Chapter 1 Probability and Distributions
 1.1 Introduction

Question: What is probability?

Answer:

- Probability is the chance for something to happen, so it's always a number in $[0,1]$.
- In addition, in this class, probability is also the name of the mathematical tool we are going to use.

How do we learn probability?

- Mathematics is the language we use to communicate with the universe. Its grammars are rules called axioms and theorems.
- When we learn probability, we learn those rules. So prepare for a bit of a headache at the beginning similar to learning a second language.

Relationship between probability and statistics?

- Probability: From population to sample.
- Statistics: From sample to population.

Random experiment

- The experiment can be repeated under the same condition.
- Each experiment terminates with an outcome.
- The outcome cannot be predicted with certainty prior to the performance of the experiment.
- The collection of all possible outcomes can be described prior to the performance of the experiment.

This collection is called the sample space, usually denoted by \mathcal{C}.
Example (1.1.1)
1 Toss a coin once, sample space $C=\{T, H\}$.
2 Toss a coin twice, sample space?

Event

A subset of the sample space \mathcal{C}, usually denoted by C, is called an event. If an outcome belongs to C, then we say that the event C has occurred.

Example (1.1.2)

1 Casting one red and one white die. Sample space is 36 ordered pairs,

$$
\mathcal{C}=\{(1,1), \ldots,(1,6),(2,1), \ldots,(2,6), \ldots,(6,6)\} .
$$

2 Event: sum of numbers on dice is 9 ,

$$
C=\{(3,6),(4.5),(5,4),(6,3)\}
$$

Probability

Probability quantifies the notion of chance or likelihood of an event. Relative frequency is an empirical definition of probability:

- Suppose the experiment is repeated N times.
- Let k_{N} denote the number of times the event C actually occurred.
- The $f_{N}=k_{N} / N$ is the relative frequency of the event C in the repeated experiments.

Probability: frequentist

- Relative frequency: $f_{N}=k_{N} / N$.
- Suppose that N increases.
- Suppose that $p=\lim _{N \rightarrow \infty} f_{N}$ exists. Note $p \in[0,1]$.
- Then p is the probability of the event C.

Example (1.1.2, cont'd)

Sum of numbers on dice is 9 :

$$
C=\{(3,6),(4.5),(5,4),(6,3)\}
$$

If each of the 36 outcomes is equally likely, then $p=4 / 36$.

- We denote the probability of an event C by $P(C)$.
- It is the long-run relative frequency of the event C in a very large number of independent replications of the experiment.

Subjective probability

Consider the event $C=$ Hawkeye wins NCAA basketball championship in 2019. Suppose that I offer you two lottery tickets, and you can choose between them.

- If you pick lottery ticket 1, then we spin a roulette wheel that has 100 slots and has been declared "fair" by the Nevada Gaming Commission. If the ball lands in a slot from 1 through 10 you get $\$ 100$ and otherwise you get $\$ 0$.
- If you pick lottery ticket 2 , then you get $\$ 100$ if C occurs and otherwise you get $\$ 0$.
If you choose Lottery ticket 1 , then your subjective $p \leq 0.10$, and if you choose Lottery ticket 2 then your subjective $p \geq 0.10$.
- The advantage of subjective probability is that it can be extended to experiments that cannot be repeated. (Think about betting in sports, investing your money,)
- Mathematically, the two concepts of probability are identical. In many situations we will not need to make the distinction.

Chapter 1 Probability and Distributions

1.2 Set Theory

Sets

- A set is a collection of objects. If an element x belongs to a set C, then we write $x \in C$.
- If each element of a set C_{1} is also an element of another set C_{2}, then C_{1} is called a subset of C_{2}, written as $C_{1} \subset C_{2}$.
- If $C_{1} \subset C_{2}$ and $C_{2} \subset C_{1}$, then $C_{1}=C_{2}$.

Example (1.2.1)

Define sets $C_{1}=\{x: 0 \leq x \leq 1\}$ and $C_{2}=\{x:-1 \leq x \leq 2\}$. We have $C_{1} \subset C_{2}$.

Example (1.2.2)

Define sets $C_{1}=\{(x, y): 0 \leq x=y \leq 1\}$ and
$C_{2}=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$. We have $C_{1} \subset C_{2}$.

- If a set C has no elements, then C is called the null set, written as $C=\phi$.

Union

- The set of all elements that belong to at least one of the sets C_{1} and C_{2} is called the union of C_{1} and C_{2}, written as $C_{1} \cup C_{2}$.
- For example, if $C_{1}=\{1,2,3\}, C_{2}=\{2,3,5\}$, then $C_{1} \cup C_{2}=\{1,2,3,5\}$.
- The set of elements that belongs to at least one of the sets C_{1}, \ldots, C_{k} is $C_{1} \cup C_{2} \ldots \cup C_{k}$, also written $\cup_{i=1}^{k} C_{i}$.

Example

- $C \cup \phi=$
- $C \cup C=$
- If $C_{1} \subset C_{2}$, then $C_{1} \cup C_{2}=$
- If $C_{i}=\{x: x \in[i-1, i]\}, i=1, \ldots, k$ then

$$
\cup_{i=1}^{k} C_{i}=\{x: x \in[0, k]\} .
$$

Example (1.2.7)

$$
C_{k}=\left\{x: \frac{1}{k+1} \leq x \leq 1\right\}, \quad k=1,2, \ldots
$$

Then

$$
C_{1} \cup C_{2} \cup C_{3} \cup \cdots=(0,1] .
$$

Intersection

- The set of all elements that belong to each of the sets C_{1} and C_{2} is called the intersection of C_{1} and C_{2}, written as $C_{1} \cap C_{2}$.
- If $C_{1}=\{1,2,3\}, C_{2}=\{2,3,5\}$, then $C_{1} \cup C_{2}=\{2,3\}$.
- If $C_{1}=[0,1]$ and $C_{2}=[-1,0]$ then $C_{1} \cap C_{2}=\{0\}$.
- If $C_{i}=(0,1 / i), i=1, \ldots, k$ then $\cap_{i=1}^{k} C_{i}=(0,1 / k)$.

Example (1.2.11)

Let

$$
C_{k}=\left\{x: 0<x<\frac{1}{k}\right\}, \quad k=1,2, \ldots .
$$

Then

$$
C_{1} \cap C_{2} \cap C_{3} \cap \cdots=\emptyset
$$

Example

Use Venn diagrams to depict the sets $C_{1} \cup C_{2}, C_{1} \cap C_{2}$, $\left(C_{1} \cup C_{2}\right) \cap C_{3}$ and $\left(C_{1} \cap C_{2}\right) \cup C_{3}$.

Space \& Complement

- The set of all elements under consideration is called the space, written as \mathcal{C}.
- Number of heads in tossing a coin ten times. The space is $\mathcal{C}=\{0,1, \ldots, 10\}$.
- Let \mathcal{C} be the sample space and C be its subset. The set that consists of all elements of \mathcal{C} that are not elements of C is called the complement of C, written as C^{c}.
- Number of heads in tossing a coin ten times. If

$$
C=\{0,1,2,3,4\} \text { then } C^{c}=\{5,6,7,8,9,10\} .
$$

$1 C \cup C^{c}=\mathcal{C}$.
$2 C \cap C^{c}=\emptyset$.
$3\left(C^{c}\right)^{c}=C$.

Important basic rules

1 DeMorgan's laws: Let \mathcal{C} denote the space and suppose $C_{1}, C_{2} \subset \mathcal{C}$. Then

$$
\begin{array}{ll}
A: & \left(C_{1} \cap C_{2}\right)^{c}=C_{1}^{c} \cup C_{2}^{c} \\
B: & \left(C_{1} \cup C_{2}\right)^{c}=C_{1}^{c} \cap C_{2}^{c}
\end{array}
$$

2 Distributive laws: Let \mathcal{C} denote the space and suppose $C_{1}, C_{2}, C_{3} \subset \mathcal{C}$. Then

$$
\begin{array}{ll}
A: & C_{1} \cup\left(C_{2} \cap C_{3}\right)=\left(C_{1} \cup C_{2}\right) \cap\left(C_{1} \cup C_{3}\right) . \\
B: & C_{1} \cap\left(C_{2} \cup C_{3}\right)=\left(C_{1} \cap C_{2}\right) \cup\left(C_{1} \cap C_{3}\right) .
\end{array}
$$

Set functions

- Usual function maps each point to a real number.
- Set function maps each set to a real number:

More specifically, let \mathcal{C} be a space and C be its subset. A mapping Q that assigns a value to the subset C (rather than an element x) is called a set function.

Example (1.2.18)

Let C be a set in one-dimensional space and let $Q(C)$ be equal to the number of points in C which correspond to positive integers.
Then $Q(C)$ is a function of the set C. Thus:

- if $C=\{x: 0<x<5\}$, then $Q(C)=4$.
- if $C=\{-2,-1\}$, then $Q(C)=0$.
- if $C=\{x:-\infty<x<6\}$, then $Q(C)=5$.

Example (1.2.23)

Let C be a set in one-dimensional space and let

$$
Q(C)=\int_{C} e^{-x} d x
$$

If $C=\{x: 0 \leq x<\infty\}$, then

$$
Q(C)=\int_{0}^{\infty} e^{-x} d x=1
$$

If $C=\{x: 1<x \leq 3\}$, then

$$
Q(C)=\int_{1}^{3} e^{-x} d x=e^{-1}-e^{-3}
$$

Example (1.2.24)

Let C be a set in n-dimensional space and let

$$
\begin{gathered}
Q(C)=\iint_{C} \cdots d x_{1} \cdots d x_{n} . \\
\text { If } C=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): 0 \leq x_{1}, x_{2}, \cdots, x_{n} \leq 1\right\} \text {, then } \\
\qquad Q(C)=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} d x_{1} d x_{2} \cdots d x_{n}=1 . \\
\text { If } C=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): 0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq 1\right\} \text {, then } \\
\qquad Q(C)=\int_{0}^{1} \int_{0}^{x_{n}} \cdots \int_{0}^{x_{3}} \int_{0}^{x_{2}} d x_{1} d x_{2} \cdots d x_{n-1} d x_{n}=\frac{1}{n!} .
\end{gathered}
$$

Chapter 1 Probability and Distributions
 1.3 The Probability Set Function

σ-field

Definition (σ-field)

A collection of sets that is closed under complementation and countable union of its members is a σ-field. This collection of events is usually denoted by \mathcal{B}.

- The collection is also closed under countable intersections according to DeMorgan's Laws.

Probability set function

Definition (Probability set function)

Let \mathcal{C} be a sample space and \mathcal{B} be a σ-field defined on \mathcal{C}. Let P be a real-valued function defined on \mathcal{B}. Then P is a probability function if
$1 P(C) \geq 0$ for all $C \in \mathcal{B}$;
$2 P(\mathcal{C})=1$;
3 If $C_{i} \in \mathcal{B}(i=1,2, \ldots)$ and $C_{i} \cap C_{j}=\Phi \forall i \neq j$, then $P\left(\cup_{i=1}^{\infty} C_{i}\right)=\sum_{i=1}^{\infty} P\left(C_{i}\right)$.

- A collection of events whose members are pairwise disjoint is said to be mutually exclusive.
- The collection is further said to be exhaustive if the union of its events is the sample space.
- These three axioms imply many properties of the probability set function. Let us see a few examples.

Basic results on probability functions

Theorem (1.3.1)
$P(C)=1-P\left(C^{c}\right)$.

Theorem (1.3.2)
$P(\phi)=0$.
proof: Let $C=\emptyset$ and follows from $P(\mathcal{C})=1$.
Theorem (1.3.3)
If $C_{1} \subset C_{2}$, then $P\left(C_{1}\right) \leq P\left(C_{2}\right)$.
proof: Let $T=C_{1} \cup\left(C_{1}^{C} \cap C_{2}\right)$. Notice that $C_{2}=C_{1} \cup T$ and $C_{1} \cap T=\emptyset$.

Theorem (1.3.4)
$0 \leq P(C) \leq 1$.
proof: $0=P(\emptyset) \leq P(C) \leq P(\mathcal{C})$.
Theorem (1.3.5)
For two arbitrary events C_{1} and C_{2}, it holds that

$$
P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(C_{2}\right)-P\left(C_{1} \cap C_{2}\right) .
$$

Inclusion Exclusion Formula

For three arbitrary events C_{1}, C_{2} and C_{3}, it holds that

$$
\begin{aligned}
P\left(C_{1} \cup C_{2} \cup C_{3}\right) & =P\left(C_{1}\right)+P\left(C_{2}\right)+P\left(C_{3}\right) \\
& -P\left(C_{1} \cap C_{2}\right)-P\left(C_{1} \cap C_{3}\right)-P\left(C_{2} \cap C_{3}\right) \\
& +P\left(C_{1} \cap C_{2} \cap C_{3}\right) .
\end{aligned}
$$

- Boole's inequality:

$$
P\left(C_{1}\right)+P\left(C_{2}\right)+\ldots+P\left(C_{k}\right) \geq P\left(C_{1} \cup C_{2} \cup \ldots \cup C_{k}\right)
$$

- Bonferroni's inequality:

$$
P\left(C_{1} \cap C_{2}\right) \geq P\left(C_{1}\right)+P\left(C_{2}\right)-1
$$

If an experiment can result in any one of N different outcomes, and if exactly n of those outcomes correspond to event C, then the probability of event C is

$$
P(C)=\frac{n}{N}
$$

Example 1.3.2

An unbiased coin is to be tossed twice and the outcomes are in an ordered pair. Then,
$\mathcal{C}=\{(T T),(T H),(H T),(H H)\}$.
Write $C_{1}=\{$ the first toss results in a head $\}$,
$C_{2}=\{$ the second toss results in a tail $\}$.
Then, $P\left(C_{1} \cup C_{2}\right)=$?
Method 1: $C_{1}=\{H H, H T\}, C_{2}=\{H T, T T\}$, so
$C_{1} \cup C_{2}=\{H H, H T, T T\}$. We see $P\left(C_{1} \cup C_{2}\right)=3 / 4$.
Method 2: $C_{1}=\{H H, H T\}$, so $P\left(C_{1}\right)=1 / 2, C_{2}=\{H T, T T\}$,
so $P\left(C_{2}\right)=1 / 2$. We have $C_{1} \cap C_{2}=\{H T\}$, so
$P\left(C_{1} \cap C_{2}\right)=1 / 4$. Thus by Inclusion Exclusion Formula,
$P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(C_{2}\right)-P\left(C_{1} \cap C_{2}\right)=3 / 4$.

Counting rules

- Suppose we have two experiments, The first experiment results in m outcomes while the second results in n outcomes. The composite experiment (the first experiment followed by the second) has $m n$ outcomes. This is called the multiplication rule.
- Let A be a set with n elements. Suppose we are interested in k-tuples whose components are elements of A. Then, by the extended multiplication rule, there are n^{k} such k-tuples.

Permutation

Suppose $k \leq n$ and we are interested in k-tuples whose components are distinct elements of A. Hence, by the multiplication rule, there are $n(n-1) \ldots(n-(k-1))$ such k-tuples with distinct elements.

Example

For the integers $1,2,3,4,5$, and ordered subsets of size 2 we have:
$(\mathbf{1}, \mathbf{2}),(\mathbf{1}, \mathbf{3}),(\mathbf{1}, \mathbf{4}),(\mathbf{1}, \mathbf{5}),(2,1),(\mathbf{2}, \mathbf{3}),(\mathbf{2}, \mathbf{4}),(\mathbf{2}, \mathbf{5}),(3,1),(3,2)$,
$(\mathbf{3}, \mathbf{4}),(\mathbf{3}, \mathbf{5}),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)$.

The number of permutations of n things taken k at a time is

$$
P_{k}^{n}=n(n-1) \cdot \ldots \cdot(n-j+1) \cdot \ldots \cdot(n-k+1)=\frac{n!}{(n-k)!}
$$

- Apply to previous example: $5!/ 2!=20$.

Combination

- Suppose we have n objects, a_{1}, \ldots, a_{n}. How many subsets of size k without regard for order can we choose from these objects?
For the previous example we have 10.
- In general the number of combinations of n things taken k at a time is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Example

Poker hand example: 52 cards, 5 cards in a hand.
1 Probability of any specific hand: $1 /\binom{52}{5}$.
2 Probability that all cards are hearts: $\binom{13}{5} /\binom{52}{5}$.
3 Probability of a flush (all cards same suit): $\binom{4}{1}\binom{13}{5} /\binom{52}{5}$.
4 Probability of a full house (three kings and two queens):

Theorem

The number of distinct permutations of n objects of which n_{1} are of one kind, n_{2} of a second kind, ..., n_{k} of a kth kind is

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

Example

How many distinct permutations can be made form the word INTERNET?

- The letters are 8 letters in the word "INTERNET":

$$
\begin{array}{ccccc}
I & N & T & E & R \\
1 & 2 & 2 & 2 & 1
\end{array}
$$

- Number of different permutations:

$$
\frac{8!}{1!2!2!2!1!}=5040
$$

A different point of view

- If you put n distinct objects into k cells. And you want to put n_{1} into cell $1, n_{2}$ into cell $2, \ldots, n_{k}$ into cell k, where $n=n_{1}+n_{2}+\ldots+n_{k}$, then the answer is the same as

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
$$

- Multiplication rule:

$$
\begin{aligned}
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} & =\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \ldots\binom{n-n_{1}-\ldots n_{k-1}}{n_{k}} \\
& =\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}
\end{aligned}
$$

Chapter 1 Probability and Distributions

1.4 Conditional Probability and Independence

Motivation of conditional probability

- An experiment involves three tosses of a coin. Sample space consists of 8 possible outcomes, all equally likely:
HHH, HHT, HTH, HTT, THH,THT,TTH,TTT.
- Define two events:
$C_{1}=\{$ first toss results in a head $\}$,
$C_{2}=$ \{at least two heads $\}$.
What is the probability of event C_{2} ?

$$
P\left(C_{2}\right)=
$$

- Suppose we know event C_{1} occurs. Now what is the probability of event C_{2} ?

$$
P\left(C_{2} \mid C_{1}\right)=
$$

(the conditional probability of C_{2} given that C_{1} occurs).

Definition of conditional probability

Definition. For two events C_{1} and C_{2}, with C_{1} satisfying $P\left(C_{1}\right)>0$, the conditional probability of C_{2} given C_{1} is

$$
P\left(C_{2} \mid C_{1}\right)=\frac{P\left(C_{1} \cap C_{2}\right)}{P\left(C_{1}\right)} .
$$

Properties of conditional probabilities:
$1 P\left(C_{2} \mid C_{1}\right) \geq 0$;
2. $P\left(C_{2} \cup C_{3} \cup \cdots \mid C_{1}\right)=P\left(C_{2} \mid C_{1}\right)+P\left(C_{3} \mid C_{1}\right)+\cdots$, provided that C_{2}, C_{3}, \cdots are mutually disjoint;
$3 P\left(C_{1} \mid C_{1}\right)=1$.

Example (1.4.2)

A bowl contains eight chips. Three of the chips are red and the remaining five are blue. Two chips are to be drawn successively, at random and without replacement. Compute the probability that the first draw results in a red chip $\left(C_{1}\right)$ and the second draw results in a blue chip $\left(C_{2}\right)$.

Solution:

$$
\begin{gathered}
P\left(C_{1} \cap C_{2}\right)=P\left(C_{1}\right) P\left(C_{2} \mid C_{1}\right)=\frac{3}{8} \frac{5}{7}=\frac{15}{56} . \\
P\left(C_{1} \cap C_{2}\right)=P\left(C_{2}\right) P\left(C_{1} \mid C_{2}\right)=\text { hard } \cdot \text { hard. }
\end{gathered}
$$

The multiplication rule can be extended to three or more events.
For example, if $P\left(C_{1} \cap C_{2}\right)>0$, hence $P\left(C_{1}\right)>0$, we have

$$
P\left(C_{1} \cap C_{2} \cap C_{3}\right)=P\left(C_{1}\right) P\left(C_{2} \mid C_{1}\right) P\left(C_{3} \mid C_{1} \cap C_{2}\right) .
$$

Example (1.4.4)

Four cards are drawn successively, at random and without replacement, from an ordinary deck of playing cards. Compute the probability of receiving a spade, a heart, a diamond, and a club, in that order?

Solution:

$$
\frac{13}{52} \frac{13}{51} \frac{13}{50} \frac{13}{49}
$$

What is the probability of receiving a spade, a heart, a diamond, and a club in any order?

Solution:

$$
4!\cdot \frac{13}{52} \frac{13}{51} \frac{13}{50} \frac{13}{49} .
$$

Law of total probability

Suppose C_{1}, \ldots, C_{k} form a partition of the sample space \mathcal{C}, i.e.
$1 C_{1}, \ldots, C_{k}$ are mutually exclusive
$2 C_{1}, \ldots, C_{k}$ are exhaustive, i.e. $P\left(C_{1} \cup \ldots \cup C_{k}\right)=1$
Then for any event $C \in \mathcal{B}$

$$
P(C)=P\left(C \mid C_{1}\right) P\left(C_{1}\right)+P\left(C \mid C_{2}\right) P\left(C_{2}\right)+\cdots+P\left(C \mid C_{k}\right) P\left(C_{k}\right)
$$

Proof:

$$
\begin{aligned}
P(C) & =P[\mathcal{C} \cap C)] \\
& \left.=P\left[\left(C_{1} \cup C_{2} \cup \ldots \cup C_{k}\right) \cap C\right)\right] \\
& \left.=P\left[\left(C_{1} \cap C\right) \cup \ldots \cup\left(C_{k} \cap C\right)\right)\right] \\
& =P\left(C_{1} \cap C\right)+\cdots+P\left(C_{k} \cap C\right) \\
& =P\left(C \mid C_{1}\right) P\left(C_{1}\right)+\cdots+P\left(C \mid C_{k}\right) P\left(C_{k}\right)
\end{aligned}
$$

Bayes's theorem

Suppose C_{1}, \ldots, C_{k} form a partition of the sample space \mathcal{C}. Then for any event $C \in \mathcal{B}$,

$$
P\left(C_{j} \mid C\right)=\frac{P\left(C \cap C_{j}\right)}{P(C)}=\frac{P\left(C \mid C_{j}\right) P\left(C_{j}\right)}{\sum_{i=1}^{k} P\left(C \mid C_{i}\right) P\left(C_{i}\right)}
$$

Example

On Friday evening 10% of the drivers in lowa City are drunk. The probability that a drunk driver will be involved in a traffic accident is 0.01% and the probability that a sober driver will be involved in a traffic accident is 0.002%. If you read in the morning paper that a particular individual was involved in a traffic accident, what is the probability that this individual was drunk?

Solution:

Let $C=$ Accident occurs; $C_{1}=$ Drunk; $C_{2}=$ Sober. Then

$$
\begin{aligned}
P\left(C_{1} \mid C\right) & =\frac{P\left(C_{1}\right) P\left(C \mid C_{1}\right)}{P\left(C_{1}\right) P\left(C \mid C_{1}\right)+P\left(C_{2}\right) P\left(C \mid C_{2}\right)} \\
& =\frac{.10 \cdot .0001}{.10 \cdot .0001+.9 \cdot .00002}=0.357
\end{aligned}
$$

Four inspectors at a film factory are stamping the expiration date on each package of a film at the end of the assembly line.

- John, 20% of the packages, fails to stamp 1 in 200,
- Tom, 60% of the packages, fails to stamp 1 in 100,
- Jeff, 15% of the packages, fails to stamp 1 in 90,
- Pat, 5% of the packages, fails to stamp 1 in 200.

If a customer complains that her package of film does not show the expiration date, what is the probability that it was inspected by John?

Solution:

- Let B_{1} be the event that John inspected the package. Similarly, denote the event that the package was inspected by Tom, Jeff and Pat using B_{2}, B_{3}, B_{4} respectively. Then $B_{1}, B_{2}, B_{3}, B_{4}$ form a partition of the sample space. Let F be the event that the package failed to be stamped.
- $P\left(B_{1}\right)=0.2, P\left(B_{2}\right)=0.6, P\left(B_{3}\right)=0.15, P\left(B_{4}\right)=0.05$.
$P\left(F \mid B_{1}\right)=\frac{1}{200}, P\left(F \mid B_{2}\right)=\frac{1}{100}, P\left(F \mid B_{3}\right)=\frac{1}{90}$,
$P\left(F \mid B_{4}\right)=\frac{1}{200}$.
- The probability that the package was inspected by John given the failure is

$$
\begin{aligned}
P\left(B_{1} \mid F\right) & =\frac{P\left(F \mid B_{1}\right) P\left(B_{1}\right)}{P\left(F \mid B_{1}\right) P\left(B_{1}\right)+P\left(F \mid B_{2}\right) P\left(B_{2}\right)+P\left(F \mid B_{3}\right) P\left(B_{3}\right)+P\left(F \mid B_{4}\right) P\left(B_{4}\right)} \\
& =\frac{(0.2)(1 / 200)}{(0.2)(1 / 200)+(0.6)(1 / 100)+(0.15)(1 / 90)+(0.05)(1 / 200)} \\
& =0.112
\end{aligned}
$$

Suppose 5 out of 10000 employees at Lawrence Livermore National Laboratory are spies. According to experts, a polygraph test has sensitivity of 0.91 and specificity of 0.94 .
Mathematically

$$
\begin{aligned}
& \text { Prevalence }=P(S)=0.0005 \\
& \text { Sensitivity }=P(+\mid S)=0.91 \\
& \text { Specificity }=P(-\mid N S)=0.94
\end{aligned}
$$

1 Find the probability of a false positive test.

Solution:

$$
P(+\mid N S)=1-P(-\mid N S)=1-0.94=0.06
$$

The complement rule can be used for conditional probabilities if what is being conditioned on is held fixed (i.e. $N S$ was held fixed in the above computation). In other words, $P(+\mid N S) \neq 1-P(+\mid S)$.
2 Find the probability of a false negative test.

Solution:

$$
P(-\mid S)=1-P(+\mid S)=1-0.91=0.09
$$

1 Suppose an employee is randomly selected. Find the probability that he/she tests positive for being a spy. Solution: By the law of total probability,

$$
\begin{aligned}
P(+) & =P(+\mid S) P(S)+P(+\mid N S) P(N S) \\
& =(0.91)(0.0005)+(0.06)(0.9995)=0.060425 .
\end{aligned}
$$

2 Given that a randomly selected employee tested positive, find the probability that he/she actually is a spy. Solution: By Bayes's theorem,

$$
\begin{aligned}
P(S \mid+) & =\frac{P(+\cap S)}{P(+)} \\
& =\frac{P(+\mid S) P(S)}{P(+\mid S) P(S)+P(+\mid N S) P(N S)} \\
& =\frac{(0.91)(0.0005)}{0.060425}=0.00753
\end{aligned}
$$

Therefore, if an employee tests positive for being a spy, there is a 0.753% chance that he/she actually is a spy!

Independence

Definition

Two events C_{1} and C_{2} with $P\left(C_{1}\right)>0$ and $P\left(C_{2}\right)>0$ are independent if and only if $P\left(C_{1} \cap C_{2}\right)=P\left(C_{1}\right) P\left(C_{2}\right)$.

Remark:

- Two events C_{1}, C_{2} are independent if and only if $P\left(C_{1} \cap C_{2}\right)=P\left(C_{1}\right) P\left(C_{2}\right)$, which is equivalent to $P\left(C_{1} \mid C_{2}\right)=P\left(C_{1}\right)$, when $P\left(C_{2}\right)>0$, and also equivalent to $P\left(C_{2} \mid C_{1}\right)=P\left(C_{2}\right)$, when $P\left(C_{1}\right)>0$.
- Two events are independent if the occurrence (or non-occurrence) of one event does not influence the likelihood of occurrence of the other event.
- If the two events C_{1} and C_{2} are independent, then the following pairs of events are also independent:
(i) C_{1} and C_{2}^{c};
(ii) C_{1}^{c} and C_{2};
(iii) C_{1}^{c} and C_{2}^{c}.

Proof.

It suffices to show that

$$
P\left(C_{1}^{c} \cap C_{2}\right)=P\left(C_{1}^{c}\right) P\left(C_{2}\right)=\left(1-P\left(C_{1}\right)\right) P\left(C_{2}\right),
$$

where

$$
\begin{aligned}
P\left(C_{2}\right) & =P\left(\mathcal{C} \cap C_{2}\right) \\
& =P\left(\left(C_{1} \cup C_{1}^{c}\right) \cap C_{2}\right) \\
& =P\left[\left(C_{1} \cap C_{2}\right) \cup\left(C_{1}^{c} \cap C_{2}\right)\right] \text { (distributive law) } \\
& =P\left(C_{1} \cap C_{2}\right)+P\left(C_{1}^{c} \cap C_{2}\right) \text { (axiom of probability) } \\
& =P\left(C_{1}\right) \cdot P\left(C_{2}\right)+P\left(C_{1}^{c} \cap C_{2}\right) . \text { (independence) }
\end{aligned}
$$

Mutual independence

Suppose now we have three events, C_{1}, C_{2}, and C_{3}. We say that they are mutually independent if

$$
\begin{aligned}
& P\left(C_{1} \cap C_{2}\right)=P\left(C_{1}\right) P\left(C_{2}\right) \\
& P\left(C_{1} \cap C_{3}\right)=P\left(C_{1}\right) P\left(C_{3}\right) \\
& P\left(C_{2} \cap C_{3}\right)=P\left(C_{2}\right) P\left(C_{3}\right)
\end{aligned}
$$

and

$$
P\left(C_{1} \cap C_{2} \cap C_{3}\right)=P\left(C_{1}\right) P\left(C_{2}\right) P\left(C_{3}\right)
$$

More generally, we say the n events, $C_{1}, C_{2}, \ldots, C_{n}$, are mutually independent if for any collection of distinct integers, $d_{1}, d_{2}, \ldots, d_{k}$, from $\{1,2, \ldots, n\}$, it holds that

$$
P\left(C_{d_{1}} \cap C_{d_{2}} \cap \cdots \cap C_{d_{k}}\right)=P\left(C_{d_{1}}\right) P\left(C_{d_{2}}\right) \cdots P\left(C_{d_{k}}\right)
$$

Example

Suppose a circuit board contains 3 modules. The probability that the first module works properly is 0.98 , while the second and third modules work properly with probability 0.95 and 0.92 , respectively. Modules are independent.
1 Find the probability that all 3 modules work properly.

$$
\begin{aligned}
P\left(W_{1} \text { and } W_{2} \text { and } W_{3}\right) & \stackrel{\text { indep }}{=} P\left(W_{1}\right) P\left(W_{2}\right) P\left(W_{3}\right) \\
= & (0.98)(0.95)(0.92)=0.8565
\end{aligned}
$$

2 Find the probability that one or more modules work.

$$
\begin{aligned}
P(\text { one or more work }) & =1-P(0 \text { work }) \\
& \stackrel{\text { indep }}{=} 1-P\left(W_{1}^{c}\right) P\left(W_{2}^{c}\right) P\left(W_{2}^{c}\right) \\
& =1-(1-0.98)(1-0.95)(1-0.92)
\end{aligned}
$$

Chapter 1 Probability and Distributions
 1.5 Random Variables

Definition of random variable

Definition A random variable X is a map from the sample space \mathcal{C} to the real set \mathcal{R}. It assigns to each element $c \in \mathcal{C}$ one and only one value $X(c)=x$.
$1 X$ induces a new sample space:

$$
\mathcal{D}=\{x=X(c): c \in \mathcal{C}\} \subset \mathbb{R}
$$

Example 1: Coin flip: $\mathcal{C}=(T, H)$, and we create $X(T)=0$, $X(H)=1$.
Example 2: $\mathcal{C}=\left\{c_{1}, \ldots, c_{n}\right\}$, students at the Ulowa. $X\left(c_{i}\right)=c_{i}$'s height and $Y\left(c_{i}\right)=c_{i}$'s weight.
$2 X$ induces a probability set function on \mathcal{R} :

$$
P_{X}(B)=P\{c \in \mathcal{C}: X(c) \in B\} \quad \text { for } B \subset \mathbb{R}
$$

Consider $D \in \mathcal{D}$. We have

$$
P(X \in D)=P(\{c \in \mathcal{C}: X(c) \in D\}) .
$$

Example

Flip a coin twice. Let $X=$ total number of heads. The sample space is $\mathcal{C}=\{H H, H T, T H, T T\}$ and all outcomes are equally likely, so

$$
\begin{array}{rccc}
x: & 0 & 1 & 2 \\
P(X=x): & \frac{1}{4} & \frac{2}{4} & \frac{1}{4}
\end{array}
$$

Discrete Random Variables

Discrete random variables

Definition

A random variable X is discrete if it can assume a finite or countably infinite (i.e. you can create a one-to-one correspondence with the positive integers) number of values, then X is a discrete random variable.

Example

1 Let X be the number of broken eggs in a dozen randomly selected eggs.
Possible values for X are $x=0,1, \ldots, 12$, so X is discrete.
2 Let X be the number of accidents at an intersection in a year. Possible values for X are $x=0,1,2, \ldots$, so X is discrete.
3 Flipping a coin until you obtain Head.
Possible values for X are $x=1,2, \ldots$, so X is discrete.

Probability mass function

For the discrete random variables, the probability mass function (pmf)

$$
p_{X}\left(d_{i}\right)=P\left(X=d_{i}\right) \quad i=1,2 \ldots,
$$

determines the probability set function P_{X}.

The pmf $p_{X}(x)$ has the following properties,
$10 \leq p_{X}(x) \leq 1$,
$2 \sum_{x \in \mathcal{D}} p_{X}(x)=1$,
$3 P[X \in A]=\sum_{x \in A} p_{X}(x)$.

Definition

The support of a discrete random variable is $\{x: P(X=x)>0\}$, sometimes denoted S

Suppose we have a bowl with 1 chip labeled "1", 2 chips labeled " 2 ", and 3 chips labeled " 3 ". Draw 2 chips without replacement. Let $X=$ sum of the two draws.
1 Find the probability mass function (p.m.f.) of X.

$$
\begin{array}{rcccc}
x: & 3 & 4 & 5 & 6 \\
p_{X}(x)=P(X=x): & \frac{2}{15} & \frac{4}{15} & \frac{6}{15} & \frac{3}{15}
\end{array}
$$

2 Find the probability that the sum of the two draws is 5 or more.

$$
P(X \geq 5)=P(X=5)+P(X=6)=\frac{9}{15}
$$

3 Find the probability that the sum equals 6 given that the sum is 4 or more.

$$
P(X=6 \mid X \geq 4)=\frac{P(X=6 \cap X \geq 4)}{P(X \geq 4)}=\frac{P(X=6)}{P(X \geq 4)}=\frac{3}{13} .
$$

4 Find the probability that the sum is 5 or less given that the sum is more than 4.

$$
P(X \leq 5 \mid X>4)=\frac{P(X \leq 5 \cap X>4)}{P(X>4)}=\frac{P(X=5)}{P(X>4)}=\frac{2}{3} .
$$

Cumulative distribution function

Let X be a random variable. Then its cumulative distribution function (cdf) is defined by

$$
F_{X}(x)=P_{X}((-\infty, x])=P(X \leq x)
$$

For a discrete random variable, this is a step function.

$$
F_{X}\left(x_{0}\right)=\sum_{x \leq x_{0}} P_{X}(X=x) .(\text { cdf is sum of pmf })
$$

For the previous example
given the pmf

Continuous Random Variables

Continuous random variables

Definition

A random variable is a continuous random variable if its cumulative function $F_{X}(x)$ is a continuous function for all $x \in \mathbb{R}$.

The cumulative distribution function (cdf) defined for the discrete random variables can be used to describe continuous random variables too.

Example

Let X denote a real number chosen at random between 0 and 1 . Since any number can be chosen equally likely, it is reasonable to assume

$$
\begin{equation*}
P_{X}[(a, b)]=b-a, \quad \text { for } 0<a<b<1 \tag{1}
\end{equation*}
$$

Describe its cdf.

Probability density function

- The notion of probability mass function (pmf) defined for discrete random variables does NOT work here:

$$
F_{X}(x)-F_{X}(x-)=0 \forall x \in \mathbb{R} \text {, so } P(X=x)=0 \forall x \in \mathbb{R} .
$$

- Instead, for the continuous case, if there is a non-negative function f_{X} such that

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t, \text { for all }-\infty<x<\infty, \text { (cdf is integral of pdf) }
$$

- We call f_{X} the probability density function (pdf) of the random variable X. It is easy to see that the following relation usually holds:

$$
f_{X}(x)=F_{X}^{\prime}(x), \quad \text { for all }-\infty<x<\infty
$$

A pdf $f_{X}(x)$ always has the properties
$1 f(x) \geq 0 \forall x \in \mathbb{R}$.
2. $\int_{\mathbb{R}} f(x) d x=1$.

3 If $A \subset \mathbb{R}$, then $P(A)=\int_{A} f(x) d x$. In other word,

$$
P(a<X<b)=\int_{a}^{b} f(x) d x
$$

Definition

The support of a continuous random variable is $\left\{x: f_{X}(x)>0\right\}$, sometimes denoted S

Let

$$
f(x)= \begin{cases}k\left(1-x^{2}\right), & -1<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find
1 the constant k such that $f(x)$ is a pdf.
$2 P(-0.5<X<0.5)$.
$3 P(X \leq 0.1)$.
$4 P(X>0.7 \mid X>0.1)$.
5 Evaluate $F(x)$.

Solution:

1 We must have

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{-1}^{1} k\left(1-x^{2}\right) d x=k \int_{-1}^{1} 1-x^{2} d x
$$

Thus $k \cdot \frac{4}{3}=1$ and $k=\frac{3}{4}$.
2 By the definition of PDF, we have

$$
P(-0.5<X<0.5)=\int_{-0.5}^{0.5} \frac{3}{4}\left(1-x^{2}\right) d x=\frac{11}{16}=0.6875 .
$$

3 $P(X \leq 0.1)=P(X<0.1)=\int_{-1}^{0.1} \frac{3}{4}\left(1-x^{2}\right) d x=0.57475$.
4 For r.v.'s, the convention is to use comma instead of \cap.

$$
\begin{aligned}
P(X>0.7 \mid X>0.1) & =\frac{P(X>0.7, X>0.1)}{P(X>0.1)} \\
& =\frac{P(X>0.7)}{P(X>0.1)}=\frac{\int_{0.7}^{1} \frac{3}{4}\left(1-x^{2}\right) d x}{\int_{0.1}^{1} \frac{3}{4}\left(1-x^{2}\right) d x}=0.143
\end{aligned}
$$

Percentile \& quartile

Definition

Let X be a continuous-type random variable with pdf $f(x)$ and cdf $F(x)$. The $(100 p)$ th percentile is a number π_{p} such that the area under $f(x)$ to the left of π_{p} is p. That is,

$$
p=\int_{-\infty}^{\pi_{p}} f(x) d x=F\left(\pi_{p}\right)
$$

The 50th percentile is called the median ($m=\pi_{0.50}$). The 25th and 75th percentiles are called the first and third quartiles, respectively, denoted by $q_{1}=\pi_{0.25}$ and $q_{3}=\pi_{0.75}$. Of course, the median $m=\pi_{0.50}=q_{2}$ is also called the second quartile.

Example

Let Y be a continuous random variable with probability density function given by

$$
f(y)=\left\{\begin{array}{lc}
3 y^{2} & 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the first, second and third quartiles.
Solution:

$$
\begin{array}{rlrl}
\int_{0}^{\pi_{0.25}} 3 y^{2} d y & =1 / 4, & \pi_{0.25}=1 / \sqrt[3]{4} \\
\int_{0}^{\pi_{0.5}} 3 y^{2} d y=1 / 2, & \pi_{0.5}=1 / \sqrt[3]{2} \\
\int_{0}^{\pi_{0.75}} 3 y^{2} d y=3 / 4, & \pi_{0.75}=\sqrt[3]{3} / \sqrt[3]{4}
\end{array}
$$

Basic Properties of CDF (for both discrete and continuous r.v.)

Theorem 1.5.2

Let X be a random variable with $\operatorname{cdf} F_{X}$. Then,

$$
P_{X}(a, b]=P(a<X \leq b)=F_{X}(b)-F_{X}(a)
$$

Proof.

It holds that

$$
\{-\infty<X \leq b\}=\{-\infty<X \leq a\} \cup\{a<X \leq b\}
$$

The theorem follows from the third axiom of the probability since the two sets on the right-hand side are disjoint.

Example 1.5.7 \& 1.5.8

Determine the constant c and the probability $P(2<X \leq 4)$ in the following questions:
$1 X$ has a pmf

$$
p_{X}(x)= \begin{cases}c x & x=1,2, \ldots, 10 \\ 0 & \text { otherwise }\end{cases}
$$

$2 X$ has a pdf

$$
f_{X}(x)= \begin{cases}c x & 0<x<10 \\ 0 & \text { otherwise }\end{cases}
$$

Example

Consider an urn which contains balls each with one of the numbers $1,2,3,4$ on it. Suppose there are i balls with the number i for $i=1,2,3,4$. Suppose one ball is drawn at random. Let X be the number on the ball.
(a) Determine the pmf of X;
(b) Compute $P(X \leq 3)$;
(c) Determine the cdf of X.

Theorem 1.3.6 Continuity of Probability

For an increasing sequence of events $\left\{C_{n}\right\}$, define its limit as $\lim _{n \rightarrow \infty} C_{n}=\bigcup_{n=1}^{\infty} C_{n}$. It holds that

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\bigcup_{n=1}^{\infty} C_{n}\right)
$$

Symmetrically, for an decreasing sequence of events $\left\{C_{n}\right\}$, define its limit as $\lim _{n \rightarrow \infty} C_{n}=\bigcap_{n=1}^{\infty} C_{n}$. It holds that

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\bigcap_{n=1}^{\infty} C_{n}\right)
$$

Theorem 1.5.1

Let X be a random variable with cdf F.
(a) If $a<b$, then $F(a) \leq F(b)$.
(b) $\lim _{x \rightarrow-\infty} F(x)=0$.
(c) $\lim _{x \rightarrow \infty} F(x)=1$.
(d) $\lim _{x \searrow x_{0}} F(x)=F\left(x_{0}\right)$.

Proof.

(a) If $a<b$, then $\{X \leq a\} \subset\{X \leq b\}$. The result then follows from the monotonicity of the probability.
(b) If $\left\{x_{n}\right\}$ is an decreasing sequence such that $x_{n} \rightarrow-\infty$, then $C_{n}=\left\{X \leq x_{n}\right\}$ is decreasing with $\emptyset=\cup_{n=1}^{\infty} C_{n}$. From the continuity of probability theorem,

$$
\lim _{n \rightarrow-\infty} F\left(x_{n}\right)=P\left(\cap_{n=1}^{\infty} C_{n}\right)=P(\emptyset)=0
$$

Theorem 1.5.1 (cont'd)

Let X be a random variable with cdf F.
(c) $\lim _{x \rightarrow \infty} F(x)=1$.
(d) $\lim _{x \searrow x_{0}} F(x)=F\left(x_{0}\right)$ (right continuous).

Proof.

(c) If $\left\{x_{n}\right\}$ is an increasing sequence such that $x_{n} \rightarrow \infty$, then $C_{n}=\left\{X \leq x_{n}\right\}$ is increasing with $\{X \leq \infty\}=\cup_{n=1}^{\infty} C_{n}$.
From the continuity of probability theorem,

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=P\left(\cup_{n=1}^{\infty} C_{n}\right)=1
$$

(d) Let $\left\{x_{n}\right\}$ be any decreasing sequence of real numbers such that $x_{n} \downarrow x_{0}$. Then the sequence of sets $\left\{C_{n}\right\}$ is decreasing and $\cap_{n=1}^{\infty} C_{n}=\left\{X \leq x_{0}\right\}$. The continuity of probability theorem implies that

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=P\left(\cap_{n=1}^{\infty} C_{n}\right)=F\left(x_{0}\right)
$$

Theorem 1.5.3

For any random variable,

$$
P(X=x)=F_{X}(x)-F_{X}(x-), \forall x \in \mathbb{R} .
$$

Proof.

For any x, we have $\{x\}=\bigcap_{n=1}^{\infty}\left(x-\frac{1}{n}, x\right]$. By the continuity of the probability function,

$$
\begin{aligned}
P(X=x) & =P\left[\bigcap_{n=1}^{\infty}\left\{x-\frac{1}{n}<X \leq x\right\}\right] \\
& =\lim _{n \rightarrow \infty} P\left[x-\frac{1}{n}<X \leq x\right] \\
& =\lim _{n \rightarrow \infty}\left[F_{X}(x)-F_{X}(x-1 / n)\right] \\
& =F_{X}(x)-F_{X}(x-) .
\end{aligned}
$$

Summary

- Random variable X is a function from a sample space \mathcal{C} into the real numbers \mathbb{R}.
- Every random variable is associated with a cdf:

$$
F_{X}(x)=P_{X}(X \leq x) \text { for }-\infty<x<\infty
$$

- $F_{X}(x)$ is defined for all x, not just those in its domain \mathcal{D}.
- Notation wise, random variables will always be denoted with uppercase letters and the realized values of the variable will be denoted by the corresponding lowercase letters. Thus the random variable X can take the value x.
- We say a random variable X is discrete if $F_{X}(x)$ is a step function: $F\left(x_{0}\right)=\sum_{x \leq x_{0}} P(X=x)$.
- We say a random variable X is continuous if $F_{X}(x)$ is a continuous function: $F\left(x_{0}\right)=\int_{-\infty}^{x_{0}} f(x) d x$.

Chapter 1 Probability and Distributions
 1.6 Discrete Random Variables

Review of discrete random variable

$\mathcal{D}=\{x=X(c): c \in \mathcal{C}\}$ is either finite or countable.
(" \mathcal{D} is countable" means that there is a one-to-one correspondence between \mathcal{D} and the positive integers.)

The support of a discrete random variable X is $\left\{x: p_{X}(x)>0\right\}=$ (In English: the support of X consists of all points x such that $p_{X}(x)>0$.)

Example: geometric distribution

Consider a sequence of independent flips of a coin, each resulting in a head with probability p and a tail with probability $q=1-p$. Let the random variable X be the number of tails before the first head appears. Determine the pmf of X and the probability that X is even.

Solution:

$$
\begin{aligned}
P(X=x)=q^{x} p, & \quad x=0,1,2, \ldots \\
\sum_{k=0}^{\infty} P(X=2 k) & =p \sum_{k=0}^{\infty}\left(q^{2}\right)^{k} \\
& =p /\left(1-q^{2}\right)
\end{aligned}
$$

Example 1.6.2: hypergeometric distribution

A lot consists of m good fuses and n defective fuses. Choose k, $k \leq \min \{m, n\}$, fuses at random from the lot. Let the random variable X be the number of defective fuses among the k. Determine the pmf of X.

Solution:

$$
p_{X}(x)= \begin{cases}\frac{\binom{m}{x}\binom{n}{k-x}}{\binom{m+n}{k}} & \text { for } x=0,1, \ldots, k, \\ 0 & \text { otherwise }\end{cases}
$$

Transformation of discrete random variables

Let X be a discrete random variable with pmf $p_{X}(x)$ and support $\mathcal{D}_{\mathcal{X}}=\left\{x: p_{X}(x)>0\right\}$. Suppose we are interested in $Y=g(X)$. Then Y is also a random variable, and we want to determine its pmf.

Let $\mathcal{D}_{Y}=\left\{y: y=g(x)\right.$ for some $\left.x \in \mathcal{D}_{X}\right\}$. We have

$$
\begin{aligned}
p_{Y}(y) & =P(Y=y) \\
& =P(g(X)=y) \\
& =\sum_{x: g(x)=y} p_{X}(x) \\
& =p_{X}\left(g^{-1}(y)\right) \quad \text { if } g \text { is one to one } \\
& =P\left(X \in g^{-1}(y)\right),
\end{aligned}
$$

where $g^{-1}(y)=\{x: g(x)=y\}$.

Example Consider the geometric random variable X
pmf: $P(X=x)=q^{x} p, x=0,1,2, \ldots$..
1 Let Y be the number of flips needed to obtain the first head.
Then $Y=X+1$.
$Y=g(X)=X+1$ and $X=g^{-1}(Y)=Y-1$.
Determine the pmf of Y.
Solution:

$$
p_{Y}(y)=p_{X}\left(g^{-1}(y)\right)=q^{y-1} p .
$$

2 Let $Y=(X-2)^{2}$. Determine the pmf of Y. Solution:

$$
p_{Y}(y)= \begin{cases}p_{X}(2) & \text { if } y=0 \\ p_{X}(1)+p_{X}(3) & \text { if } y=1 \\ p_{X}(0)+p_{X}(4) & \text { if } y=4 \\ p_{X}(\sqrt{y}+2) & \text { if } y \geq 9,16,25 \ldots\end{cases}
$$

Chapter 1 Probability and Distributions

1.7 Continuous Random Variables

Review of continuous random variable

- Recall that a random variable is continuous if its cdf $F_{X}(x)$ is a continuous function for all $x \in \mathbb{R}$. Hence, if the random variable X is continuous, then
$P(X=x)=F_{X}(x)-F_{X}(x-)=0, \quad$ for all $x \in \mathbb{R}$. This means that there is no point of discrete mass.
- Recall that a nonnegative function f_{X} is a pdf of the random variable X if

$$
\int_{-\infty}^{x} f_{X}(t) d t=F_{X}(x), \quad \text { for all }-\infty<x<\infty
$$

- The support of a continuous random variable X is $\left\{x: f_{X}(x)>0\right\}=\mathcal{D}$.
(In English: the support of X consists of all points x such that $f_{X}(x)>0$.)

Example 1.7.1

Suppose we select a point at random in the interior of a circle of radius 1 . Let X be the distance of the selected point from the origin. Determine the cdf and pdf of X and the probability that the selected point falls in the ring with radius $1 / 4$ and $1 / 2$.

Solution:

$$
\begin{aligned}
P(X \leq x) & =x^{2}, \\
F_{X}(x) & = \begin{cases}0, & x<0 \\
x^{2}, & 0 \leq x<1, \\
1, & x \geq 1\end{cases} \\
f_{X}(x) & = \begin{cases}2 x, & 0 \leq x<1 \\
0, & \text { otherwise }\end{cases} \\
P(1 / 4<X \leq 1 / 2) & =\int_{1 / 4}^{1 / 2} 2 t d t=3 / 16
\end{aligned}
$$

Example 1.7.2 (Exponential Distribution)

Let the random variable X be the time in seconds between incoming telephone calls at a busy switchboard. Suppose that X has a pdf

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

This is an exponential distribution with parameter/rate $\lambda>0$. Knowing that the parameter $\lambda=1 / 4$, compute the probability that the time between successive phone calls exceeds 4 seconds. Solution:

$$
P(X>4)=\int_{4}^{\infty} \frac{1}{4} e^{-x / 4} d x=e^{-1}=0.3679
$$

Transformation of Continuous R.V.

Sometimes we know the distribution of a continuous random variable X. We are interested in the distribution of a random variable Y which is a transformation (function) of X, say $Y=g(X)$, and we want to determine the distribution of Y.

Example 1.7.3. Let X be the random variable with the pdf

$$
f_{X}(x)= \begin{cases}2 x & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Determine the cdf and pdf of $Y=X^{2}$.
Solution:

$$
\begin{gathered}
F_{Y}(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=F_{X}(\sqrt{y})=y \\
f_{Y}(y)= \begin{cases}1 & 0<y<1 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Theorem 1.7.1: Transformation of continuous r.v.

Assume that X is a continuous random variable with pdf $f_{X}(x)$ and support S_{X}. Suppose $Y=g(X)$, where g is one-to-one. Then,

$$
f_{Y}(y)=f_{X}(h(y))\left|h^{\prime}(y)\right|, \quad \text { where } h=g^{-1} .
$$

Proof: Suppose that g (and thus h) is monotone increasing. Then

$$
F_{Y}(y)=P(Y \leq y)=P[g(X) \leq y]=P[X \leq h(y)]=F_{X}[h(y)],
$$

Therefore,
$f_{Y}(y)=F_{Y}^{\prime}(y)=F_{X}^{\prime}[h(y)] \cdot h^{\prime}(y)=f_{X}[h(Y)] h^{\prime}(y)=f_{X}[h(Y)] \frac{d x}{d y}$.
Note that since h is increasing $h^{\prime}(y)$ is positive on S_{Y}.
$\left(h^{\prime}(y)=\left|h^{\prime}(y)\right|\right)$.

Proof (cont'd)

Suppose that g (and therefore h) is monotone decreasing. Then,

$$
F_{Y}(y)=P(Y \leq y)=P[g(X) \leq y]=P[X \geq h(y)]=1-F_{X}[h(y)]
$$

Therefore,

$$
f_{Y}(y)=F_{Y}^{\prime}(y)=-F_{X}^{\prime}[h(y)] \cdot h^{\prime}(y)=f_{X}[h(Y)]\left(-h^{\prime}(y)\right)
$$

Note that since h is decreasing $h^{\prime}(y)$ is negative on S_{Y}. $\left(-h^{\prime}(y)=\left|h^{\prime}(y)\right|\right)$.

We refer to $d x / d y=J$ as the Jacobian of the transformation.

Example

Assume that $f(x)=1$ when $0<x<1$ and 0 otherwise.
Therefore $S_{X}=(0,1)$.
1 Let $Y=X^{2} . g(x)=x^{2}$ is a one-to-one function on $(0,1)$. $h(y)=y^{1 / 2}$, and $h^{\prime}(y)=\frac{1}{2} y^{-1 / 2}$. Therefore,

$$
f_{Y}(y)=f_{X}(h(y))\left|h^{\prime}(y)\right|=1 \cdot \frac{1}{2} y^{-1 / 2}=\frac{1}{2} y^{-1 / 2}
$$

when $0<y<1$. $\left(S_{Y}=(0,1)\right)$.
2 Suppose now that $Y=g(X)=-\log (X)$. Then $h(y)=\exp (-y)$, and $\left|h^{\prime}(y)\right|=\exp (-y)$. Therefore

$$
f_{Y}(y)=f_{X}(h(y))\left|h^{\prime}(y)\right|=1 \cdot \exp (-y)=\exp (-y) \quad y>0 .
$$

You can verify that $\int_{0}^{\infty} f_{Y}(y) d y=1$.

Extended theorem: Transformation of continuous r.v.

Assume X is a continuous random variable with pdf $f_{X}(x)$ and support S_{X}. Suppose $Y=g(X)$ and the support has a partition $A_{1}, \ldots A_{k}$. Further, suppose there exist functions $g_{1}(x), \ldots, g_{k}(x)$ such that

- $g(x)=g_{i}(x)$, for $x \in A_{i}$,
- $g_{i}(x)$ is monotone on each $x \in A_{i}$,
- define $\mathcal{Y}_{i}=\left\{y=g_{i}(x), \forall x \in A_{i}\right\}$, then $\mathcal{Y}_{1}=\mathcal{Y}_{2}=\ldots=\mathcal{Y}_{k}$.

Then

$$
F_{Y}(y)= \begin{cases}\sum_{i=1}^{k} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d}{d y} g_{i}^{-1}(y)\right|, & y \in \mathcal{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Example

- Assume that $f(x)=1 / 2$ when $-1<x<1$ and 0 otherwise. Therefore $S_{X}=(-1,1)$.
- Let $Y=X^{2}$ and $g(x)=x^{2}$. Then $g_{1}(x)=x^{2}$ is a one-to-one function on $(-1,0)$ and $g_{2}(x)=x^{2}$ is one-to-one on $(0,1)$.
We see $\mathcal{Y}_{i}=\left\{y: y=g_{i}(x), x \in A_{i}\right\}=(0,1)$.
- Then $h_{1}(y)=g_{1}^{-1}(y)=-y^{1 / 2}$, and $h_{1}^{\prime}(y)=-\frac{1}{2} y^{-1 / 2}$. $h_{2}(y)=g_{2}^{-1}(y)=y^{1 / 2}$, and $h_{2}^{\prime}(y)=\frac{1}{2} y^{-1 / 2}$.
- Therefore,

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(h_{1}(y)\right)\left|h_{1}^{\prime}(y)\right|+f_{X}\left(h_{2}(y)\right)\left|h_{2}^{\prime}(y)\right| \\
& =\frac{1}{2} \cdot \frac{1}{2} y^{-1 / 2}+\frac{1}{2} \cdot \frac{1}{2} y^{-1 / 2} \\
& =\frac{1}{2} y^{-1 / 2}
\end{aligned}
$$

when $0<y<1$. $\left(S_{Y}=(0,1)\right)$.

Mixture of Discrete and Continuous R.V.

Example 1.7.6

Study the cdf

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ \frac{x+1}{2} & 0 \leq x<1 \\ 1 & 1 \leq x\end{cases}
$$

- What is $P(-3<X \leq 1 / 2)$.
- What is $P(X=0)$.
- What is $P(-3<X \leq 0)$.
- What is $P(-3<X<0)$.

It always holds from the definition of cdf that

$$
P(a<X \leq b)=P(X \leq b)-P(X \leq a)=F(b)-F(a)
$$

Example 1.7.7

Let X equals the size of a wind loss in millions of dollars, and suppose it has the cdf

$$
F_{X}(x)= \begin{cases}0 & -\infty<x<0 \\ 1-\left(\frac{10}{10+x}\right)^{3} & 0 \leq x<\infty\end{cases}
$$

If losses beyond $\$ 10,000,000$ are reported as 10 , then the cdf of this censored distribution is

$$
F_{Y}(y)= \begin{cases}0 & -\infty<y<0 \\ 1-\left(\frac{10}{10+y}\right)^{3} & 0 \leq y<10 \\ 1 & 10 \leq y<\infty\end{cases}
$$

where $Y=\min (X, 10)$,

- This is an example of a mixed continuous and discrete random variable. The particular example chosen is known as censoring because it creates the discrete part by lumping one end of the distribution into a single point.
- The continuous part of the random variable has the same pdf as the pdf for X on $(0,10)$, i.e.

$$
\frac{3 \cdot 10^{3}}{(y+4)^{4}} 1_{(0,10)}(y)
$$

- The discrete part has the pmf

$$
P(Y=10)=1-F_{X}(10)=\left(\frac{10}{20}\right)^{3}=\frac{1}{8}
$$

Chapter 1 Probability and Distributions

1.8 Expectation of a Random Variable

Definition of expectation

Let X be a random variable.

- If X is continuous with pdf $f(x)$ then the expectation of X is

$$
\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

provided that $\int_{-\infty}^{\infty}|x| f(x) d x<\infty$.
We say the expectation does not exist if $\int_{-\infty}^{\infty}|x| f(x) d x=\infty$.

- If X is discrete with pmf $p(x)$ then the expectation of X is

$$
\mathrm{E}(X)=\sum_{x} x p(x)
$$

provided that $\sum_{x}|x| p(x)<\infty$.
We say the expectation does not exist if $\sum_{x}|x| p(x)=\infty$.

- Sometimes the expectation of X is called the mathematical expectation of X, the expected value of X, or the mean of X. We often denote $E(X)$ by $\mu(\mu=E(X))$.

Example

Suppose we have a bowl with 1 chip labeled "1", 2 chips labeled " 2 ", and 3 chips labeled " 3 ". Draw 2 chips without replacement. Let $X=$ sum of the two draws. The pmf (derived before) is as follows:

$$
\begin{array}{rcccc}
x: & 3 & 4 & 5 & 6 \\
p_{X}(x)=P(X=x): & \frac{2}{15} & \frac{4}{15} & \frac{6}{15} & \frac{3}{15}
\end{array}
$$

We now find the expected value (mean) of the random variable X.
$\mu=\sum_{x=3}^{6} x p(x)=3\left(\frac{2}{15}\right)+4\left(\frac{4}{15}\right)+5\left(\frac{6}{15}\right)+6\left(\frac{3}{15}\right)=4.667$.

If the random variable X was observed many times and the realizations were recorded, the expected value, μ, describes the mean of the observed realizations. If I repeatedly drew 2 chips from the bowl without replacement and recorded the sum of the two draws, the mean of the recorded sums would equal $\mu=4.667$.

Exponential distribution

Let X be a random variable that follows the exponential distribution with parameter λ, that is,

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Compute its expectation.

Solution:

$$
\begin{aligned}
\mathrm{E} X & =\int_{0}^{\infty} \lambda x e^{-\lambda x} d x \\
& =-\int_{0}^{\infty} x d e^{-\lambda x} \\
& =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda x} d x \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Two formulations of exponential distribution

1 The parameter λ is defined as rate:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

In this case, $E X=1 / \lambda$.
2 The parameter λ is defined as scale:

$$
f_{X}(x)= \begin{cases}\frac{1}{\lambda} e^{-\frac{1}{\lambda} x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

In this case, $E X=\lambda$.
3 The first case is used in this course.

Expectation of a Function of X

Let X be a random variable and let $Y=g(X)$ for some function g. We can calculate $\mathrm{E} Y=\mathrm{E} g(X)$ in two different ways.
Suppose X is discrete and $\sum_{x \in \mathcal{D}_{X}}|g(x)| p_{X}(x)<\infty$, then
1

$$
\mathrm{E} g(X)=\sum_{x \in \mathcal{D}_{X}} g(x) p_{X}(x)
$$

2 Let $p_{Y}(y)$ be the pmf of Y. Then

$$
\mathrm{E} g(X)=\mathrm{E} Y=\sum_{y \in \mathcal{D}_{Y}} y p_{Y}(y)
$$

Suppose X is continuous and $\int_{-\infty}^{\infty}|g(t)| f_{X}(t) d t<\infty$, then
1

$$
\mathrm{E} g(X)=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

2 Let $Y=g(X)$ and let $f_{Y}(y)$ be the pdf of Y. Then $\mathrm{E} g(X)=\mathrm{E} Y=\int_{-\infty}^{\infty} y f_{Y}(y) d y$.

Assume X has a pdf $f(x)=1$, for $0<x<1$. Let $Y=-\log X$. What is EY?

Solution:

$$
\mathrm{E} Y=\int_{0}^{1}-\log x d x=-\left.[x \log x-x]\right|_{0} ^{1}=1
$$

For a certain ore samples the proportion X of impurities per sample is a random variable with density function given by

$$
f(x)= \begin{cases}\frac{3}{2} x^{2}+x & 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

The dollar value of each sample is $Y=5-0.5 X$. Find the mean of X and Y.

Solution:

$$
\begin{gathered}
\mathrm{E} X=\int_{0}^{1} x\left(\frac{3}{2} x^{2}+x\right) d x=\frac{17}{24}=0.708 \\
\mathrm{E} Y=\int_{0}^{1}(5-0.5 x)\left(\frac{3}{2} x^{2}+x\right) d x=5-\frac{17}{48}=4.646
\end{gathered}
$$

Linearity of expectation

Theorem (1.8.2)

Let $g_{1}(X)$ and $g_{2}(X)$ be functions of a random variable X.
Suppose the expectations of $g_{1}(X)$ and $g_{2}(X)$ exist.
Then for any constants k_{0}, k_{1} and k_{2}, the expectation of $k_{0}+k_{1} g_{1}(X)+k_{2} g_{2}(X)$ exists and it is given by

$$
E\left[k_{0}+k_{1} g_{1}(X)+k_{2} g_{2}(X)\right]=k_{0}+k_{1} E\left[g_{1}(X)\right]+k_{2} E\left[g_{2}(X)\right] .
$$

Corollary: If $g(X)=a+b X$, i.e. g is a linear function, then

$$
E[g(X)]=a+b E(X)=g[E(X)]
$$

Example

Assume X has a pdf $f(x)=1$, for $0<x<1$.

$$
E\left(X+3 X^{2}\right)=E(X)+3 E\left(X^{2}\right)=\frac{1}{2}+3 \cdot \frac{1}{3}=\frac{3}{2}
$$

Warning: If g is a nonlinear function, then in general $E[g(X)] \neq g[E(X)]$. For the previous example

$$
E\left(X^{2}\right)=\frac{1}{3} \neq(E(X))^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

Which one is larger? Jensen inequality...

Example

Let X have a pdf $f(x)=3 x^{2}, 0<x<1$, zero elsewhere. Consider a random rectangle whose sides are X and $(1-X)$. Determine the expected value of the area of the rectangle. Solution:

$$
\int_{0}^{1} 3 x^{2} \cdot x(1-x) d x=0.15
$$

Suppose X is a random variable such that $\mathrm{E}\left(X^{2}\right)<\infty$. Consider the function

$$
h(b)=\mathrm{E}\left[(X-b)^{2}\right] .
$$

The value of b that minimizes $h(b)$ is $\mathrm{E} X$.

Let X be a continuous random variable with cdf $F(x)$. Determine the expectation of $F(X)$.

Chapter 1 Probability and Distributions

1.9 Some Special Expectations

Mean and variance

Definition (Mean)

Let X be a random variable whose expectation exists. The mean value μ of X is defined to be $\mu=\mathrm{E}(X)$.

Definition (Variance)
Let X be a random variable with finite mean μ. Then the variance of X is defined to be $\sigma^{2}=\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]$.
The positive square root $\sigma=\sqrt{\operatorname{Var}(X)}$ is called the standard deviation of X.

Computation of $\operatorname{Var}(X)$:

$$
\operatorname{Var}(X)=\mathrm{E} X^{2}-(\mathrm{E} X)^{2}
$$

which is because E is a linear operator.

Coin-flipping example

Define $X=1$ if it is head and $X=0$ if it is tail.
Assume $P(X=1)=p$ and then $P(X=0)=1-p$.
Find the mean and variance of X.
Solution:

$$
\begin{aligned}
\mathrm{E}(X) & =1 \cdot p+0 \cdot(1-p)=p \\
\mathrm{E}\left(X^{2}\right) & =1^{2} \cdot p+0^{2} \cdot(1-p)=p \\
\sigma^{2} & =p-p^{2}=p(1-p) . \quad \sigma=\sqrt{p(1-p)}
\end{aligned}
$$

Assume $a>0$ and let

$$
f_{X}(x)= \begin{cases}1 / a & 0<x<a \\ 0 & \text { otherwise }\end{cases}
$$

Solution:

$$
\begin{aligned}
\mu & =\int_{0}^{a} x \frac{1}{a} d x=\frac{a}{2}, \\
\mathrm{E}\left(X^{2}\right) & =\int_{0}^{a} x^{2} \frac{1}{a} d x=\frac{a^{2}}{3}, \\
\sigma^{2} & =\frac{a^{2}}{3}-\frac{a^{2}}{4}=\frac{a^{2}}{12} .
\end{aligned}
$$

Example 1.9.2

If X has the pdf

$$
f_{X}(x)= \begin{cases}\frac{1}{x^{2}} & 1<x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

then the mean value of X does not exist:

$$
\begin{aligned}
\int_{1}^{\infty} x \cdot \frac{1}{x^{2}} d x & =\int_{1}^{\infty} \frac{1}{x} d x \\
& =\infty
\end{aligned}
$$

Linear transformation

- Suppose that $Y=a+b X$. Then,

1 The mean of Y is $\mathrm{E}(Y)=\mu_{Y}=a+b \mathrm{E}(X)=a+b \mu_{X}$.
2 The variance of Y is

$$
\operatorname{Var}(Y)=\mathrm{E}\left(Y-\mu_{Y}\right)^{2}=\mathrm{E}\left(b^{2}\left(X-\mu_{X}\right)^{2}\right)=b^{2} \sigma_{X}^{2}
$$

In fact,

$$
\operatorname{Var}(Y)=\operatorname{Var}(a+b X)=\operatorname{Var}(b X)=b^{2} \operatorname{Var}(X)
$$

3 The standard deviation of Y is $|b| \sigma_{X}$.

- Let the random variable X have a mean μ and a standard deviation σ. Show that

$$
\mathrm{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{2}\right]=1
$$

Expectation of non-negative random variables

- Let X be a random variable of the discrete type with pmf $p(x)$, $x=0,1,2, \ldots$. It holds that

$$
\mathrm{E}(X)=\sum_{x=0}^{\infty}[1-F(x)]
$$

- Let X be a continuous random variable with pdf $f(x)$. Suppose that $f(x)=0$ for $x<0$. It holds that

$$
\mathrm{E}(X)=\int_{0}^{\infty}[1-F(x)] d x
$$

Proof for discrete case

$$
\begin{aligned}
& \sum_{x=0}^{\infty}[1-F(x)]=\sum_{x=0}^{\infty}[1-P(X \leq x)]=\sum_{x=0}^{\infty} P(X>x) \\
& =\sum_{x=0}^{\infty} \sum_{t=x+1}^{\infty} P(X=t) \\
& =\sum_{x=0}^{\infty} \sum_{t=0}^{\infty} 1_{t>x} P(X=t)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{t=0}^{\infty} t P(X=t)=\mathrm{E}(X) \text {. }
\end{aligned}
$$

Proof for continuous case

In this 4000-level class, we only prove

$$
\mathrm{E}(X)=\int_{0}^{b}[1-F(x)] d x
$$

where the support of X is $(0, b)$ and $b<\infty$, although the equality holds for $b=\infty$.

Proof.

$$
\begin{aligned}
\int_{0}^{b}[1-F(x)] d x & =\left.(x-x F(x))\right|_{0} ^{b}+\int_{0}^{b} x f(x) d x \\
& =\int_{0}^{b} x f(x) d x \\
& =\mathrm{E}(X)
\end{aligned}
$$

Moments

- The m'th raw moment of X is defined as $\mathrm{E}\left(X^{m}\right)$ if the expectation exists.
- The m^{\prime} 'th central moment of X is defined as $\mathrm{E}(X-\mu)^{m}$ if the expectation exists.

Example

1 Coin flipping: $P(X=1)=p$,

$$
\mathrm{E}\left(X^{m}\right)=1^{m} \cdot p+0^{m}(1-p)=p
$$

2 Assume $a>0$ and let

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}1 / a & 0<x<a \\
0 & \text { otherwise }\end{cases} \\
& \mathrm{E}\left(X^{m}\right)=\int_{0}^{a} x^{m} \frac{1}{a} d x=\frac{a^{m}}{m+1}
\end{aligned}
$$

Moment generating function

- Let X be a random variable. Assume there is a positive number h such that $E[\exp (t X)]$ exists for all $t \in(-h, h)$.
- The moment generating function (mgf) of X is defined to be the function

$$
M_{X}(t)=\mathrm{E}\left(e^{t X}\right), \quad-h<t<h
$$

Example

1 Assume $P(X=0)=1-p$ and $P(X=1)=p$.

$$
M_{X}(t)=\mathrm{E}\left[e^{t X}\right]=p \cdot e^{t}+(1-p) \cdot e^{0}=p e^{t}+1-p, \text { for }-\infty<t<\infty
$$

2

$$
\begin{gathered}
f_{X}(x)= \begin{cases}1 / a & 0<x<a \\
0 & \text { otherwise }\end{cases} \\
M_{X}(t)=\mathrm{E}\left[e^{t X}\right]=\frac{1}{a} \int_{0}^{a} e^{t x} d x=\left.\frac{1}{a t} e^{t x}\right|_{0} ^{a}=\frac{e^{a t}-1}{a t}
\end{gathered}
$$

when $t \neq 0$ and $M_{X}(t)=1$ when $t=0$.

Properties of mgf

1 It is always true that $M_{X}(0)=1$.
2 The moments of X can be found (or "generated") from the successive derivatives of $M_{X}(t)$.

$$
M_{X}^{\prime}(0)=\mathrm{E}(X), \quad M_{X}^{\prime \prime}(0)=E\left(X^{2}\right), \quad M_{X}^{(n)}=E\left(X^{n}\right)
$$

- We have $M_{X}^{\prime}(0)=\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x=\mu$, since

$$
M^{\prime}(t)=\frac{d}{d t} \int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{-\infty}^{\infty} \frac{d}{d t} e^{t x} f(x) d x=\int_{-\infty}^{\infty} x e^{t x} f(x) d x
$$

- We then see

$$
M^{\prime \prime}(0)=\mathrm{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\mu^{2}+\sigma^{2}
$$

so $\sigma^{2}=\mathrm{E}\left(X^{2}\right)-\mu^{2}=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}$.

The pdf of X is

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the mgf of X and use it to find the mean and the variance. Solution:

The mgf is given as follows,

$$
M(t)=\mathrm{E} e^{t x}=\int_{0}^{\infty} e^{t x} f(x) d x=\frac{\lambda}{\lambda-t}, t<1
$$

and

$$
\begin{aligned}
M^{\prime}(t) & =\frac{\lambda}{(\lambda-t)^{2}} \\
M^{\prime \prime}(t) & =\frac{2 \lambda}{(\lambda-t)^{3}} .
\end{aligned}
$$

Thus

$$
\mu=M^{\prime}(0)=1 / \lambda, \sigma^{2}=M^{\prime \prime}(0)-\mu^{2}=2 / \lambda^{2}-1 / \lambda^{2}=1 / \lambda^{2}
$$

Theorem 1.9.1

Theorem

Let X and Y be random variables with moment generating functions M_{X} and M_{Y}, respectively, existing in open intervals about 0 . If $M_{X}(t)=M_{Y}(t)$ for all t in an interval counting $t=0$, then X and Y have identical probability distributions.

Example

Suppose X is a random variable of the continuous type with mgf

$$
M(t)=\frac{1}{1-3 t}, \quad t<\frac{1}{3} .
$$

Identify its distribution.

Solution:

The random variable X follows the exponential distribution with rate $\lambda=1 / 3$.

Characteristic function

- Distributions may not have mgf.
- Can you show the mgf of Cauchy distribution does not exist?

$$
f(x)=\frac{1}{\pi} \frac{1}{x^{2}+1},-\infty<x<\infty
$$

- Characteristic function: (not in exams)

$$
\phi(t)=\mathrm{E}\left(e^{i t X}\right), \text { for an arbitrary real value } t
$$

- Every distribution has a unique characteristic function, and $\mathrm{E}(X)=i \phi^{\prime}(0)$ and $\mathrm{E}\left(X^{2}\right)=-\phi^{\prime \prime}(0)$.
- Uniqueness of characteristic function is due to the uniqueness of Fourier transform. In fact, uniqueness of mgf comes from the uniqueness of Laplacian transform.

Chapter 1 Probability and Distributions 1.10 Important Inequalities

Chebyshev's inequality

Motivation

- The variance of a random variable tells use something about the variability of the observations about the mean.
- If a random variable has a small variance or standard deviation, we would expect most of the values to be grouped around the mean.
- For any random variable, the probability between any two values symmetric about the mean should be related to the standard deviation.

Figure 4.2: Variability of continuous observations about the mean.

Figure 4.3: Variability of discrete observations about the mean.

Chebyshev's Theorem

Theorem (1.10.3)

Suppose for a random variable $X, \mathrm{E}\left(X^{2}\right)$ exists, then for any constant $k>0$,

$$
P(\mu-k \sigma<X<\mu+k \sigma) \geq 1-\frac{1}{k^{2}}
$$

Example

A random variable X has a mean $\mu=8$, a variance $\sigma^{2}=9$, and an unknown probability distribution. Find the lower bounds of
$1 P(-4<X<20)$,
$2 P(|X-8| \geq 6)$.

Solution:

$$
\begin{aligned}
& P(-4<X<20)=P(8-4 \times 3<X<8+4 \times 3) \geq 15 / 16 \\
& \begin{aligned}
P(|X-8| \geq 6) & =1-P(|X-8|<6) \\
& =1-P(-6<X-8<6) \\
& =1-P(8-2 \times 3<X<8+2 \times 3) \leq 1 / 4
\end{aligned}
\end{aligned}
$$

Comments on Chebyshev's Theorem

- Chebyshev's theorem holds for any distribution of observations.
- For this reason, the results are usually weak. The value given by the theorem is a lower bound only.
- We know the probability of a random variable falling within two standard deviations will be no less than $3 / 4$, but we never know how much more it might actually be, unless we can determine exact probabilities.
- Chebyshev's theorem is thus called distribution-free result. The results will be less conservative when specific distributions are known.

Example

Compute $P(\mu-2 \sigma<X<\mu+2 \sigma)$, where X has the density function

$$
f(x)= \begin{cases}6 x(1-x), & 0<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

and compare with the result given in Chebyshev's theorem.

Solution:

$\mu=E(X)=6 \int_{0}^{1} x^{2}(1-x) d x=0.5, E\left(X^{2}\right)=6 \int_{0}^{1} x^{3}(1-x) d x=0.3$, which imply $\sigma^{2}=0.3-(0.5)^{2}=0.05$ and $\sigma=0.2236$. Hence,

$$
\begin{aligned}
P(\mu-2 \sigma & <X<\mu+2 \sigma)=P(0.5-0.4472<X<0.5+0.4472) \\
& =P(0.0528<X<0.9472)=6 \int_{0.0528}^{0.9472} x(1-x) d x=0.9839
\end{aligned}
$$

compared to a probability of at least 0.75 given by Chebyshev's theorem.

Jensen's inequality

Definition 1.10.1

A function ϕ defined on an interval (a, b) is said to be a convex function if for all x and y in (a, b) and all $0<\gamma<1$,

$$
\phi[\gamma x+(1-\gamma) y] \leq \gamma \phi(x)+(1-\gamma) \phi(y) .
$$

We say ϕ is strictly convex if the above inequality is strict.

If ϕ is a (strictly) convex function, then $-\phi$ is a (strictly) concave function.

Theorem 1.10.4

If ϕ is twice differentiable on (a, b), then
(a) (first-order condition) ϕ is convex if and only if

$$
\phi\left(x_{1}\right) \geq \phi\left(x_{2}\right)+\phi^{\prime}\left(x_{2}\right)\left(x_{1}-x_{2}\right) .
$$

(b) ϕ is strictly convex if and only if

$$
\phi\left(x_{1}\right)>\phi\left(x_{2}\right)+\phi^{\prime}\left(x_{2}\right)\left(x_{1}-x_{2}\right) .
$$

(c) (second-order condition) ϕ is convex if and only if $\phi^{\prime \prime}(x) \geq 0$ for all $x \in(a, b) ;$
(d) ϕ is strictly convex if and only if $\phi^{\prime \prime}(x)>0$ for all $x \in(a, b)$.
The second-order condition is usually used to check the convexity, provided that the second-order derivative exists.

Jensen's inequality

Let ϕ be a convex function on an open interval I, let X be a random variable whose support is contained in I. If $\mu=\mathrm{E}(X)$ exists then

$$
\phi[\mathrm{E}(X)] \leq \mathrm{E}[\phi(X)] .
$$

The inequality reverses if ϕ is a concave function.

Proof.

By the first-order condition,

$$
\phi(x) \geq \phi(\mu)+\phi^{\prime}(\mu)(x-\mu)
$$

Then taking expectations of both sides leads to the result. The inequality is strict if ϕ is strictly convex.

Example
We have $\mu^{2}<E\left(X^{2}\right)$ as $\phi(t)=t^{2}$ is strictly convex.

Example

Let X be a positive random variable. Argue that
1

$$
\mathrm{E}\left(\frac{1}{X}\right)>\frac{1}{\mathrm{E}(X)}
$$

2

$$
\mathrm{E}(\sqrt{X})<\sqrt{\mathrm{E}(X)}
$$

Solution:

1 When $x>0, \phi^{\prime \prime}(x)=2 x^{-3}>0$, so $\phi(x)=1 / x$ is strictly convex.
The result follows from Jensen's inequality.
2 When $x>0, \phi^{\prime \prime}(x)=-1 /\left(4 x^{3 / 2}\right)<0$, so $\phi(x)=\sqrt{x}$ is strictly concave.
The result follows from Jensen's inequality.

