :

$$f_{Y_1}(y_1) = \begin{cases} \int_{-2y_1}^{\infty} f_{Y_1, Y_2}(y_1, y_2) dy_2 = e^{y_1}/2, \ -\infty < y_1 < 0, \\ \int_0^{\infty} f_{Y_1, Y_2}(y_1, y_2) dy_2 = e^{-y_1}/2, \ 0 \le y_1 < \infty, \end{cases}$$

which gives  $f_{Y_1}(y_1) = e^{-|y_1|}, -\infty < y < \infty.$ 

Suppose  $(X_1, X_2)$  has joint pdf

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{1}{4} \exp(-\frac{x_1+x_2}{2}) \\ 0 \end{cases}$$

 $0 < x_1 < \infty, 0 < x_2 < \infty$  elsewhere.

Let  $Y_1 = 1/2(X_1 - X_2)$ . What is the mgf of  $Y_1$ ?

$$\begin{split} \mathsf{E}(e^{tY}) &= \int_0^\infty \int_0^\infty e^{t(x_1 - x_2)/2} \frac{1}{4} e^{-(x_1 + x_2)/2} dx_1 dx_2 \\ &= \left[ \int_0^\infty \frac{1}{2} e^{-x_1(1 - t)/2} dx_1 \right] \left[ \int_0^\infty \frac{1}{2} e^{-x_2(1 + t)/2} dx_2 \right] \\ &= \left[ \frac{1}{1 - t} \right] \left[ \frac{1}{1 + t} \right] \\ &= \frac{1}{1 - t^2}, \end{split}$$

provided that 1 - t > 0 and 1 + t > 0. This is equivalent to

$$\int_{-\infty}^{\infty} e^{tx} \frac{e^{-|x|}}{2} = \frac{1}{1 - t^2}, \ -1 < t < 1,$$

which is the mgf of double exponential distribution.

# **Chapter 2 Multivariate Distributions**

## 2.3 Conditional Distributions and Expectations

# Conditional probability for discrete r.v.

## Motivating example

Let  $X_1$  =Smaller die face,  $X_2$  =Larger die face, when rolling a pair of two dice. The following table shows a partition of the sample space into 21 events.

|       |   |      |      | $x_1$ |      |      |      |
|-------|---|------|------|-------|------|------|------|
|       |   | 1    | 2    | 3     | 4    | 5    | 6    |
|       | 1 | 1/36 | 0    | 0     | 0    | 0    | 0    |
|       | 2 | 2/36 | 1/36 | 0     | 0    | 0    | 0    |
| $x_2$ | 3 | 2/36 | 2/36 | 1/36  | 0    | 0    | 0    |
|       | 4 | 2/36 | 2/36 | 2/36  | 1/36 | 0    | 0    |
|       | 5 | 2/36 | 2/36 | 2/36  | 2/36 | 1/36 | 0    |
|       | 6 | 2/36 | 2/36 | 2/36  | 2/36 | 2/36 | 1/36 |

Recalling our definition of conditional probability for events, we have (for example)

$$P(X_2 = 4 | X_1 = 2) = \frac{P[\{X_1 = 2\} \cap \{X_2 = 4\}]}{P(X_1 = 2)} = \frac{2/36}{9/36} = \frac{2}{9}.$$
Boxing Wang. The University of Jowa Chapter 2 STAT 4100 Fall 2018

• Recall that for two events  $A_1$  and  $A_2$  with  $P(A_1) > 0$ , the conditional probability of  $A_2$  given  $A_1$  is

$$P(A_2|A_1) = \frac{P(A_1 \cap A_2)}{P(A_1)}.$$

• Let  $X_1$  and  $X_2$  denote **discrete** random variables with joint pmf  $p_{X_1,X_2}(x_1,x_2)$  and marginal pmfs  $p_{X_1}(x_1)$  and  $p_{X_2}(x_2)$ . Then for every  $x_1$  such that  $p_{X_1}(x_1) > 0$ , we have

$$P(X_2 = x_2 | X_1 = x_1) = \frac{P(X_1 = x_1, X_2 = x_2)}{P(X_1 = x_1)} = \frac{p_{X_1, X_2}(x_1, x_2)}{p_{X_1}(x_1)}.$$

We use a simple notation:

$$p_{X_2|X_1}(x_2|x_1) = p_{2|1}(x_2|x_1) = \frac{p_{X_1,X_2}(x_1,x_2)}{p_{X_1}(x_1)}.$$

• We call  $p_{X_2|X_1}(x_2|x_1)$  the conditional pmf of  $X_2$ , given that  $X_1 = x_1$ .

## Verify $p_{X_2|X_1}(x_2|x_1)$ satisfies the condition of being a pmf. 1 $p_{X_2|X_1}(x_2|x_1) \ge 0.$

2

$$\sum_{x_2} p_{X_2|X_1}(x_2|x_1) = \sum_{x_2} \frac{p_{X_1,X_2}(x_1,x_2)}{p_{X_1}(x_1)}$$
$$= \frac{1}{p_{X_1}(x_1)} \sum_{x_2} p_{X_1,X_2}(x_1,x_2)$$
$$= \frac{p_{X_1}(x_1)}{p_{X_1}(x_1)} = 1.$$

Conditional expectation of discrete random variables:

$$\mathsf{E}(X_1|X_2 = x_2) = \sum_{x_1} x_1 p_{X_1|X_2}(x_1|x_2).$$

#### Example

Returning to the previous example, it is straightforward to work out the conditional pmf as well as associated functions like expectations. For instance,

$$p_{X_1|X_2}(x_1|X_2=3) = \begin{cases} 2/5 & \text{if } x_1 = 1, 2\\ 1/5 & \text{if } x_1 = 3\\ 0 & \text{if } x_1 = 4, 5, 6. \end{cases}$$

and  $E(X_1|X_2 = 3) = 9/5$ .

# Conditional probability for continuous r.v.

▶ Let  $X_1$  and  $X_2$  denote **continuous** random variables with joint pdf  $f_{X_1,X_2}(x_1,x_2)$  and marginal pmfs  $f_{X_1}(x_1)$  and  $f_{X_2}(x_2)$ . Then for every  $x_1$  such that  $f_{X_1}(x_1) > 0$ , we define

$$f_{X_2|X_1}(x_2|x_1) = f_{2|1}(x_2|x_1) = \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_1}(x_1)}.$$

• Verify that  $f_{X_2|X_1}$  satisfies the conditions of being a pdf.

(1) 
$$f_{X_2|X_1}(x_2|x_1) \ge 0.$$
  
(2)  $\int_{-\infty}^{\infty} f_{X_2|X_1}(x_2|x_1) dx_2 = \int_{-\infty}^{\infty} \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_1}(x_1)} dx_2$   
 $= \frac{1}{f_{X_1}(x_1)} \int_{-\infty}^{\infty} f_{X_1,X_2}(x_1,x_2) dx_2$   
 $= \frac{f_{X_1}(x_1)}{f_{X_1}(x_1)} = 1.$ 

## Conditional expectation of continuous random variables

► If u(X<sub>2</sub>) is a function of X<sub>2</sub>, the conditional expectation of u(X<sub>2</sub>), given that X<sub>1</sub> = x<sub>1</sub>, if it exists, is given by

$$\mathsf{E}[u(X_2)|x_1] = \int_{-\infty}^{\infty} u(x_2) f_{2|1}(x_2|x_1) \, dx_2.$$

▶ If they do exist, then  $E(X_2|x_1)$  is the conditional mean and

$$Var(X_2|x_1) = \mathsf{E}\{[X_2 - E(X_2|x_1)]^2 | x_1\}$$

is the conditional variance of  $X_2$ , given  $X_1 = x_1$ .

#### Example

Find the conditionals  $f_{X_2|X_1}$  and  $f_{X_1|X_2}$  for  $(X_1, X_2)$  with joint cdf

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 2e^{-x_1-x_2} & 0 < x_1 < x_2 < \infty \\ 0 & \text{otherwise.} \end{cases}$$

- Calculate  $P(a < X_2 \le b | X_1 = x_1)$ .
- Calculate the expectation  $E[u(X_2)|X_1 = x_1]$ .
- Calculate the variance  $Var(X_2|X_1 = x_1)$ .

#### **Example (2.3.1)**

Let  $X_1$  and  $X_2$  have the joint pdf

$$f(x_1, x_2) = \begin{cases} 2 & 0 < x_1 < x_2 < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Find  $P(0 < X_1 < \frac{1}{2} | X_2 = \frac{3}{4})$  and  $Var(X_1|x_2)$ .

#### **Example (2.3.2)**

Let  $X_1$  and  $X_2$  have the joint pdf

$$f(x_1, x_2) = \begin{cases} 6x_2 & 0 < x_2 < x_1 < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

- **1** Compute  $E(X_2)$ .
- **2** Compute the function  $h(x_1) = \mathsf{E}(X_2|x_1)$ . Then compute  $\mathsf{E}[h(X_1)]$  and  $\mathsf{Var}[h(X_1)]$ .

Let 
$$(X_1, X_2)$$
 be a random vector. Then  
(a)  $E[E(X_2|X_1)] = E(X_2)$ ,  
(b)  $Var(X_2) = Var[E(X_2|X_1)] + E[Var(X_2|X_1)]$ .

#### Interpretation:

- Both X₂ and E(X₂|X₁) are unbiased estimator of E(X₂) = µ₂.
- The part (b) shows that  $E(X_2|X_1)$  is more reliable.
- We will talk more about this when studying sufficient statistics in Chapter 7, Rao and Blackwell Theorem.

$$\mathsf{E}\left[\mathsf{E}\left(X_{2}|X_{1}\right)\right]=\mathsf{E}\left(X_{2}\right).$$

#### Proof.

The proof is for the continuous case. The discrete case is proved by using summations instead of integrals. We see

$$\begin{aligned} \mathsf{E}(X_2) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_2 f(x_1, x_2) dx_2 dx_1 \\ &= \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} x_2 \frac{f(x_1, x_2)}{f_1(x_1)} dx_2 \right] f_1(x_1) dx_1 \\ &= \int_{-\infty}^{\infty} \mathsf{E}(X_2 | x_1) f_1(x_1) dx_1 \\ &= \mathsf{E}[\mathsf{E}(X_2 | X_1)]. \end{aligned}$$

$$Var(X_2) = Var[E(X_2|X_1)] + E[Var(X_2|X_1)].$$

Proof.

The proof is for both the discrete and continuous cases:

$$\begin{split} \mathsf{E}[\mathsf{Var}(X_2|X_1)] &= \mathsf{E}[\mathsf{E}(X_2^2|X_1) - (\mathsf{E}(X_2|X_1))^2] \\ &= \mathsf{E}[\mathsf{E}(X_2^2|X_1)] - \mathsf{E}[\mathsf{E}(X_2|X_1)^2] \\ &= \mathsf{E}(X_2^2) - \mathsf{E}[\mathsf{E}(X_2|X_1)^2]; \end{split}$$

$$Var[\mathsf{E}(X_2|X_1)] = \mathsf{E}[\mathsf{E}(X_2|X_1)^2] - \{\mathsf{E}[\mathsf{E}(X_2|X_1)]\}^2$$
  
=  $\mathsf{E}[\mathsf{E}(X_2|X_1)^2] - [\mathsf{E}(X_2)]^2.$ 

Thus,

$$\mathsf{E}[\mathsf{Var}(X_2|X_1)] + \mathsf{Var}[\mathsf{E}(X_2|X_1)] = \mathsf{E}(X_2^2) - [\mathsf{E}(X_2)]^2 = \mathsf{Var}(X_2).$$

We further see that

 $\operatorname{Var}\left[\operatorname{\mathsf{E}}(X_2|X_1)\right] \leq \operatorname{Var}(X_2).$ 

Let  $X_1$  and  $X_2$  be discrete random variables. Suppose the conditional pmf of  $X_1$  given  $X_2$  and the marginal distribution of  $X_2$  are given by

$$p(x_1|x_2) = {\binom{x_2}{x_1}} \left(\frac{1}{2}\right)^{x_2}, \ x_1 = 0, 1, \dots, x_2,$$
$$p(x_2) = \frac{2}{3} \left(\frac{1}{3}\right)^{x_2-1}, \ x_2 = 1, 2, 3 \dots$$

Determine the mgf of  $X_1$ .

Boxiang Wang, The University of Iowa

#### Example

Assume that the joint pdf for  $X_2|X_1 = x_1$  on the support  $\mathcal{S} = \{0 < x_1 < 1, 0 < x_2 < 2, x_1 + x_2 < 2\}$  is

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{2x_1}{2-x_1} & \text{in } \mathcal{S}, \\ 0 & \text{otherwise.} \end{cases}$$

Find  $E(X_2)$  through  $E(X_2) = E[E(X_2|X_1)]$ .

### Solution:

The conditional pdf for  $X_2 | X_1 = x_1, 0 < x_1 < 1$  is

$$f_{X_2|X_1}(x_2|x_1) = \begin{cases} 1/(2-x_1) & \text{if } 0 < x_2 < 2-x_1 \\ 0 & \text{otherwise.} \end{cases}$$

and the marginal pdf for  $X_1$  is  $f_{X_1}(x_1) = 2x_1$  for  $0 < x_1 < 1$  and zero otherwise.

$$E(X_2|X_1) = \int_0^{2-x_1} x_2 \frac{1}{2-x_1} dx_2 = \frac{2-x_1}{2},$$
  
$$E(E(X_2|X_1)) = \int_0^1 \frac{2-x_1}{2} 2x_1 dx_1 = 2/3.$$

We can verify this by

$$\mathbf{E}(X_2) = \int_0^1 \int_0^{2-x_1} x_2 \frac{2x_1}{2-x_1} dx_2 dx_1 = 2/3.$$

## **Chapter 2 Multivariate Distributions**

### 2.4 The Correlation Coefficient

Recall the definition of the variance of *X*:

$$\operatorname{Var}(X) = \mathsf{E}[(X - \mu)^2].$$

#### Definition

Let *X* and *Y* be two random variables with expectations  $\mu_1 = EX$  and  $\mu_2 = EY$ , respectively. The covariance of *X* and *Y*, if it exists, is defined to be

$$Cov(X, Y) = E[(X - \mu_1)(Y - \mu_2)].$$

Computation shortcut:

$$\mathsf{E}[(X - \mu_1)(Y - \mu_2)] = \mathsf{E}(XY) - \mu_1\mu_2.$$

Let X and Y be two random variables with joint pdf

$$f(x,y) = \begin{cases} x+y & 0 < x, y < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Determine the covariance of X and Y.

#### Definition

The correlation coefficient of X and Y is defined to be

$$p = \frac{\mathsf{Cov}(X, Y)}{\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)}}$$



#### Example

What is the correlation coefficient of the previous example?

The plot is from Wikipedia https://en.wikipedia.org/wiki/Correlation\_and\_dependence Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018 For two random variables X and Y, write u(x) = E(Y|x):

$$\mathsf{E}(Y|x) = \int_{-\infty}^{\infty} y f_{2|1}(y|x) dy = \frac{\int_{-\infty}^{\infty} y f_{X,Y}(x,y) dy}{f_1(x)}$$

If u(x) is a linear function of x, say

$$u(x) = E\left(Y|x\right) = a + bx,$$

then we say that the conditional mean of Y is linear in x. The following theorem gives the values of a and b.

Let X and Y be two random variables , with means  $\mu_1$ ,  $\mu_2$ , variances  $\sigma_1^2$ ,  $\sigma_2^2$ , and correlation coefficient  $\rho$ . If the conditional mean of Y is linear in x, then

$$E(Y|X) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (X - \mu_1),$$
$$E[Var(Y|X)] = \sigma_2^2 (1 - \rho^2).$$

#### Let X and Y have the linear conditional means

$$\mathsf{E}(Y|x) = 4x + 3$$

and

$$\mathsf{E}(X|y) = \frac{1}{16}y - 3.$$

What are the values of  $\mu_1$ ,  $\mu_2$ ,  $\rho$ , and  $\sigma_2/\sigma_1$ ?

Recall that the mgf of the random vector (X, Y) is defined to be  $M(t_1, t_2) = E\left[e^{t_1X+t_2Y}\right]$ . It can be shown that

$$\frac{\partial^{k+m}}{\partial t_1^k \partial t_2^m} M(t_1, t_2) = E\left[X^k Y^m e^{t_1 X + t_2 Y}\right]$$

٠

$$\left. \frac{\partial^{k+m}}{\partial t_1^k \partial t_2^m} M(t_1, t_2) \right|_{t_1 = t_2 = 0} = E\left[ X^k Y^m \right].$$

Let X and Y be two random variables with joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Determine the correlation coefficient of X and Y.

### Solution:

The mgf is

$$M(t_1, t_2) = \frac{1}{(1 - t_1 - t_2)(1 - t_2)}, \ t_1 + t_2 < 1, \ t_2 < 1.$$

We have  $\mu_1 = 1, \, \mu_2 = 2, \, \sigma_1^2 = 1, \, \sigma_2^2 = 2, \, \operatorname{Cov}(X,Y) = 1.$ 

## **Chapter 2 Multivariate Distributions**

### 2.5 Independent Random Variables

Suppose the bivariate random variables  $(X_1, X_2)$  is continuously distributed, and for all  $x_1 \in S_{X_1}$ , and  $x_2 \in S_{X_2}$ ,

$$f_{X_1|X_2}(x_1|x_2) = f_{X_1}(x_1).$$
(1)

Since, by the definition of conditional pdf,

$$f_{X_1|X_2}(x_1|x_2) = \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_2}(x_2)},$$

it follows that

 $f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$  for all  $x_1 \in S_{X_1}, x_2 \in S_{X_2}$ . (2)

Clearly (1) and (2) are equivalent. Exactly the same logic applies for a discrete random variable.

We say two random variables  $X_1$  and  $X_2$  are **independent** if

 (Continuous case) their joint pdf is equal to the product of their marginal pdf's:

$$f(x_1, x_2) \equiv f_1(x_1) f_2(x_2).$$

 (Discrete case) their joint pmf is equal to the product of their marginal pmf's:

$$p(x_1, x_2) \equiv p_1(x_1)p_2(x_2).$$

Suppose that  $X_1$  and  $X_2$  have a joint support  $S = \{(x_1, x_2)\}$  and marginal supports  $S_1 = \{x_1\}$  and  $S_2 = \{x_2\}$ . If  $X_1$  and  $X_2$  are independent, then

$$\mathcal{S} = \mathcal{S}_1 \times \mathcal{S}_2.$$

In other words,

- ► (Continuous case) If the joint support S is not a rectangle, then X<sub>1</sub> and X<sub>2</sub> are dependent.
- (Discrete case) If there is a zero entry in the table of pmf, then X<sub>1</sub> and X<sub>2</sub> are dependent.

Let the joint pdf of  $X_1$  and  $X_2$  be

$$f(x_1, x_2) = \begin{cases} x_1 + x_2 & 0 < x_1 < 1, \ 0 < x_2 < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Are they independent?

#### Solution:

No, because  $f(x_1, x_2) \neq f_1(x_1)f_2(x_2)$ :

$$f_1(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2 = \int_0^1 (x_1 + x_2) dx_2 = x_1 + 1/2, \ 0 < x_1 < 1$$
  
$$f_2(x_2) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_1 = \int_0^1 (x_1 + x_2) dx_1 = x_2 + 1/2, \ 0 < x_2 < 1$$

68/115

Two random variables  $X_1$  and  $X_2$  are independent if and only if

 (Continuous case) their joint pdf can be written as a product of a nonnegative function of x<sub>1</sub> and a nonnegative function of x<sub>2</sub>:

$$f(x_1, x_2) \equiv g(x_1)h(x_2)$$
 for all  $(x_1, x_2) \in \mathbb{R}^2$ 

► (Discrete case) their joint pmf can be written as a product of a nonnegative function of x<sub>1</sub> and a nonnegative function of x<sub>2</sub>:

$$p(x_1, x_2) \equiv g(x_1)h(x_2).$$

### Sketch of proof

- ▶ Only if: Independence  $\Rightarrow f(x_1, x_2) \equiv g(x_1)h(x_2)$ : This can be seen as  $g(x_1) = f_1(x_1)$  and  $h(x_2) = f_2(x_2)$ .
- ► If: Independence  $\Leftarrow f(x_1, x_2) \equiv g(x_1)h(x_2)$ : If we have  $f(x_1, x_2) \equiv g(x_1)h(x_2)$ , we have

$$f_1(x_1) = \int_{-\infty}^{\infty} g(x_1)h(x_2)dx_2 = g(x_1) \left[ \int_{-\infty}^{\infty} h(x_2)dx_2 \right] = c_1g(x_1),$$
  
$$f_2(x_2) = \int_{-\infty}^{\infty} g(x_1)h(x_2)dx_1 = h(x_2) \left[ \int_{-\infty}^{\infty} g(x_1)dx_1 \right] = c_2h(x_2),$$

where  $c_1$  and  $c_2$  are constants. We see  $c_1c_2 = 1$  because

$$1 = \int_{-\infty}^{\infty} g(x_1)h(x_2)dx_1dx_2 = \left[\int_{-\infty}^{\infty} g(x_1)dx_1\right] \left[\int_{-\infty}^{\infty} h(x_2)dx_2\right] = c_2c_1$$

Thus,  $f(x_1, x_2) = g(x_1)h(x_2) = c_1g(x_1)c_2h(x_2) = f_1(x_1)f_2(x_2).$ 

**Theorem 2.5.2** Let  $(X_1, X_2)$  have the joint cdf  $F(x_1, x_2)$  and let  $X_1$  and  $X_2$  have the marginal cdf  $F_1(x_1)$  and  $F_2(x_2)$ , respectively. Then  $X_1$  and  $X_2$  are independent if and only if

 $F(x_1, x_2) = F_1(x_1)F_2(x_2), \ \forall (x_1, x_2) \in \mathbb{R}^2.$ 

**Theorem 2.5.3** The random variables  $X_1$  and  $X_2$  are independent random variables if and only if the following condition holds

 $P(a < X_1 \le b, c < X_2 \le d) = P(a < X_1 \le b)P(c < X_1 \le d),$ 

for every a < b and c < d, where a, b, c, d are constants.

## Example 2.5.3

Let the joint pdf of  $X_1$  and  $X_2$  be

$$f(x_1, x_2) = \begin{cases} x_1 + x_2 \\ 0 \end{cases}$$

 $0 < x_1 < 1, \ 0 < x_2 < 1$  elsewhere.

Are they independent?

### Solution:

No, because

$$P(0 < X_1 < \frac{1}{2}, 0 < X_2 < \frac{1}{2}) \neq P(0 < X_1 < \frac{1}{2})P(0 < X_2 < \frac{1}{2}):$$

$$P(0 < X_1 < \frac{1}{2}, 0 < X_2 < \frac{1}{2}) = \int_0^{\frac{1}{2}} \int_0^{\frac{1}{2}} (x_1 + x_2) dx_1 dx_2 = 1/8,$$

$$P(0 < X_1 < \frac{1}{2}) = \int_0^{\frac{1}{2}} (x_1 + \frac{1}{2}) dx_1 = 3/8,$$

$$P(0 < X_2 < \frac{1}{2}) = \int_0^{\frac{1}{2}} (x_2 + \frac{1}{2}) dx_2 = 3/8.$$

Chapter 2 STAT 4100 Fall 2018

### Theorem 2.5.4

If  $X_1$  and  $X_2$  are independent and that  $E[u(X_1)]$  and  $E[v(X_2)]$  exist. Then

$$\mathsf{E}[u(X_1)v(X_2)] = \mathsf{E}[u(X_1)] \mathsf{E}[v(X_2)].$$

#### Proof.

$$\mathsf{E}[u(X_1)v(X_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x_1)v(x_2)f(x_1, x_2)dx_1dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x_1)v(x_2)f_1(x_1)f_2(x_2)dx_1dx_2 = \left[\int_{-\infty}^{\infty} u(x_1)f_1(x_1)dx_1\right] \left[\int_{-\infty}^{\infty} f_2(x_2)v(x_2)dx_2\right] = \mathsf{E}[u(X_1)] \mathsf{E}[v(X_2)].$$

For independent random variable:

$$\mathsf{E}(X_1X_2) = \mathsf{E}(X_1)\mathsf{E}(X_2).$$

• Independence implies that covariance  $Cov(X_1, X_2) = 0$ :

$$\mathsf{E}[(X_1 - \mu_1)(X_2 - \mu_2)] = \mathsf{E}(X_1 - \mu_1)\mathsf{E}(X_2 - \mu_2).$$

Independence always implies zero covariance (correlation). Zero covariance (correlation) does NOT always imply independence:

#### **Example**

Assume that

$$p_{X,Y}(-1,1) = p_{X,Y}(1,1) = 1/4; \quad p_{X,Y}(0,-1) = 1/2.$$

X and Y are not independent because (for example)  $p_{Y|X}(-1|0)=1\neq p_Y(-1)=1/2$  but  ${\rm Cov}(X,Y)=0$  (check).

Suppose that  $(X_1, X_2)$  have the joint mgf  $M(t_1, t_2)$  and marginal mgf's  $M_1(t_1)$  and  $M_2(t_2)$ , respectively. Then,  $X_1$  and  $X_2$  are independent if and only if

 $M(t_1, t_2) \equiv M_1(t_1)M_2(t_2).$ 

Let X and Y be two random variables with joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Are they independent?

Solution:

The mgf is

$$M(t_1, t_2) = \frac{1}{(1 - t_1 - t_2)(1 - t_2)}, \ t_1 + t_2 < 1, \ t_2 < 1.$$

Because

$$M(t_1, t_2) \neq M_1(t_1)M_2(t_2) = M(t_1, 0)M(0, t_2),$$

they are dependent.

# **Chapter 2 Multivariate Distributions**

## 2.6 Extension to Several Random Variables

- Random experiment consists of drawing an individual *c* from a population *C*.
   Characteristics: height, weight, age, test scores, .....
- Random experiments consists of the U.S economy at time t. Characteristics: consumer prices, unemployment rate, Dow Jones Industrial Average, Gross Domestic Product, ....

A note on notation. We will often use boldface letters to denote vectors. For example, we use X to denote the random vector  $(X_1, \ldots, X_n)$ , and x to denote the observed values  $(x_1, \ldots, x_n)$ .

The joint pmf of a discrete random vector X is defined to be

$$p_{\mathbf{X}}(\mathbf{x}) = P[X_1 = x_1, \dots, X_n = x_n].$$

The joint cdf of a discrete random vector X is defined to be

$$F_{\mathbf{X}}(\mathbf{x}) = P[X_1 \le x_1, \dots, X_n \le x_n].$$

For the discrete case,  $p_X(x)$  can be used to calculate  $P(X \in A)$  for  $A \subset \mathbb{R}^n$ :

$$P(\boldsymbol{X} \in A) = \sum_{\boldsymbol{x} \in A} p_{\boldsymbol{X}}(\boldsymbol{x}) \,.$$

### Pdf and cdf for the continuous case

The joint cdf of a continuous random vector X is defined to be

$$F_{\mathbf{X}}(\mathbf{x}) = P[X_1 \le x_1, \dots, X_n \le x_n].$$

• The joint pdf of a continuous random vector X is a function  $f_X(x)$  such that for any  $A \subset \mathbb{R}^n$ 

$$P(\boldsymbol{X} \in A) = \int_{A} f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x}$$
  
=  $\int \dots \int_{A} f_{X_{1},\dots,X_{n}}(x_{1},\dots,x_{n}) dx_{1} \dots dx_{n}.$ 

For the continuous case, we have

$$\frac{\partial^n}{\partial x_1 \cdots \partial x_n} F_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}).$$

#### Example

Let

$$f(x_1, x_2, x_3) = \begin{cases} 8x_1x_2x_3 & \text{for } 0 < x_1, x_2, x_3 < 1 \\ \\ 0 & \text{otherwise.} \end{cases}$$

Verify that this is a legitimate pdf.

### Solution:

$$\int_{x_1=0}^1 \int_{x_2=0}^1 \int_{x_3=0}^1 8x_1 x_2 x_3 dx_3 dx_2 dx_1 = 1.$$

For the discrete case, the expectation of  $Y = u(X_1, \ldots, X_n)$ , if it exists, is defined to be

$$E(Y) = \sum_{x_1,\dots,x_n} \dots \sum_{x_n,\dots,x_n} u(x_1,\dots,x_n) p_{\mathbf{X}}(x_1,\dots,x_n).$$

For the continuous case, the expectation of  $Y = u(X_1, \ldots, X_n)$ , if it exists, is defined to be

$$E(Y) = \int_{x_1,\dots,x_n} \cdots \int u(x_1,\dots,x_n) f_{\mathbf{X}}(x_1,\dots,x_n) dx_1 \cdots dx_n.$$

As before, E is a linear operator. That is,

$$E\left[\sum_{j=1}^{m} k_j Y_j\right] = \sum_{j=1}^{m} k_j E\left[Y_j\right].$$

#### Example

Find  $E(5X_1X_2^2 + 3X_2X_3^4)$ . Solution:

$$E(X_1X_2^2) = \int_0^1 \int_0^1 \int_0^1 (x_1x_2^2) 8x_1x_2x_3dx_3dx_2dx_1 = \frac{1}{3},$$
  

$$E(X_2X_3^4) = \int_0^1 \int_0^1 \int_0^1 (x_2x_3^4) 8x_1x_2x_3dx_3dx_2dx_1 = \frac{2}{9},$$
  

$$E(5X_1X_2^2 + 3X_2X_3^4) = 5 \cdot \frac{4}{15} + 3 \cdot \frac{2}{9} = \frac{4}{3} + \frac{2}{3} = 2$$

In an obvious way, we may extend the concepts of marginal pmf and marginal pdf for the multidimensional case. For the discrete case, the marginal pmf of  $(X_1, X_2)$  is defined to be

$$p_{12}(x_1, x_2) = \sum_{x_3} \cdots \sum_{x_n} p_{\mathbf{X}}(x_1, x_2, \dots, x_n).$$

For the continuous case, the marginal pdf of  $(X_1, X_2)$  is defined to be

$$f_{12}(x_1, x_2) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, x_2, \dots, x_n) dx_3 \cdots dx_n.$$

We then extend the concept of conditional pmf and conditional pdf. For the discrete case, suppose  $p_1(x_1) > 0$ . We define the the conditional pmf of  $(X_2, \ldots, X_n)$  given  $X_1 = x_1$  to be

$$p_{2,\dots,n|1}(x_2,\dots,x_n|x_1) = \frac{p(x_1,x_2,\dots,x_n)}{p_1(x_1)}$$

For the continuous case, suppose  $f_1(x_1) > 0$ . We define the conditional pdf of  $(X_2, \ldots, X_n)$  given  $X_1 = x_1$  to be

$$f_{2,\dots,n|1}(x_2,\dots,x_n|x_1) = \frac{f(x_1,x_2,\dots,x_n)}{f_1(x_1)}.$$

For the discrete case, suppose  $p_1(x_1) > 0$ . Then we define the conditional expectation of  $u(X_2, ..., X_n)$  given  $X_1 = x_1$  to be

$$\mathsf{E}\left[u(X_2,\ldots,X_n)|x_1\right] = \sum_{x_2}\cdots\sum_{x_n}u(x_2,\ldots,x_n)p_{2,\ldots,n|1}(x_2,\ldots,x_n|x_1).$$

For the continuous case, suppose  $f_1(x_1) > 0$ . Then we define the conditional expectation of  $u(X_2, ..., X_n)$  given  $X_1 = x_1$  to be

$$\mathsf{E}\left[u(X_2,\ldots,X_n)|x_1\right]$$
  
=  $\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}u(x_2,\ldots,x_n)f_{2,\ldots,n|1}(x_2,\ldots,x_n|x_1)dx_2\cdots dx_n.$ 

# Mutual Independence

We say that the *n* random variables  $X_1, \ldots, X_n$  are **mutually independent** if, for the discrete case,

 $p(x_1, x_2, \dots, x_n) = p_1(x_1)p_2(x_2)\cdots p_n(x_n), \text{ for all } (x_1, \cdots, x_n) \in \mathbb{R}^n,$ 

or, for the continuous case,

 $f(x_1,x_2,\ldots,x_n)=f_1(x_1)f_2(x_2)\cdots f_n(x_n) \quad \text{for all } (x_1,\cdots,x_n)\in\mathbb{R}^n.$ 

If the *n* random variables  $X_1, \ldots, X_n$  are **mutually independent**, then

$$P(a_1 < X_1 < b_1, \dots, a_n < X_n < b_n)$$
  
=  $P(a_1 < X_1 < b_1) \cdots P(a_n < X_n < b_n).$ 

We may rewrite the above equation as

$$P\left(\bigcap_{j=1}^{n} (a_j < X_j < b_j)\right) = \prod_{j=1}^{n} P(a_j < X_j < b_j).$$

If the *n* random variables  $X_1, X_2, \ldots, X_n$  are mutually independent, then

$$\mathsf{E}\left[u_1(X_1)u_2(X_2)\cdots u_n(X_n)\right] = \mathsf{E}\left[u_1(X_1)\right] E\left[u_2(X_2)\right]\cdots \mathsf{E}\left[u_n(X_n)\right],$$
$$\mathsf{E}\left[\prod_{j=1}^n u_j(X_j)\right] = \prod_{j=1}^n \mathsf{E}\left[u_j(X_j)\right].$$

As a special case of the above, if the *n* random variables  $X_1, X_2, \dots, X_n$  are mutually independent, then for mgf,

$$M(t_1, t_2, \cdots, t_n) = \prod_{j=1}^n M_j(t_j),$$

which can be seen from

$$M(t_1, t_2, \cdots, t_n) = \mathsf{E}[\exp(t_1 X_1 + t_2 X_2 + \ldots + t_n X_n)]$$
$$= \mathsf{E}\left[\prod_{j=1}^n \exp(t_j X_j)\right]$$
$$= \prod_{j=1}^n \mathsf{E}\left[\exp(t_j X_j)\right] = \prod_{j=1}^n M_j(t_j).$$

Chapter 2 STAT 4100 Fall 2018

## Mutual independence v.s. pairwise independence

- We say the *n* random variables X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub> are pairwise independent if for all pairs (*i*, *j*) with *i* ≠ *j*, the random variables X<sub>i</sub> and X<sub>j</sub> are independent.
- Unless there is a possible misunderstanding between mutual independence and pairwise independence, we usually drop the modifier mutual.
- ► If the *n* random variables X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub> are independent and have the same distribution, then we say that they are independent and identically distributed, which we abbreviate as i.i.d..

Compare "mutual independence" and "pairwise independence".

### Example (from S. Bernstein)

Consider a random vector  $(X_1,X_2,X_3)$  that has joint pmf  $p(\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3)$ 

 $= \left\{ \begin{array}{ll} \frac{1}{4} & \quad \text{for } (x_1, x_2, x_3) \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)\} \, . \\ 0 & \quad \text{otherwise.} \end{array} \right.$ 

### Solution:

$$p_{ij}(x_i, x_j) = \begin{cases} \frac{1}{4} & \text{ for } (x_i, x_j) \in \{(0, 0), (1, 0), (0, 1), (1, 1)\} \\ 0 & \text{ otherwise.} \end{cases}$$

$$p_i(x_i) = \begin{cases} \frac{1}{2} & \text{ for } (x_i) \in \{0,1\} \\ 0 & \text{ otherwise.} \end{cases}$$

pairwise independence : not mutual independence :

 $p_{ij}(x_i, x_j) = p_i(x_i)p_j(x_j).$  $p(x_1, x_2, x_3) \neq p_1(x_1)p_2(x_2)p_3(x_3).$ 

# Multivariate Variance-Covariance Matrix

- 1 Let  $\boldsymbol{X} = (X_1, \cdots, X_n)^\top$  be a random vector.
- **2** We define the expectation of X as  $EX = (EX_1, \dots, EX_n)^\top$ .
- 3 Let  $\mathbf{W} = [W_{ij}]$  be a  $m \times n$  matrix, where  $W_{ij}$  are random variables. That is,

$$\mathbf{W} = \begin{bmatrix} W_{11} & W_{12} & \cdots & W_{1n} \\ W_{21} & W_{22} & & W_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ W_{m1} & W_{m2} & \cdots & W_{mn} \end{bmatrix} = [W_{ij}]_{m \times n}.$$

4 We define the expectation of this random matrix as  $E[W] = [E(W_{ij})]$ . That is,

$$\mathsf{E}[\mathbf{W}] = \begin{bmatrix} \mathsf{E}(W_{11}) & \mathsf{E}(W_{12}) & \cdots & \mathsf{E}(W_{1n}) \\ \mathsf{E}(W_{21}) & \mathsf{E}(W_{22}) & & \mathsf{E}(W_{2n}) \\ \cdots & \cdots & \cdots & \cdots \\ \mathsf{E}(W_{m1}) & \mathsf{E}(W_{m2}) & \cdots & \mathsf{E}(W_{mn}) \end{bmatrix} = \left[\mathsf{E}(W_{ij})\right]_{m \times n}$$

Let W and V be  $m \times n$  random matrices, and let A and B be  $k \times m$  constant matrices, and let C be a  $n \times l$  constant matrix. Then,

$$\mathsf{E}\left[\mathbf{A}\mathbf{W}+\mathbf{B}\mathbf{V}\right]=\mathbf{A}\mathsf{E}\left[\mathbf{W}\right]+\mathbf{B}\mathsf{E}\left[\mathbf{V}\right]$$

and

$$\mathsf{E}\left[\mathbf{AWC}\right] = \mathbf{A}\mathsf{E}\left[\mathbf{W}\right]\mathbf{C}.$$

#### **Proof sketch:**

The (i, j) of the first equation:

$$\mathsf{E}\left[\sum_{s=1}^{m} A_{is}W_{sj} + \sum_{s=1}^{m} B_{is}V_{sj}\right] = \sum_{s=1}^{m} A_{is}\mathsf{E}[W_{sj}] + \sum_{s=1}^{m} B_{is}\mathsf{E}[V_{sj}].$$

Let  $\mathbf{X} = (X_1, \dots, X_n)^\top$  be an *n*-dimensional random vector with mean vector  $\boldsymbol{\mu}$ . Then the variance-covariance matrix of  $\boldsymbol{X}$  is defined to be

$$Cov(\mathbf{X}) = \mathsf{E}\left[ (\mathbf{X} - \mu) (\mathbf{X} - \mu)^{\mathsf{T}} \right]$$
  
=  $\mathsf{E}\left[ (\mathbf{X} - \mu) (\mathbf{X} - \mu_1) (X_1 - \mu_1) (X_1 - \mu_1) (X_2 - \mu_2) \cdots (X_1 - \mu_1) (X_n - \mu_n) (X_2 - \mu_2) (X_n - \mu_n) (X_1 - \mu_n) (X_1 - \mu_1) (X_n - \mu_n) (X_2 - \mu_2) \cdots (X_n - \mu_n) (X_n - \mu_n) \right]$   
=  $\begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \sigma_{2n} \\ \cdots & \cdots & \cdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$ 

Let X and Y be two random variables with joint pdf

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

We have  $\mu_1 = 1$ ,  $\mu_2 = 2$ ,  $\sigma_1^2 = 1$ ,  $\sigma_2^2 = 2$ ,  $\sigma_{1,2} = \text{Cov}(X, Y) = 1$ . Let  $Z = (X, Y)^{\top}$ , then

$$\mathsf{E}(\boldsymbol{Z}) = \left[ egin{array}{c} 1 \\ 2 \end{array} 
ight]$$
 and  $\mathsf{Cov}(\boldsymbol{Z}) = \left[ egin{array}{c} 1 & 1 \\ 1 & 2 \end{array} 
ight]$ 

### Theorem 2.6.3 – Two properties of covariance matrix

Let  $\boldsymbol{X} = (X_1, \dots, X_n)^\top$  be an *n*-dimensional random vector with mean vector  $\boldsymbol{\mu}$ . Then,

$$\operatorname{Cov}(\boldsymbol{X}) = \mathsf{E}\left[\boldsymbol{X}\boldsymbol{X}^{\top}\right] - \boldsymbol{\mu}\boldsymbol{\mu}^{\top}.$$
(3)

If further let A be an  $m \times n$  constant matrix, then we have

 $\mathsf{Cov}\left(\boldsymbol{A}\boldsymbol{X}\right) = \boldsymbol{A}\mathsf{Cov}\left(\boldsymbol{X}\right)\boldsymbol{A}^{\top}.$ 

Proof. 
$$\operatorname{Cov}(X) = \operatorname{E}[(X - \mu)(X - \mu)^{\top}]$$
  
 $= \operatorname{E}[(XX^{\top} - \mu X^{\top} - X\mu^{\top} + \mu\mu)^{\top}]$   
 $= \operatorname{E}[XX^{\top}] - \mu \operatorname{E}[X^{\top}] - \operatorname{E}[X]\mu^{\top} + \mu\mu^{\top}.$   
 $\operatorname{Cov}(AX) = \operatorname{E}\left[(AX)(AX)^{\top}\right] - (A\mu)(A\mu)^{\top}$   
 $= \operatorname{E}\left[AXX^{\top}A^{\top}\right] - A\mu\mu^{\top}A^{\top}$   
 $= A\operatorname{E}\left[XX^{\top}\right]A^{\top} - A\mu\mu^{\top}A^{\top}$ 

## Proof without matrix notation

$$\begin{aligned} &\mathsf{Cov}(\mathbf{X}) \\ &= \mathsf{E} \left[ (\mathbf{X} - \mu) (\mathbf{X} - \mu)^{\mathsf{T}} \right] \\ &= \mathsf{E} \left[ \begin{pmatrix} X_1 - \mu_1 (X_1 - \mu_1) (X_1 - \mu_1) (X_2 - \mu_2) \cdots (X_1 - \mu_1) (X_n - \mu_n) \\ (X_2 - \mu_2) (X_1 - \mu_1) (X_2 - \mu_2) (X_2 - \mu_2) \cdots (X_n - \mu_n) \\ \cdots \cdots \cdots \cdots \\ (X_n - \mu_n) (X_1 - \mu_1) (X_n - \mu_n) (X_2 - \mu_2) \cdots (X_n - \mu_n) (X_n - \mu_n) \\ &= \begin{bmatrix} \mathsf{E} (X_1 X_1) - \mu_1 \mu_1 & \mathsf{E} (X_1 X_2) - \mu_1 \mu_2 \cdots & \mathsf{E} (X_1 X_n) - \mu_1 \mu_n \\ \mathsf{E} (X_2 X_1) - \mu_2 \mu_1 & \mathsf{E} (X_2 X_2) - \mu_2 \mu_2 & \mathsf{E} (X_2 X_n) - \mu_2 \mu_n \\ \cdots \cdots \cdots & \cdots & \cdots \\ \mathsf{E} (X_n X_1) - \mu_n \mu_1 & \mathsf{E} (X_n X_2) - \mu_n \mu_2 \cdots & \mathsf{E} (X_n X_n) - \mu_n \mu_n \\ \end{bmatrix} \\ &= \mathsf{E} \begin{bmatrix} (X_1 X_1) & (X_1 X_2) \cdots & (X_1 X_n) \\ (X_2 X_1) & (X_2 X_2) & (X_2 X_n) \\ \cdots & \cdots & \cdots \\ (X_n X_1) & (X_n X_2) \cdots & X_n X_n \\ \end{bmatrix} - \begin{bmatrix} \mu_1 \mu_1 & \mu_1 \mu_2 \cdots & \mu_1 \mu_n \\ \mu_2 \mu_1 & \mu_2 \mu_2 & \mu_2 \mu_n \\ \cdots & \cdots & \cdots \\ \mu_n \mu_1 & \mu_n \mu_2 \cdots & \mu_n \mu_n \\ \end{bmatrix} \\ &= \mathsf{E} \begin{bmatrix} \mathsf{X} \mathsf{X}^{\mathsf{T}} \end{bmatrix} - \mu \mu^{\mathsf{T}}. \end{aligned}$$

- All variance-covariance matrices are positive semi-definite, that is a<sup>T</sup>Cov(X)a ≥ 0 for any a ∈ ℝ<sup>n</sup>.
- This is because

$$\boldsymbol{a}^{\top} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{a} = \operatorname{Var}(\boldsymbol{a}^{\top} \boldsymbol{X}) \geq 0,$$

where we note that  $a^{\top}X$  is a univariate random variable.

# **Chapter 2 Multivariate Distributions**

2.7 Transformation for Several Random Variables

# One to one transformation

► Let  $X = (X_1, X_2, ..., X_n)$  be a random vector with pdf  $f_X(x_1, x_2, ..., x_n)$  with support S. Let

$$\begin{cases} y_1 = g_1(x_1, x_2, \dots, x_n) \\ y_2 = g_2(x_1, x_2, \dots, x_n) \\ \vdots \\ y_n = g_n(x_1, x_2, \dots, x_n) \end{cases}$$

be a multivariate function that maps  $(x_1, x_2, \ldots, x_n) \in S$  to  $(y_1, y_2, \ldots, y_n) \in T$ . Suppose that it is a one-to-one correspondence.

Suppose that the inverse functions are given by

$$\begin{cases} x_1 = h_1(y_1, y_2, \dots, y_n) \\ x_2 = h_2(y_1, y_2, \dots, y_n) \\ \vdots \\ x_n = h_n(y_1, y_2, \dots, y_n) \end{cases}$$

Let the Jacobian be

$$J = \left| \frac{\partial (x_1, x_2, \dots, x_n)}{\partial (y_1, y_2, \dots, y_n)} \right| = \left| \begin{array}{cccc} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \dots & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & \dots & \frac{\partial x_2}{\partial y_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \dots & \frac{\partial x_n}{\partial y_n} \end{array} \right|$$

► Then, the joint pdf of Y<sub>1</sub>, Y<sub>2</sub>, ..., Y<sub>n</sub> determined by the mapping above is

$$f_{\mathbf{Y}}(y_1, y_2, \dots, y_n) = |J| f_{\mathbf{X}} [h_1(y_1, y_2, \dots, y_n), h_2(y_1, y_2, \dots, y_n), \dots, h_n(y_1, y_2, \dots, y_n)],$$
  
for  $(y_1, y_2, \dots, y_n) \in \mathcal{T}.$ 

.

Suppose  $X_1$ ,  $X_2$ , and  $X_3$  have joint pdf

$$f(x_1, x_2, x_3) = \begin{cases} 48x_1x_2x_3 & 0 < x_1 < x_2 < x_3 < 1\\ 0 & \text{elsewhere,} \end{cases}$$

and let

$$\begin{cases} Y_1 = X_1 / X_2 \\ Y_2 = X_2 / X_3 \\ Y_3 = X_3. \end{cases}$$

Determine the joint pdf of  $Y_1$ ,  $Y_2$  and  $Y_3$ .

If  $Y_1 = X_1/X_2$ ,  $Y_2 = X_2/X_3$ , and  $Y_3 = X_3$ , then the inverse transformation is given by

$$x_1 = y_1 y_2 y_3$$
,  $x_2 = y_2 y_3$ , and  $x_3 = y_3$ .

The Jacobian is given by

$$J = \begin{vmatrix} y_2 y_3 & y_1 y_3 & y_1 y_2 \\ 0 & y_3 & y_2 \\ 0 & 0 & 1 \end{vmatrix} = y_2 y_3^2.$$

Moreover, inequalities defining the support are equivalent to

$$0 < y_1y_2y_3, y_1y_2y_3 < y_2y_3, y_2y_3 < y_3, and y_3 < 1,$$

which reduces to the support  $\mathcal{T}$  of  $Y_1, Y_2, Y_3$  of

$$T = \{(y_1, y_2, y_3): 0 < y_i < 1, i = 1, 2, 3\}.$$

Hence the joint pdf of  $Y_1, Y_2, Y_3$  is

$$g(y_1, y_2, y_3) = 48(y_1y_2y_3)(y_2y_3)y_3|y_2y_3^2|$$
  
= 
$$\begin{cases} 48y_1y_2^3y_3^5 & 0 < y_i < 1, i = 1, 2, 3\\ 0 & \text{elsewhere.} \end{cases}$$
(2.7.2)

The marginal pdfs are

Because  $g(y_1, y_2, y_3) = g_1(y_1)g_2(y_2)g_3(y_3)$ , the random variables  $Y_1, Y_2, Y_3$  are mutually independent.

104/115

# Multiple to one transformation

► Let  $X = (X_1, X_2, ..., X_n)$  be a random vector with pdf  $f_X(x_1, x_2, ..., x_n)$  with support S. Let

$$\begin{cases} y_1 = g_1(x_1, x_2, \dots, x_n) \\ y_2 = g_2(x_1, x_2, \dots, x_n) \\ \vdots \\ y_n = g_n(x_1, x_2, \dots, x_n) \end{cases}$$

be a multivariate function that maps  $X = (x_1, x_2, \dots, x_n) \in S$ to  $Y = (y_1, y_2, \dots, y_n) \in \mathcal{T}$ .

- Suppose that the support S can be represented as the union of k mutually disjoint sets such that for each i, there is one-to-one correspondence bewteen X and Y.
- Suppose that the inverse functions are given by

$$\begin{cases} x_1 = h_{1i}(y_1, y_2, \dots, y_n) \\ x_2 = h_{2i}(y_1, y_2, \dots, y_n) \\ \vdots \\ x_n = h_{ni}(y_1, y_2, \dots, y_n) \end{cases}$$

#### Let the Jacobian be

$$J_{i} = \left| \frac{\partial (x_{1}, x_{2}, \dots, x_{n})}{\partial (y_{1}, y_{2}, \dots, y_{n})} \right| = \left| \begin{array}{ccc} \frac{\partial h_{1i}}{\partial y_{1}} & \frac{\partial h_{1i}}{\partial y_{2}} & \dots & \frac{\partial h_{1i}}{\partial y_{n}} \\ \frac{\partial h_{2i}}{\partial y_{1}} & \frac{\partial h_{2i}}{\partial y_{2}} & \dots & \frac{\partial h_{2i}}{\partial y_{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial h_{ni}}{\partial y_{1}} & \frac{\partial h_{ni}}{\partial y_{2}} & \dots & \frac{\partial h_{ni}}{\partial y_{n}} \end{array} \right|$$

Then, the joint pdf of  $Y_1, Y_2, \ldots, Y_n$  determined by the mapping above is

$$f_{\mathbf{Y}}(y_1, y_2, \dots, y_n) = \sum_{i=1}^k |J_i| f_{\mathbf{X}} [h_{1i}(y_1, y_2, \dots, y_n), h_{2i}(y_1, y_2, \dots, y_n), \dots, h_{ni}(y_1, y_2, \dots, y_n)],$$

for 
$$(y_1, y_2, \ldots, y_n) \in \mathcal{T}$$
.

•

# Let $X_1$ and $X_2$ have the joint pdf defined over the unit circle given by

$$f(x_1, x_2) = \begin{cases} \frac{1}{\pi} & 0 < x_1^2 + x_2^2 < 1\\ 0 & \text{elsewhere.} \end{cases}$$

Let

$$\begin{cases} Y_1 = X_1^2 + X_2^2 \\ Y_2 = X_1^2 / (X_1^2 + X_2^2). \end{cases}$$

Determine the joint pdf of  $Y_1$  and  $Y_2$ .

Let  $Y_1 = X_1^2 + X_2^2$  and  $Y_2 = X_1^2/(X_1^2 + X_2^2)$ . Thus  $y_1y_2 = x_1^2$  and  $x_2^2 = y_1(1 - y_2)$ . The support S maps onto  $T = \{(y_1, y_2) : 0 < y_i < 1, i = 1, 2\}$ . For each ordered pair  $(y_1, y_2) \in T$ , there are four points in S, given by

$$\begin{array}{ll} (x_1,x_2) & \text{such that} & x_1=\sqrt{y_1y_2} \text{ and } x_2=\sqrt{y_1(1-y_2)}\\ (x_1,x_2) & \text{such that} & x_1=\sqrt{y_1y_2} \text{ and } x_2=-\sqrt{y_1(1-y_2)}\\ (x_1,x_2) & \text{such that} & x_1=-\sqrt{y_1y_2} \text{ and } x_2=\sqrt{y_1(1-y_2)}\\ \text{and} & (x_1,x_2) & \text{such that} & x_1=-\sqrt{y_1y_2} \text{ and } x_2=-\sqrt{y_1(1-y_2)}. \end{array}$$

The value of the first Jacobian is

$$J_{1} = \begin{vmatrix} \frac{1}{2}\sqrt{y_{2}/y_{1}} & \frac{1}{2}\sqrt{y_{1}/y_{2}} \\ \frac{1}{2}\sqrt{(1-y_{2})/y_{1}} & -\frac{1}{2}\sqrt{y_{1}/(1-y_{2})} \end{vmatrix}$$
$$= \frac{1}{4}\left\{-\sqrt{\frac{1-y_{2}}{y_{2}}} - \sqrt{\frac{y_{2}}{1-y_{2}}}\right\} = -\frac{1}{4}\frac{1}{\sqrt{y_{2}(1-y_{2})}}$$

It is easy to see that the absolute value of each of the four Jacobians equals  $1/4\sqrt{y_2(1-y_2)}$ . Hence, the joint pdf of  $Y_1$  and  $Y_2$  is the sum of four terms and can be written as

$$g(y_1, y_2) = 4 \frac{1}{\pi} \frac{1}{4\sqrt{y_2(1-y_2)}} = \frac{1}{\pi\sqrt{y_2(1-y_2)}}, \quad (y_1, y_2) \in T.$$

Thus  $Y_1$  and  $Y_2$  are independent random variables by Theorem 2.5.1.

# **Chapter 2 Multivariate Distributions**

### 2.8 Linear Combinations of Random Variables

- ▶ We are interested in a function of  $T = T(X_1, ..., X_n)$  where  $X_1, ..., X_n$  is a random vector.
- For example, we let each  $X_i$  denote the final percentage of STAT 4100 grade. Assume we know the distribution of each  $X_i$ , can we know the distribution of the average percentage  $\bar{X}$ ?
- In this section, we focus on linear combination of these variables, i.e.,

$$T = \sum_{i=1}^{n} a_i X_i.$$

**Theorem 2.8.1.** Let  $T = \sum_{i=1}^{n} a_i X_i$ . Provided that  $E[|X_i|] < \infty$ , for all i = 1, ..., n, then

$$\mathsf{E}(T) = \sum_{i=1}^{n} a_i \mathsf{E}(X_i).$$

This theorem follows immediately from the linearity of the expectation operation.

### Variance and covariance of linear combinations

Theorem 2.8.2. Let  $T = \sum_{i=1}^{n} a_i X_i$  and  $W = \sum_{j=1}^{m} b_j Y_j$ . If  $\mathsf{E}[X_i^2] < \infty$  and  $\mathsf{E}[Y_j^2] < \infty$ , for  $i = 1, \dots, n$  and  $j = 1, \dots, m$ , then

$$\operatorname{Cov}(T,W) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \operatorname{Cov}(X_i, Y_j).$$

#### Proof:

$$\begin{aligned} \mathsf{Cov}(T,W) &= \mathsf{E}\left[\sum_{i=1}^{n}\sum_{j=1}^{m}(a_{i}X_{i}-a_{i}\mathsf{E}(X_{i}))(b_{j}Y_{j}-b_{j}\mathsf{E}(Y_{j}))\right] \\ &= \sum_{i=1}^{n}\sum_{j=1}^{m}\mathsf{E}[(a_{i}X_{i}-a_{i}\mathsf{E}(X_{i}))(b_{j}Y_{j}-b_{j}\mathsf{E}(Y_{j}))]. \end{aligned}$$

**Corollary 2.8.1.** Let  $T = \sum_{i=1}^{n} a_i X_i$ . Provided  $E[X_i^2] < \infty$ , for i = 1, ..., n, then

$$\operatorname{Var}(T) = \operatorname{Cov}(T, T) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i) + 2 \sum_{i < j}^{m} a_i a_j \operatorname{Cov}(X_i, Y_j).$$

**Corollary 2.8.2.** If  $X_1, \ldots, X_n$  are independent random variables with finite variances, then

$$\operatorname{Var}(T) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i).$$

**Special case** If  $X_1$  and  $X_2$  have finite variances, then

 $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y).$ 

If they are also independent, then

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y).$$

Note that E(X + Y) = E(X) + E(Y) regardless of independence.

Let  $X_1, \ldots, X_n$  be independent and identically distributed random variables with common mean  $\mu$  and variance  $\sigma^2$ . The sample mean is defined by  $\overline{X} = n^{-1} \sum_{i=1}^n X_i$ . This is a linear combination of the sample observations with  $a_i \equiv n^{-1}$ ; hence by Theorem 2.8.1 and Corollary 2.8.2, we have

$$\mathsf{E}(ar{X})=\mu$$
 and  $\mathsf{Var}(ar{X})=\sigma^2/n.$ 

Define the sample variance by

$$S^{2} = (n-1)^{-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = (n-1)^{-1} \left( \sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right).$$

Following from the fact that  $\mathsf{E}(X^2)=\sigma^2+\mu^2$  ,

$$\mathsf{E}(S^2) = (n-1)^{-1} \left( \sum_{i=1}^n \mathsf{E}(X_i^2) - n\mathsf{E}(\bar{X}^2) \right)$$
  
=  $(n-1)^{-1} \{ n\sigma^2 + n\mu^2 - n[(\sigma^2/n + \mu^2)] \}$   
=  $\sigma^2$ .