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Chapter 2 Multivariate Distributions

2.1 Distributions of Two Random Variables
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Bivariate random vector

Definition
A random variable is a function from a sample space C to R.

Definition
An n-dim random vector is a function from C to Rn.

I A 2-dim random vector is also called a bivariate random
variable.

Remark: X = (X1, X2)
′ assigns to each element c of the

sample space C exactly one ordered pair of numbers X1(c) = x1
and X2(c) = x2.

Example
1 Height and weight of respondent.

2 Fuel consumption and hours on an engine.
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Joint probability mass function

Definition
A joint probability mass function
pX1,X2(x1, x2) = p(X1 = x1, X2 = x2) (or p(x1, x2))
with space (x1, x2) ∈ S has the properties that

(a) 0 ≤ p(x1, x2) ≤ 1,

(b)
∑

(x1,x2)∈S p(x1, x2) = 1,

(c) P [(X1, X2) ∈ A] =
∑

(x1,x2)∈A p(x1, x2).
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Example

A restaurant serves three fixed-price dinners costing $7, $9, and
$10. For a randomly selected couple dinning at this restaurant, let
X1 = the cost of the man’s dinner and
X2 = the cost of the woman’s dinner.
The joint pmf of X1 and X2 is given in the following table:

x1
7 9 10

7 0.05 0.05 0.10
x2 9 0.05 0.10 0.35

10 0.00 0.20 0.10

I What is the probability of P (X1 ≥ 9, X2 ≤ 9)? 0.60.
I Does man’s dinner cost more?
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Marginal probability mass function

Definition

Suppose that X1 and X2 have the joint pmf p(x1, x2). Then the
pmf for Xi, denoted by pi(·), i = 1, 2 is the marginal pmf.

Note p1(x1) =
∑

x2
p(x1, x2) and p2(x2) =

∑
x1
p(x1, x2).

Example Find the marginal pmf of the previous example.

x1
7 9 10

0.10 0.35 0.55

x2
7 9 10

0.20 0.50 0.30
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Example

Let X1 =Smaller die face, X2 =Larger die face, when rolling a pair
of two dice. The following table shows a partition of the sample
space into 21 events.

x1
1 2 3 4 5 6

1 1/36 0 0 0 0 0
2 2/36 1/36 0 0 0 0

x2 3 2/36 2/36 1/36 0 0 0
4 2/36 2/36 2/36 1/36 0 0
5 2/36 2/36 2/36 2/36 1/36 0
6 2/36 2/36 2/36 2/36 2/36 1/36

Find the marginal pmf’s.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Expectation – discrete random variables

Definition

Let Y = u(X1, X2). Then, Y is a random variable and

E[u(X1, X2)] =
∑
x1

∑
x2

u(x1, x2)p(x1, x2)

under the condition that∑
x1

∑
x2

|u(x1, x2)|p(x1, x2)| <∞

Example

Find E(max{X1, X2}) for the restaurant problem. 9.65.
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Joint density function

A joint density function fX1,X2(x1, x2) (or f(x1, x2)) with space
(x1, x2) ∈ S has the properties that

(a) f(x1, x2) > 0,

(b)
∫
(x1,x2)∈S f(x1, x2)dx1dx2 = 1,

(c) P [(X1, X2) ∈ A] =
∫
(x1,x2)∈A f(x1, x2)dx1dx2.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example

Let X1 and X2 be continuous random variables with joint density
function

f(x1, x2) =

{
4x1x2 for 0 < x1, x2 < 1
0 otherwise.

1 Find P (1/4 < X1 < 3/4; 1/2 < X2 < 1).
2 Find P (X1 < X2).
3 Find P (X1 +X2 < 1).

Solution: ∫ 1

1/2

∫ 3/4

1/4
4x1x2dx1dx2 = 3/8 = 0.375.∫ 1

0

∫ x2

0
4x1x2dx1dx2 = 1/2 = 0.5.∫ 1

0

∫ 1−x2

0
4x1x2dx1dx2 = 1/6 = 0.167.
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Marginal probability density function

Suppose that X1 and X2 have the joint pdf f(x1, x2). Then the pdf
for Xi, denoted by fi(·), i = 1, 2 is the marginal pdf.

Note: f1(x1) =
∫
x2
f(x1, x2)dx2 and f2(x2) =

∫
x1
f(x1, x2)dx1.

Example
Find the marginal pdf from the previous problem.

Solution:
f1(x) = f2(x) = 2x.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example

Let X1 and X2 be continuous random variables with joint density
function

f(x1, x2) =

{
cx1x2 for 0 < x1 < x2 < 1
0 otherwise.

1 Find c.

2 Find P (X1 +X2 < 1).

3 Find marginal probability density function of X1 and X2.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Solution:

We have c = 8 because∫ 1

0

∫ 1

x1

x1x2dx1dx2 = 1/8 = 0.125.∫ 1/2

0

∫ 1−x1

x1

8x1x2dx1dx2 = 1/6 = 0.167.

For the marginal pdf, we have

fX1(x1) =

∫ 1

x1

8x1x2dx2 = 4x1 − 4x31,

fX2(x2) =

∫ x2

0
8x1x2dx1 = 4x32.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Let X1 and X2 be continuous random variables with joint pdf

f(x1, x2) =

{
cx1x2 for 0 < x1 < x2 < 1
0 otherwise.

What is P{[X1 < X2] ∩ [X2 > 4(X1 − 1/2)2]}?

Solution:
We see 1/4 is the solution of x = 4(x− 1

2)2 on 0 < x < 1. The
range of X2 is (1/4, 1). When X2 = x2 is given, we next get the
range of X1. By X2 = 4(X1 − 1/2)2, we have

X1 =
1

2
±
√
X2

4
.

We determine the lower bound of X1 is 1
2 ±

√
X2
4 because the

intersection of X1 = X2 and X2 = 4(X1 − 1/2)2 is less than 1/2
when X1 ∈ (0, 1). We also have X1 < 1, so the probability is∫ 1

1
4

∫ x1

1
2
−
√

x2
4

8x1x2dx1dx2 = 0.974.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Expectation – continuous random variables

Let Y = u(X1, X2). Then, Y is a random variable and

E[u(X1, X2)] =

∫
x1

∫
x2

u(x1, x2)f(x1, x2)dx2dx1

under the condition that∫
x1

∫
x2

|u(x1, x2)|f(x1, x2)dx2dx1 <∞

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example

Let X1 and X2 be continuous random variables with joint density
function

f(x1, x2) =


(36/5)x1x2(1− x1x2) for 0 < x1, x2 < 1

0 otherwise.

Find E(X1X2).

Solution: ∫ 1

0

∫ 1

0

36

5
(x21x

2
2(1− x1x2))dx1dx2 = 0.35.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Theorem

Let (X1, X2) be a random vector. Let Y1 = g1(X1, X2) and
Y2 = g2(X1, X2) be random variables whose expectations exist.
Then for all real numbers k1 and k2,

E(k1Y1 + k2Y2) = k1E(Y1) + k2E(Y2).

We also note that

Eg(X2) =

∫ ∞
−∞

g(x2)f(x1, x2)dx1dx2 =

∫ ∞
−∞

g(x2)fX2(x2)dx2.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example 2.1.5 & 2.1.6

Let (X1, X2) be a random vector with pdf

f(x1, x2) =

{
8x1x2 0 < x1 < x2 < 1
0 elsewhere.

Let Y1 = 7X1X
2
2 + 5X2 and Y2 = X1/X2. Determine E(Y1) and

E(Y2).

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Joint cumulative distribution function

Definition

The joint cumulative distribution function of (X1, X2) is

FX1,X2(x1, x2) = P [{X1 ≤ x1} ∩ {X2 ≤ x2}] for all (x1, x2) ∈ R2.

Relationship with pmf and pdf:

1 Discrete random variables:

FX1,X2(x1, x2) =
∑
X1≤x1

∑
X2≤x2

p(x1, x2).

2 Continuous random variables:

FX1,X2(x1, x2) =

∫ x1

0

∫ x2

0
fX1,X2(x1, x2)dx1dx2.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Joint cumulative distribution function (cont’d)

Definition

The joint cumulative distribution function of (X1, X2) is

FX1,X2(x1, x2) = P [{X1 ≤ x1} ∩ {X2 ≤ x2}] for all (x1, x2) ∈ R2.

Properties:

1 F (x1, x2) is nondecreasing in x1 and x2.

2 F (−∞, x2) = F (x1,−∞) = 0.

3 F (∞,∞) = 1.

4 For a rectangle (a1, b1]× (a2, b2], we have

P { (X1, X2) ∈ (a1, b1]× (a2, b2] }
=F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2).

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example 2.1.1

Consider the discrete random vector (X1, X2). Its pmf is given in
the following table:

X1\X2 0 1 2 3

0 1/8 1/8 0 0
1 0 2/8 2/8 0
2 0 0 1/8 1/8

Find the value of the joint cdf F (x1, x2) at (1, 2).
Solution: 3/4.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example

1. Find the joint cdf of

fX1,X2(x1, x2) =

{
2e−x1−x2 0 < x1, x2 <∞
0 otherwise.

Solution:

FX1,X2(x1, x2) =

∫ x1

0

∫ x2

0
2e−t1−t2dt1dt2 = 2(1−e−x1)(1−e−x2).

2. Find the joint cdf of

fX1,X2(x1, x2) =

{
2e−x1−x2 0 < x1 < x2 <∞
0 otherwise.

Solution:

FX1,X2(x1, x2) =

∫ min(x1,x2)

0

∫ x2

t1

2e−t1−t2dt2dt1.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Moment generating function (mgf)

Definition

Let X = (X1, X2)
> be a random vector. If

M(t1, t2) = E
(
et1X1+t2X2

)
exists for |t1| < h1 and |t2| < h2, where h1 and h2 are positive,
then we call M(t1, t2) the moment generating function (mgf) of
X = (X1, X2)

>.

We may write

M(t1, t2) = E
(
et1X1+t2X2

)
= E

(
et

>X
)

where t> is a row vector (t1, t2) and X is a column vector
(X1, X2)

>.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018



23/115

Example 2.1.7

Let the continuous-type random variables X and Y have the joint
pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere.

Determine the joint mgf.

Solution:

MX,Y (t1, t2) =

∫ ∞
0

∫ ∞
x

exp(t1x+t2y−y)dydx =
1

(1− t1 − t2)(1− t2)
,

provided that t1 + t2 < 1 and t2 < 1.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Marginal mgf

Recall that
MX1,X2(t1, t2) = E

(
et1X1+t2X2

)
.

The marginal mgf is given by

MX1(t1) = E
(
et1X1

)
= MX1,X2(t1, 0),

MX2(t2) = E
(
et2X2

)
= MX1,X2(0, t2).

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example 2.1.7 (cont’d)

Let the continuous-type random variables X and Y have the joint
pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere.

Determine the marginal mgf.

Solution:

MX,Y (t1, t2) =

∫ ∞
0

∫ ∞
x

exp(t1x+t2y−y)dydx =
1

(1− t1 − t2)(1− t2)
,

provided that t1 + t2 < 1 and t2 < 1.

MX(t1) = MX,Y (t1, 0) =
1

1− t1
, t1 < 1,

MY (t2) = MX,Y (0, t2) =
1

(1− t2)2
, t2 < 1.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example 2.1.7 (cont’d)

Let the continuous-type random variables X and Y have the joint
pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere.

Determine the marginal mgf.

Solution:

MX(t1) = MX,Y (t1, 0) =
1

1− t1
, t1 < 1,

MY (t2) = MX,Y (0, t2) =
1

(1− t2)2
, t2 < 1.

Note that

f1(x) =

∫ ∞
x

e−ydy = e−x, 0 < x <∞,

f2(x) =

∫ y

0
e−ydx = ye−y, 0 < y <∞.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Fact: It can be shown that

E(XY ) =
dMX,Y (t1, t2)

dt1dt2

∣∣∣
t1=0,t2=0

.

Example: Method 1: In the previous example,

E(XY ) =

∫ ∞
0

∫ y

0
xye−ydxdy = 3.

Method 2:

MX,Y (t1, t2) =
1

(1− t1 − t2)(1− t2)
,

dMX,Y (t1, t2)

dt1dt2
= − t1 + 3t2 − 3

(t2 − 1)2(−t1 − t2 + 1)3
,

where we see
dMX,Y (t1, t2)

dt1dt2

∣∣∣
t1=0,t2=0

= 3 as well.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Chapter 2 Multivariate Distributions

2.2 Transformation: Bivariate Random Variables

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Transformation of discrete random vectors

I Assume there is a one to one mapping between
X = (X1, X2)

> and Y = (Y1, Y2)
>:

Y1 = u1(X1, X2), X1 = w1(Y1, Y2),

Y2 = u2(X1, X2), X2 = w2(Y1, Y2).

I Transformation of discrete random variable:

pY1,Y2(y1, y2) = pX1,X2(w1(y1, y2), w2(y1, y2)).

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example 2.2.1

Let X and Y be independent random variables such that

pX(x) =
µx1
x!
e−µ1 , x = 0, 1, 2, . . . .

and

pY (y) =
µy2
y!
e−µ2 , y = 0, 1, 2, . . . .

I Find the pmf of U = X + Y .
I Determine the mgf of U .

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Transformation of continuous random variables

Let J denote the Jacobian of the transformation. This is the
determinant of the 2× 2 matrix(

∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

)

The determinant is J(y1, y2) = ∂x1
∂y1
· ∂x2∂y2

− ∂x1
∂y2
· ∂x2∂y1

.

Transformation formula: The joint pdf of the continuous random
vector Y = (Y1, Y2)

> is

fY1,Y2(y1, y2) = fX1,X2)(w1(y1, y2), w2(y1, y2)) · |J(y1, y2)|.

Notice the bars around the function J , denoting absolute value.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example
A device containing two key components fails when, and only
when, both components fail. The lifetimes, X1 and X2, of these
components have a joint pdf f(x1, x2) = e−x1−x2 , where
x1, x2 > 0 and zero otherwise. The cost Y1, of operating the
device until failure is Y1 = 2X1 +X2.

1 Find the joint pdf of Y1, Y2 where Y2 = X2.

2 Find the marginal pdf for Y1 (Ans: e−y1/2 − e−y1 , for y1 > 0)

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example 2.2.5

Suppose (X1, X2) has joint pdf

fX1,X2(x1, x2) =

{
10x1x

2
2 0 < x < y < 1

0 elsewhere.

Let Y1 = X1/X2 and Y2 = X2. Find the joint and marginal pdf’s of
Y1 and Y2.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018



34/115

Solution sketch

1. One to one transformation:

y1 = x1/x2, y2 = x2, 0 < x1 < x2 < 1

x1 = y1y2, x2 = y2, 0 < y1 < 1, 0 < y2 < 1.

2. Give the joint pdf:

fY1,Y2(y1, y2) = 10y1y2y
2
2|y2|,where y is defined above or 0 elsewhere.

3. Give the marginal pdf of Y1:

fY1(y1) =

∫ 1

0
fY1,Y2(y1, y2)dy2 = 2y1, 0 < y1 < 0.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example 2.2.4

Suppose (X1, X2) has joint pdf

fX1,X2(x1, x2) =

{ 1

4
exp(−x1 + x2

2
) 0 < x1 <∞, 0 < x2 <∞

0 elsewhere.

Let Y1 = 1/2(X1 −X2) and Y2 = X2. Find the joint and marginal
pdf’s of Y1 and Y2.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Solution sketch

1. One to one transformation:

y1 =
1

2
(x1 − x2), y2 = x2, 0 < x1 <∞, 0 < x2 <∞.

x1 = 2y1 + y2, x2 = y2, −2y1 < y2, 0 < y2 <∞.

2. Give the joint pdf:

fY1,Y2(y1, y2) = e−y1−y2/4×|2|,where y is defined above or 0 elsewhere.

3. Give the marginal pdf of Y1:

fY1(y1) =

{∫∞
−2y1 fY1,Y2(y1, y2)dy2 = ey1/2, −∞ < y1 < 0,∫∞
0 fY1,Y2(y1, y2)dy2 = e−y1/2, 0 ≤ y1 <∞,

which gives fY1(y1) = e−|y1|, −∞ < y <∞.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Example 2.2.7

Suppose (X1, X2) has joint pdf

fX1,X2(x1, x2) =

{ 1

4
exp(−x1 + x2

2
) 0 < x1 <∞, 0 < x2 <∞

0 elsewhere.

Let Y1 = 1/2(X1 −X2). What is the mgf of Y1?

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Solution sketch

E(etY ) =

∫ ∞
0

∫ ∞
0

et(x1−x2)/2
1

4
e−(x1+x2)/2dx1dx2

=

[∫ ∞
0

1

2
e−x1(1−t)/2dx1

] [∫ ∞
0

1

2
e−x2(1+t)/2dx2

]
=

[
1

1− t

] [
1

1 + t

]
=

1

1− t2
,

provided that 1− t > 0 and 1 + t > 0. This is equivalent to∫ ∞
−∞

etx
e−|x|

2
=

1

1− t2
, −1 < t < 1,

which is the mgf of double exponential distribution.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Chapter 2 Multivariate Distributions

2.3 Conditional Distributions and Expectations

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Motivating example

Let X1 =Smaller die face, X2 =Larger die face, when rolling a pair
of two dice. The following table shows a partition of the sample
space into 21 events.

x1
1 2 3 4 5 6

1 1/36 0 0 0 0 0
2 2/36 1/36 0 0 0 0

x2 3 2/36 2/36 1/36 0 0 0
4 2/36 2/36 2/36 1/36 0 0
5 2/36 2/36 2/36 2/36 1/36 0
6 2/36 2/36 2/36 2/36 2/36 1/36

Recalling our definition of conditional probability for events, we
have (for example)

P (X2 = 4|X1 = 2) =
P [{X1 = 2} ∩ {X2 = 4}]

P (X1 = 2)
=

2/36

9/36
=

2

9
.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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• Recall that for two events A1 and A2 with P (A1) > 0, the
conditional probability of A2 given A1 is

P (A2|A1) =
P (A1 ∩A2)

P (A1)
.

• Let X1 and X2 denote discrete random variables with joint pmf
pX1,X2(x1, x2) and marginal pmfs pX1(x1) and pX2(x2). Then for
every x1 such that pX1(x1) > 0, we have

P (X2 = x2|X1 = x1) =
P (X1 = x1, X2 = x2)

P (X1 = x1)
=
pX1,X2(x1, x2)

pX1(x1)
.

We use a simple notation:

pX2|X1
(x2|x1) = p2|1 (x2|x1) =

pX1,X2(x1, x2)

pX1(x1)
.

• We call pX2|X1
(x2|x1) the conditional pmf of X2, given that

X1 = x1.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Verify pX2|X1
(x2|x1) satisfies the condition of being a pmf.

1 pX2|X1
(x2|x1) ≥ 0.

2 ∑
x2

pX2|X1
(x2|x1) =

∑
x2

pX1,X2(x1, x2)

pX1(x1)

=
1

pX1(x1)

∑
x2

pX1,X2(x1, x2)

=
pX1(x1)

pX1(x1)
= 1.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Conditional expectation of discrete random variables:

E(X1|X2 = x2) =
∑
x1

x1pX1|X2
(x1|x2).

Example
Returning to the previous example, it is straightforward to work out
the conditional pmf as well as associated functions like
expectations. For instance,

pX1|X2
(x1|X2 = 3) =


2/5 if x1 = 1, 2
1/5 if x1 = 3
0 if x1 = 4, 5, 6.

and E(X1|X2 = 3) = 9/5.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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I Let X1 and X2 denote continuous random variables with
joint pdf fX1,X2(x1, x2) and marginal pmfs fX1(x1) and
fX2(x2). Then for every x1 such that fX1(x1) > 0, we define

fX2|X1
(x2|x1) = f2|1 (x2|x1) =

fX1,X2(x1, x2)

fX1(x1)
.

I Verify that fX2|X1
satisfies the conditions of being a pdf.

(1) fX2|X1
(x2|x1) ≥ 0.

(2)

∫ ∞
−∞

fX2|X1
(x2|x1)dx2 =

∫ ∞
−∞

fX1,X2(x1, x2)

fX1(x1)
dx2

=
1

fX1(x1)

∫ ∞
−∞

fX1,X2(x1, x2)dx2

=
fX1(x1)

fX1(x1)
= 1.
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Conditional expectation of continuous random variables

I If u(X2) is a function of X2, the conditional expectation of
u(X2), given that X1 = x1, if it exists, is given by

E[u(X2)|x1] =

∫ ∞
−∞

u(x2)f2|1 (x2|x1) dx2.

I If they do exist, then E(X2|x1) is the conditional mean and

Var(X2|x1) = E{[X2 − E(X2|x1)]2|x1}

is the conditional variance of X2, given X1 = x1.
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Example

Find the conditionals fX2|X1
and fX1|X2

for (X1, X2) with joint cdf

fX1,X2(x1, x2) =

{
2e−x1−x2 0 < x1 < x2 <∞
0 otherwise.

I Calculate P (a < X2 ≤ b|X1 = x1).
I Calculate the expectation E [u(X2)|X1 = x1].
I Calculate the variance Var (X2|X1 = x1).
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Example (2.3.1)
Let X1 and X2 have the joint pdf

f(x1, x2) =

{
2 0 < x1 < x2 < 1
0 elsewhere.

Find P
(
0 < X1 <

1
2 |X2 = 3

4

)
and Var (X1|x2).
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Example (2.3.2)
Let X1 and X2 have the joint pdf

f(x1, x2) =

{
6x2 0 < x2 < x1 < 1
0 elsewhere.

1 Compute E(X2).

2 Compute the function h(x1) = E (X2|x1). Then compute
E [h(X1)] and Var [h(X1)].
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Theorem 2.3.1

Let (X1, X2) be a random vector. Then

(a) E [E (X2|X1)] = E (X2) ,

(b) Var(X2) = Var [ E(X2|X1) ] + E [Var(X2|X1)] .

Interpretation:
I Both X2 and E(X2|X1) are unbiased estimator of

E(X2) = µ2.
I The part (b) shows that E(X2|X1) is more reliable.
I We will talk more about this when studying sufficient statistics

in Chapter 7, Rao and Blackwell Theorem.
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E [E (X2|X1)] = E (X2) .

Proof.
The proof is for the continuous case. The discrete case is proved
by using summations instead of integrals. We see

E(X2) =

∫ ∞
−∞

∫ ∞
−∞

x2f(x1, x2)dx2dx1

=

∫ ∞
−∞

[∫ ∞
−∞

x2
f(x1, x2)

f1(x1)
dx2

]
f1(x1)dx1

=

∫ ∞
−∞

E(X2|x1)f1(x1)dx1

= E[E(X2|X1)].
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Var(X2) = Var [ E(X2|X1) ] + E [Var(X2|X1)] .

Proof.
The proof is for both the discrete and continuous cases:

E[Var(X2|X1)] = E[E(X2
2 |X1)− (E(X2|X1))

2]

= E[E(X2
2 |X1)]− E[E(X2|X1)

2]

= E(X2
2 )− E[E(X2|X1)

2];

Var[E(X2|X1)] = E[E(X2|X1)
2]− {E[E(X2|X1)]}2

= E[E(X2|X1)
2]− [E(X2)]

2.

Thus,

E[Var(X2|X1)] + Var[E(X2|X1)] = E(X2
2 )− [E(X2)]

2 = Var(X2).

We further see that

Var [ E(X2|X1) ] ≤ Var(X2).
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Example 2.3.3

Let X1and X2 be discrete random variables. Suppose the
conditional pmf of X1 given X2 and the marginal distribution of X2

are given by

p(x1|x2) =

(
x2
x1

)(
1

2

)x2
, x1 = 0, 1, . . . , x2,

p(x2) =
2

3

(
1

3

)x2−1
, x2 = 1, 2, 3 . . . .

Determine the mgf of X1.
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Example

Assume that the joint pdf for X2|X1 = x1 on the support
S = {0 < x1 < 1, 0 < x2 < 2, x1 + x2 < 2} is

fX1,X2(x1, x2) =


2x1

2− x1
in S,

0 otherwise.

Find E(X2) through E(X2) = E[E(X2|X1)].
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Solution:

The conditional pdf for X2|X1 = x1, 0 < x1 < 1 is

fX2|X1
(x2|x1) =

{
1/(2− x1) if 0 < x2 < 2− x1
0 otherwise.

and the marginal pdf for X1 is fX1(x1) = 2x1 for 0 < x1 < 1 and
zero otherwise.

E(X2|X1) =

∫ 2−x1

0
x2

1

2− x1
dx2 =

2− x1
2

,

E(E(X2|X1)) =

∫ 1

0

2− x1
2

2x1dx1 = 2/3.

We can verify this by

E(X2) =

∫ 1

0

∫ 2−x1

0
x2

2x1
2− x1

dx2dx1 = 2/3.
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Chapter 2 Multivariate Distributions

2.4 The Correlation Coefficient
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Recall the definition of the variance of X:

Var(X) = E[(X − µ)2].

Definition
Let X and Y be two random variables with expectations µ1 = EX
and µ2 = EY , respectively. The covariance of X and Y , if it
exists, is defined to be

Cov(X,Y ) = E [(X − µ1)(Y − µ2)] .

Computation shortcut:

E [(X − µ1)(Y − µ2)] = E(XY )− µ1µ2.
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Example 2.4.1

Let X and Y be two random variables with joint pdf

f(x, y) =

{
x+ y 0 < x, y < 1
0 elsewhere.

Determine the covariance of X and Y .
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Definition
The correlation coefficient of X and Y is defined to be

ρ =
Cov(X,Y )√

Var(X)Var(Y )

Example
What is the correlation coefficient of the previous example?

The plot is from Wikipedia https://en.wikipedia.org/wiki/Correlation_and_dependence

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018
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Linear conditional mean

For two random variables X and Y , write u(x) = E (Y |x):

E(Y |x) =

∫ ∞
−∞

yf2|1(y|x)dy =

∫∞
−∞ yfX,Y (x, y)dy

f1(x)
.

If u(x) is a linear function of x, say

u(x) = E (Y |x) = a+ bx,

then we say that the conditional mean of Y is linear in x. The
following theorem gives the values of a and b.
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Theorem 2.4.1

Let X and Y be two random variables , with means µ1, µ2,
variances σ21 , σ22 , and correlation coefficient ρ. If the conditional
mean of Y is linear in x, then

E(Y |X) = µ2 + ρ
σ2
σ1

(X − µ1) ,

E [Var (Y |X)] = σ22
(
1− ρ2

)
.
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Example 2.4.2

Let X and Y have the linear conditional means

E(Y |x) = 4x+ 3

and
E(X|y) =

1

16
y − 3.

What are the values of µ1, µ2, ρ, and σ2/σ1?
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Recall that the mgf of the random vector (X,Y ) is defined to be
M(t1, t2) = E

[
et1X+t2Y

]
. It can be shown that

∂k+m

∂tk1∂t
m
2

M(t1, t2) = E
[
XkY met1X+t2Y

]
.

∂k+m

∂tk1∂t
m
2

M(t1, t2)

∣∣∣∣
t1=t2=0

= E
[
XkY m

]
.

I µ1 = E(X) = ∂M(0,0)
∂t1

I µ2 = E(Y ) = ∂M(0,0)
∂t2

I Var(X) = E(X2)− µ21 = ∂2M(0,0)
∂t21

− µ21

I Var(Y ) = E(Y 2)− µ22 = ∂2M(0,0)
∂t22

− µ22

I Cov(X,Y ) = E(XY )− E(X)E(Y ) = ∂2M(0,0)
∂t1∂t2

− µ1µ2
I ρ = Cov(X,Y )√

Var(X)
√

Var(Y )
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Example 2.4.4

Let X and Y be two random variables with joint pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere.

Determine the correlation coefficient of X and Y .

Solution:
The mgf is

M(t1, t2) =
1

(1− t1 − t2)(1− t2)
, t1 + t2 < 1, t2 < 1.

We have µ1 = 1, µ2 = 2, σ21 = 1, σ22 = 2, Cov(X,Y ) = 1.
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Chapter 2 Multivariate Distributions

2.5 Independent Random Variables
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Motivation

Suppose the bivariate random variables (X1, X2) is continuously
distributed, and for all x1 ∈ SX1 , and x2 ∈ SX2 ,

fX1|X2
(x1|x2) = fX1(x1). (1)

Since, by the definition of conditional pdf,

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
,

it follows that

fX1,X2(x1, x2) = fX1(x1)fX2(x2) for all x1 ∈ SX1 , x2 ∈ SX2 . (2)

Clearly (1) and (2) are equivalent. Exactly the same logic applies
for a discrete random variable.
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Definition of independence

We say two random variables X1 and X2 are independent if

I (Continuous case) their joint pdf is equal to the product of their
marginal pdf’s:

f(x1, x2) ≡ f1(x1)f2(x2).

I (Discrete case) their joint pmf is equal to the product of their
marginal pmf’s:

p(x1, x2) ≡ p1(x1)p2(x2).
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Immediate indicators of dependency

Suppose that X1 and X2 have a joint support S = {(x1, x2)} and
marginal supports S1 = {x1} and S2 = {x2}. If X1 and X2 are
independent, then

S = S1 × S2.

In other words,
I (Continuous case) If the joint support S is not a rectangle,

then X1 and X2 are dependent.
I (Discrete case) If there is a zero entry in the table of pmf, then
X1 and X2 are dependent.
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Example 2.5.1

Let the joint pdf of X1 and X2 be

f(x1, x2) =

{
x1 + x2 0 < x1 < 1, 0 < x2 < 1
0 elsewhere.

Are they independent?

Solution:
No, because f(x1, x2) 6= f1(x1)f2(x2):

f1(x1) =

∫ ∞
−∞

f(x1, x2)dx2 =

∫ 1

0
(x1 + x2)dx2 = x1 + 1/2, 0 < x1 < 1,

f2(x2) =

∫ ∞
−∞

f(x1, x2)dx1 =

∫ 1

0
(x1 + x2)dx1 = x2 + 1/2, 0 < x2 < 1,
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Theorem 2.5.1

Two random variables X1 and X2 are independent if and only if

I (Continuous case) their joint pdf can be written as a product
of a nonnegative function of x1 and a nonnegative function of
x2:

f(x1, x2) ≡ g(x1)h(x2) for all (x1, x2) ∈ R2

I (Discrete case) their joint pmf can be written as a product of
a nonnegative function of x1 and a nonnegative function of x2:

p(x1, x2) ≡ g(x1)h(x2).
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Sketch of proof

I Only if: Independence⇒ f(x1, x2) ≡ g(x1)h(x2):
This can be seen as g(x1) = f1(x1) and h(x2) = f2(x2).

I If: Independence⇐ f(x1, x2) ≡ g(x1)h(x2):
If we have f(x1, x2) ≡ g(x1)h(x2), we have

f1(x1) =

∫ ∞
−∞

g(x1)h(x2)dx2 = g(x1)

[∫ ∞
−∞

h(x2)dx2

]
= c1g(x1),

f2(x2) =

∫ ∞
−∞

g(x1)h(x2)dx1 = h(x2)

[∫ ∞
−∞

g(x1)dx1

]
= c2h(x2),

where c1 and c2 are constants. We see c1c2 = 1 because

1 =

∫ ∞
−∞

g(x1)h(x2)dx1dx2 =

[∫ ∞
−∞

g(x1)dx1

] [∫ ∞
−∞

h(x2)dx2

]
= c2c1.

Thus, f(x1, x2) = g(x1)h(x2) = c1g(x1)c2h(x2) = f1(x1)f2(x2).
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Independence in terms of CDF

Theorem 2.5.2 Let (X1, X2) have the joint cdf F (x1, x2) and let
X1 and X2 have the marginal cdf F1(x1) and F2(x2), respectively.
Then X1 and X2 are independent if and only if

F (x1, x2) = F1(x1)F2(x2), ∀(x1, x2) ∈ R2.

Theorem 2.5.3 The random variables X1 and X2 are
independent random variables if and only if the following condition
holds

P (a < X1 ≤ b, c < X2 ≤ d) = P (a < X1 ≤ b)P (c < X1 ≤ d),

for every a < b and c < d, where a, b, c, d are constants.
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Example 2.5.3

Let the joint pdf of X1 and X2 be

f(x1, x2) =

{
x1 + x2 0 < x1 < 1, 0 < x2 < 1
0 elsewhere.

Are they independent?

Solution:
No, because

P (0 < X1 <
1

2
, 0 < X2 <

1

2
) 6= P (0 < X1 <

1

2
)P (0 < X2 <

1

2
) :

P (0 < X1 <
1

2
, 0 < X2 <

1

2
) =

∫ 1
2

0

∫ 1
2

0
(x1 + x2)dx1dx2 = 1/8,

P (0 < X1 <
1

2
) =

∫ 1
2

0
(x1 +

1

2
)dx1 = 3/8,

P (0 < X2 <
1

2
) =

∫ 1
2

0
(x2 +

1

2
)dx2 = 3/8.
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Theorem 2.5.4

If X1 and X2 are independent and that E [u(X1)] and E [v(X2)]
exist. Then

E [u(X1)v(X2)] = E [u(X1)] E [v(X2)] .

Proof.

E[u(X1)v(X2)] =

∫ ∞
−∞

∫ ∞
−∞

u(x1)v(x2)f(x1, x2)dx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

u(x1)v(x2)f1(x1)f2(x2)dx1dx2

=

[∫ ∞
−∞

u(x1)f1(x1)dx1

] [∫ ∞
−∞

f2(x2)v(x2)dx2

]
= E [u(X1)] E [v(X2)] .
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Two special cases

I For independent random variable:

E(X1X2) = E(X1)E(X2).

I Independence implies that covariance Cov(X1, X2) = 0:

E[(X1 − µ1)(X2 − µ2)] = E(X1 − µ1)E(X2 − µ2).
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Independence always implies zero covariance (correlation).
Zero covariance (correlation) does NOT always imply
independence:

Example
Assume that

pX,Y (−1, 1) = pX,Y (1, 1) = 1/4; pX,Y (0,−1) = 1/2.

X and Y are not independent because (for example)
pY |X(−1|0) = 1 6= pY (−1) = 1/2 but Cov(X,Y ) = 0 (check).
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Theorem 2.5.5

Suppose that (X1, X2) have the joint mgf M(t1, t2) and marginal
mgf’s M1(t1) and M2(t2), respectively. Then, X1 and X2 are
independent if and only if

M(t1, t2) ≡M1(t1)M2(t2).
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Example 2.5.5

Let X and Y be two random variables with joint pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere.

Are they independent?

Solution:
The mgf is

M(t1, t2) =
1

(1− t1 − t2)(1− t2)
, t1 + t2 < 1, t2 < 1.

Because

M(t1, t2) 6= M1(t1)M2(t2) = M(t1, 0)M(0, t2),

they are dependent.
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Chapter 2 Multivariate Distributions

2.6 Extension to Several Random Variables
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Examples

1 Random experiment consists of drawing an individual c from a
population C.
Characteristics: height, weight, age, test scores, .....

2 Random experiments consists of the U.S economy at time t.
Characteristics: consumer prices, unemployment rate, Dow
Jones Industrial Average, Gross Domestic Product, ....

A note on notation. We will often use boldface letters to denote
vectors. For example, we use X to denote the random vector
(X1, . . . , Xn), and x to denote the observed values (x1, . . . , xn).
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Pmf and cdf for the discrete case

I The joint pmf of a discrete random vector X is defined to be

pX(x) = P [X1 = x1, . . . , Xn = xn].

I The joint cdf of a discrete random vector X is defined to be

FX(x) = P [X1 ≤ x1, . . . , Xn ≤ xn].

I For the discrete case, pX(x) can be used to calculate
P (X ∈ A) for A ⊂ Rn:

P (X ∈ A) =
∑
x∈A

pX(x) .
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Pdf and cdf for the continuous case

I The joint cdf of a continuous random vector X is defined to be

FX(x) = P [X1 ≤ x1, . . . , Xn ≤ xn].

I The joint pdf of a continuous random vector X is a function
fX(x) such that for any A ⊂ Rn

P (X ∈ A) =

∫
A
fX(x)dx

=

∫
. . .

∫
A
fX1,··· ,Xn(x1, · · · , xn) dx1 · · · dxn.

I For the continuous case, we have

∂n

∂x1 · · · ∂xn
FX(x) = fX(x).
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Example
Let

f(x1, x2, x3) =


8x1x2x3 for 0 < x1, x2, x3 < 1

0 otherwise.

Verify that this is a legitimate pdf.

Solution: ∫ 1

x1=0

∫ 1

x2=0

∫ 1

x3=0
8x1x2x3dx3dx2dx1 = 1.
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Expectation

I For the discrete case, the expectation of Y = u(X1, . . . , Xn),
if it exists, is defined to be

E(Y ) =
∑
· · ·
∑

x1,...,xn

u(x1, . . . , xn)pX(x1, . . . , xn).

I For the continuous case, the expectation of
Y = u(X1, . . . , Xn), if it exists, is defined to be

E(Y ) =

∫
· · ·
∫

x1,...,xn

u(x1, . . . , xn)fX(x1, . . . , xn)dx1 · · · dxn.
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As before, E is a linear operator. That is,

E

 m∑
j=1

kjYj

 =

m∑
j=1

kjE [Yj ] .

Example

Find E(5X1X
2
2 + 3X2X

4
3 ).

Solution:

E(X1X
2
2 ) =

∫ 1

0

∫ 1

0

∫ 1

0
(x1x

2
2)8x1x2x3dx3dx2dx1 =

1

3
,

E(X2X
4
3 ) =

∫ 1

0

∫ 1

0

∫ 1

0
(x2x

4
3)8x1x2x3dx3dx2dx1 =

2

9
,

E(5X1X
2
2 + 3X2X

4
3 ) = 5 · 4

15
+ 3 · 2

9
=

4

3
+

2

3
= 2
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In an obvious way, we may extend the concepts of marginal pmf
and marginal pdf for the multidimensional case. For the discrete
case, the marginal pmf of (X1, X2) is defined to be

p12(x1, x2) =
∑
x3

· · ·
∑
xn

pX(x1, x2, . . . , xn).

For the continuous case, the marginal pdf of (X1, X2) is defined
to be

f12(x1, x2) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(x1, x2, . . . , xn)dx3 · · · dxn.
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We then extend the concept of conditional pmf and conditional pdf.
For the discrete case, suppose p1(x1) > 0. We define the the
conditional pmf of (X2, . . . , Xn) given X1 = x1 to be

p2,...,n|1(x2, . . . , xn|x1) =
p(x1, x2, . . . , xn)

p1(x1)
.

For the continuous case, suppose f1(x1) > 0. We define the
conditional pdf of (X2, . . . , Xn) given X1 = x1 to be

f2,...,n|1(x2, . . . , xn|x1) =
f(x1, x2, . . . , xn)

f1(x1)
.
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For the discrete case, suppose p1(x1) > 0. Then we define the
conditional expectation of u(X2, . . . , Xn) given X1 = x1 to be

E [u(X2, . . . , Xn)|x1] =
∑
x2

· · ·
∑
xn

u(x2, . . . , xn)p2,...,n|1(x2, . . . , xn|x1).

For the continuous case, suppose f1(x1) > 0. Then we define the
conditional expectation of u(X2, . . . , Xn) given X1 = x1 to be

E [u(X2, . . . , Xn)|x1]

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

u(x2, . . . , xn)f2,...,n|1(x2, . . . , xn|x1)dx2 · · · dxn.
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We say that the n random variables X1, . . . , Xn are mutually
independent if, for the discrete case,

p(x1, x2, . . . , xn) = p1(x1)p2(x2) · · · pn(xn), for all (x1, · · · , xn) ∈ Rn,

or, for the continuous case,

f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn) for all (x1, · · · , xn) ∈ Rn.
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If the n random variables X1, . . . , Xn are mutually independent,
then

P (a1 < X1 < b1, . . . , an < Xn < bn)

=P (a1 < X1 < b1) · · ·P (an < Xn < bn) .

We may rewrite the above equation as

P

 n⋂
j=1

(aj < Xj < bj)

 =

n∏
j=1

P (aj < Xj < bj) .

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018



90/115

If the n random variables X1, X2, . . . , Xn are mutually
independent, then

E [u1(X1)u2(X2) · · ·un(Xn)] = E [u1(X1)]E [u2(X2)] · · ·E [un(Xn)] ,

E

 n∏
j=1

uj(Xj)

 =

n∏
j=1

E [uj(Xj)] .

As a special case of the above, if the n random variables X1, X2,
. . . , Xn are mutually independent, then for mgf,

M(t1, t2, · · · , tn) =

n∏
j=1

Mj(tj),

which can be seen from
M(t1, t2, · · · , tn) = E[exp(t1X1 + t2X2 + . . .+ tnXn)]

= E

 n∏
j=1

exp(tjXj)


=

n∏
j=1

E [exp(tjXj)] =

n∏
j=1

Mj(tj).
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Mutual independence v.s. pairwise independence

I We say the n random variables X1, X2, . . . , Xn are pairwise
independent if for all pairs (i, j) with i 6= j, the random
variables Xi and Xj are independent.

I Unless there is a possible misunderstanding between mutual
independence and pairwise independence, we usually drop
the modifier mutual.

I If the n random variables X1, X2, . . . , Xn are independent
and have the same distribution, then we say that they are
independent and identically distributed, which we
abbreviate as i.i.d..
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Compare “mutual independence” and “pairwise independence”.

Example (from S. Bernstein)

Consider a random vector (X1, X2, X3) that has joint pmf
p(x1, x2, x3)

=

{
1
4 for (x1, x2, x3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} .
0 otherwise.

Solution:

pij(xi, xj) =

{
1
4 for (xi, xj) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} .
0 otherwise.

pi(xi) =

{
1
2 for (xi) ∈ {0, 1} .
0 otherwise.

pairwise independence : pij(xi, xj) = pi(xi)pj(xj).

not mutual independence : p(x1, x2, x3) 6= p1(x1)p2(x2)p3(x3).
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1 Let X = (X1, · · · , Xn)> be a random vector.

2 We define the expectation of X as EX = (EX1, · · · ,EXn)>.

3 Let W = [Wij ] be a m× n matrix, where Wij are random
variables. That is,

W =


W11 W12 · · · W1n

W21 W22 W2n

· · · · · · · · · · · ·
Wm1 Wm2 · · · Wmn

 = [Wij ]m×n .

4 We define the expectation of this random matrix as
E [W] = [E (Wij)]. That is,

E [W] =


E (W11) E (W12) · · · E (W1n)
E (W21) E (W22) E (W2n)
· · · · · · · · · · · ·
E (Wm1) E (Wm2) · · · E (Wmn)

 = [E (Wij)]m×n .
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Theorem 2.6.2

Let W and V be m× n random matrices, and let A and B be
k ×m constant matrices, and let C be a n× l constant matrix.
Then,

E [AW + BV] = AE [W] + BE [V]

and
E [AWC] = AE [W]C.

Proof sketch:
The (i, j) of the first equation:

E

[
m∑
s=1

AisWsj +

m∑
s=1

BisVsj

]
=

m∑
s=1

AisE[Wsj ] +

m∑
s=1

BisE[Vsj ].
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Let X = (X1, . . . Xn)> be an n-dimensional random vector with mean
vector µ. Then the variance-covariance matrix of X is defined to be

Cov(X)

= E
[
(X− µ) (X− µ)>

]

= E


(X1 − µ1) (X1 − µ1) (X1 − µ1) (X2 − µ2) · · · (X1 − µ1) (Xn − µn)
(X2 − µ2) (X1 − µ1) (X2 − µ2) (X2 − µ2) (X2 − µ2) (Xn − µn)
· · · · · · · · · · · ·
(Xn − µn) (X1 − µ1) (Xn − µn) (X2 − µ2) · · · (Xn − µn) (Xn − µn)



=


σ11 σ12 · · · σ1n

σ21 σ22 σ2n

· · · · · · · · · · · ·
σn1 σn2 · · · σnn



Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018



96/115

Example of a covariance matrix

Let X and Y be two random variables with joint pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere.

We have µ1 = 1, µ2 = 2, σ21 = 1, σ22 = 2, σ1,2 = Cov(X,Y ) = 1.
Let Z = (X,Y )>, then

E(Z) =

[
1
2

]
and Cov(Z) =

[
1 1
1 2

]
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Theorem 2.6.3 – Two properties of covariance matrix

Let X = (X1, . . . Xn)> be an n-dimensional random vector with
mean vector µ. Then,

Cov (X) = E
[
XX>

]
− µµ>. (3)

If further let A be an m× n constant matrix, then we have

Cov (AX) = ACov (X)A>.

Proof. Cov(X) = E[(X − µ)(X − µ)>]

= E[(XX> − µX> −Xµ> + µµ)>]

= E[XX>]− µE[X>]− E[X]µ> + µµ>.

Cov(AX) = E
[
(AX)(AX)>

]
− (Aµ)(Aµ)>

= E
[
AXX>A>

]
−Aµµ>A>

= AE
[
XX>

]
A> −Aµµ>A>

= A
{

E
[
XX>

]
− µµ>

}
A>

= ACov(X)A>.
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Proof without matrix notation

Cov(X)

= E
[
(X− µ) (X− µ)>

]

= E


(X1 − µ1) (X1 − µ1) (X1 − µ1) (X2 − µ2) · · · (X1 − µ1) (Xn − µn)
(X2 − µ2) (X1 − µ1) (X2 − µ2) (X2 − µ2) (X2 − µ2) (Xn − µn)
· · · · · · · · · · · ·
(Xn − µn) (X1 − µ1) (Xn − µn) (X2 − µ2) · · · (Xn − µn) (Xn − µn)



=


E (X1X1)− µ1µ1 E (X1X2)− µ1µ2 · · · E (X1Xn)− µ1µn

E (X2X1)− µ2µ1 E (X2X2)− µ2µ2 E (X2Xn)− µ2µn

· · · · · · · · · · · ·
E (XnX1)− µnµ1 E (XnX2)− µnµ2 · · · E (XnXn)− µnµn



= E


(X1X1) (X1X2) · · · (X1Xn)
(X2X1) (X2X2) (X2Xn)
· · · · · · · · · · · ·
(XnX1) (XnX2) · · · XnXn

−


µ1µ1 µ1µ2 · · · µ1µn

µ2µ1 µ2µ2 µ2µn

· · · · · · · · · · · ·
µnµ1 µnµ2 · · · µnµn


= E

[
XX>

]
− µµ>.
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I All variance-covariance matrices are positive semi-definite,
that is a>Cov(X)a ≥ 0 for any a ∈ Rn.

I This is because

a>Cov(X)a = Var(a>X) ≥ 0,

where we note that a>X is a univariate random variable.
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Chapter 2 Multivariate Distributions

2.7 Transformation for Several Random Variables
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I Let X = (X1, X2, . . . , Xn) be a random vector with pdf
fX(x1, x2, . . . , xn) with support S. Let

y1 = g1(x1, x2, . . . , xn)
y2 = g2(x1, x2, . . . , xn)
...
yn = gn(x1, x2, . . . , xn)

be a multivariate function that maps (x1, x2, . . . , xn) ∈ S to
(y1, y2, . . . , yn) ∈ T . Suppose that it is a one-to-one
correspondence.

I Suppose that the inverse functions are given by
x1 = h1(y1, y2, . . . , yn)
x2 = h2(y1, y2, . . . , yn)
...
xn = hn(y1, y2, . . . , yn)

.
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I Let the Jacobian be

J =

∣∣∣∣∂ (x1, x2, . . . , xn)

∂ (y1, y2, . . . , yn)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yn

...
...

...
∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣
.

I Then, the joint pdf of Y1, Y2, . . . , Yn determined by the
mapping above is

fY (y1, y2, . . . , yn)

= |J | fX [h1(y1, y2, . . . , yn), h2(y1, y2, . . . , yn), . . . , hn(y1, y2, . . . , yn)] ,

for (y1, y2, . . . , yn) ∈ T .
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Example 2.7.1

Suppose X1, X2, and X3 have joint pdf

f(x1, x2, x3) =

{
48x1x2x3 0 < x1 < x2 < x3 < 1
0 elsewhere,

and let 
Y1 = X1/X2

Y2 = X2/X3

Y3 = X3.

Determine the joint pdf of Y1, Y2 and Y3.
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I Let X = (X1, X2, . . . , Xn) be a random vector with pdf
fX(x1, x2, . . . , xn) with support S. Let

y1 = g1(x1, x2, . . . , xn)
y2 = g2(x1, x2, . . . , xn)
...
yn = gn(x1, x2, . . . , xn)

be a multivariate function that maps X = (x1, x2, . . . , xn) ∈ S
to Y = (y1, y2, . . . , yn) ∈ T .

I Suppose that the support S can be represented as the union
of k mutually disjoint sets such that for each i, there is
one-to-one correspondence bewteen X and Y .

I Suppose that the inverse functions are given by
x1 = h1i(y1, y2, . . . , yn)
x2 = h2i(y1, y2, . . . , yn)
...
xn = hni(y1, y2, . . . , yn)

.
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Let the Jacobian be

Ji =

∣∣∣∣∂ (x1, x2, . . . , xn)

∂ (y1, y2, . . . , yn)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∂h1i
∂y1

∂h1i
∂y2

· · · ∂h1i
∂yn

∂h2i
∂y1

∂h2i
∂y2

· · · ∂h2i
∂yn

...
...

...
∂hni
∂y1

∂hni
∂y2

· · · ∂hni
∂yn

∣∣∣∣∣∣∣∣∣∣
.

Then, the joint pdf of Y1, Y2, . . . , Yn determined by the mapping
above is

fY (y1, y2, . . . , yn)

=

k∑
i=1

|Ji| fX [h1i(y1, y2, . . . , yn), h2i(y1, y2, . . . , yn), . . . , hni(y1, y2, . . . , yn)] ,

for (y1, y2, . . . , yn) ∈ T .
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Example 2.7.3

Let X1 and X2 have the joint pdf defined over the unit circle given
by

f(x1, x2) =

{
1
π 0 < x21 + x22 < 1
0 elsewhere.

Let {
Y1 = X2

1 +X2
2

Y2 = X2
1/
(
X2

1 +X2
2

)
.

Determine the joint pdf of Y1 and Y2.
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Chapter 2 Multivariate Distributions

2.8 Linear Combinations of Random Variables
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Motivation

I We are interested in a function of T = T (X1, . . . , Xn) where
X1, . . . , Xn is a random vector.

I For example, we let each Xi denote the final percentage of
STAT 4100 grade. Assume we know the distribution of each
Xi, can we know the distribution of the average percentage
X̄?

I In this section, we focus on linear combination of these
variables, i.e.,

T =

n∑
i=1

aiXi.
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Expectation of linear combinations

Theorem 2.8.1. Let T =
∑n

i=1 aiXi. Provided that E[|Xi|] <∞,
for all i = 1, . . . , n, then

E(T ) =

n∑
i=1

aiE(Xi).

This theorem follows immediately from the linearity of the
expectation operation.
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Variance and covariance of linear combinations

Theorem 2.8.2. Let T =
∑n

i=1 aiXi and W =
∑m

j=1 bjYj . If
E[X2

i ] <∞ and E[Y 2
j ] <∞, for i = 1, . . . , n and j = 1, . . . ,m,

then

Cov(T,W ) =

n∑
i=1

m∑
j=1

aibjCov(Xi, Yj).

Proof:

Cov(T,W ) = E

 n∑
i=1

m∑
j=1

(aiXi − aiE(Xi))(bjYj − bjE(Yj))


=

n∑
i=1

m∑
j=1

E[(aiXi − aiE(Xi))(bjYj − bjE(Yj))].
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Corollary 2.8.1. Let T =
∑n

i=1 aiXi. Provided E[X2
i ] <∞, for

i = 1, . . . , n, then

Var(T ) = Cov(T, T ) =

n∑
i=1

a2iVar(Xi) + 2

m∑
i<j

aiajCov(Xi, Yj).

Corollary 2.8.2. If X1, . . . , Xn are independent random variables
with finite variances, then

Var(T ) =

n∑
i=1

a2iVar(Xi).

Special case If X1 and X2 have finite variances, then

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

If they are also independent, then

Var(X + Y ) = Var(X) + Var(Y ).

Note that E(X + Y ) = E(X) + E(Y ) regardless of independence.
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Example 2.8.1 – Sample mean

Let X1, . . . , Xn be independent and identically distributed random
variables with common mean µ and variance σ2. The sample
mean is defined by X̄ = n−1

∑n
i=1Xi. This is a linear combination

of the sample observations with ai ≡ n−1; hence by Theorem
2.8.1 and Corollary 2.8.2, we have

E(X̄) = µ and Var(X̄) = σ2/n.

Boxiang Wang, The University of Iowa Chapter 2 STAT 4100 Fall 2018



115/115

Example 2.8.2 – Sample variance

Define the sample variance by

S2 = (n− 1)−1
n∑
i=1

(Xi − X̄)2 = (n− 1)−1

(
n∑
i=1

X2
i − nX̄2

)
.

Following from the fact that E(X2) = σ2 + µ2,

E(S2) = (n− 1)−1

(
n∑
i=1

E(X2
i )− nE(X̄2)

)
= (n− 1)−1{nσ2 + nµ2 − n[(σ2/n+ µ2)]}
= σ2.
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