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Chapter 1 Probability and Distributions

1.1 Introduction
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Question: What is probability?
Answer:

I Probability is the chance for something to happen, so it’s
always a number in [0, 1].

I In addition, in this class, probability is also the name of the
mathematical tool we are going to use.

How do we learn probability?
I Mathematics is the language we use to communicate with the

universe. Its grammars are rules called axioms and
theorems.

I When we learn probability, we learn those rules. So prepare
for a bit of a headache at the beginning similar to learning a
second language.
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Relationship between probability and statistics?
I Probability: From population to sample.
I Statistics: From sample to population.
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Random experiment

I The experiment can be repeated under the same condition.
I Each experiment terminates with an outcome.
I The outcome cannot be predicted with certainty prior to the

performance of the experiment.
I The collection of all possible outcomes can be described prior

to the performance of the experiment.

This collection is called the sample space, usually denoted by C.

Example (1.1.1)

1 Toss a coin once, sample space C = {T,H}.
2 Toss a coin twice, sample space?
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Event

A subset of the sample space C, usually denoted by C, is called an
event. If an outcome belongs to C, then we say that the event C
has occurred.

Example (1.1.2)

1 Casting one red and one white die. Sample space is 36
ordered pairs,

C = {(1, 1), . . . , (1, 6), (2, 1), . . . , (2, 6), . . . , (6, 6)}.

2 Event: sum of numbers on dice is 9,

C = {(3, 6), (4.5), (5, 4), (6, 3)}
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Probability

Probability quantifies the notion of chance or likelihood of an event.
Relative frequency is an empirical definition of probability:

I Suppose the experiment is repeated N times.
I Let kN denote the number of times the event C actually

occurred.
I The fN = kN/N is the relative frequency of the event C in the

repeated experiments.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018



7/129

Probability: frequentist

I Relative frequency: fN = kN/N .
I Suppose that N increases.
I Suppose that p = limN→∞ fN exists. Note p ∈ [0, 1].
I Then p is the probability of the event C.

Example (1.1.2, cont’d)

Sum of numbers on dice is 9:

C = {(3, 6), (4.5), (5, 4), (6, 3)}

If each of the 36 outcomes is equally likely, then p = 4/36.

I We denote the probability of an event C by P (C).
I It is the long-run relative frequency of the event C in a very

large number of independent replications of the experiment.
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Subjective probability

Consider the event C = Hawkeye wins NCAA basketball
championship in 2019. Suppose that I offer you two lottery tickets,
and you can choose between them.

I If you pick lottery ticket 1, then we spin a roulette wheel that
has 100 slots and has been declared “fair” by the Nevada
Gaming Commission. If the ball lands in a slot from 1 through
10 you get $100 and otherwise you get $0.

I If you pick lottery ticket 2, then you get $100 if C occurs and
otherwise you get $0.

If you choose Lottery ticket 1, then your subjective p ≤ 0.10, and if
you choose Lottery ticket 2 then your subjective p ≥ 0.10.

I The advantage of subjective probability is that it can be
extended to experiments that cannot be repeated. (Think
about betting in sports, investing your money, . . . .)

I Mathematically, the two concepts of probability are identical.
In many situations we will not need to make the distinction.
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Chapter 1 Probability and Distributions

1.2 Set Theory

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018



10/129

Sets

I A set is a collection of objects.
If an element x belongs to a set C, then we write x ∈ C.

I If each element of a set C1 is also an element of another set
C2, then C1 is called a subset of C2, written as C1 ⊂ C2.

I If C1 ⊂ C2 and C2 ⊂ C1, then C1 = C2.

Example (1.2.1)

Define sets C1 = {x : 0 ≤ x ≤ 1} and C2 = {x : −1 ≤ x ≤ 2}.
We have C1 ⊂ C2.

Example (1.2.2)

Define sets C1 = {(x, y) : 0 ≤ x = y ≤ 1} and
C2 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. We have C1 ⊂ C2.

I If a set C has no elements, then C is called the null set,
written as C = φ.
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Union

I The set of all elements that belong to at least one of the sets
C1 and C2 is called the union of C1 and C2, written as
C1 ∪ C2.

I For example, if C1 = {1, 2, 3}, C2 = {2, 3, 5}, then
C1 ∪ C2 = {1, 2, 3, 5}.

I The set of elements that belongs to at least one of the sets
C1, . . . , Ck is C1 ∪ C2 . . . ∪ Ck, also written ∪ki=1Ci.
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Example
I C ∪ φ =

I C ∪ C =

I If C1 ⊂ C2, then C1 ∪ C2 =

I If Ci = {x : x ∈ [i− 1, i]}, i = 1, . . . , k then
∪ki=1Ci = {x : x ∈ [0, k]}.

Example (1.2.7)

Ck =

{
x :

1

k + 1
≤ x ≤ 1

}
, k = 1, 2, . . . .

Then
C1 ∪ C2 ∪ C3 ∪ · · · = (0, 1].
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Intersection

I The set of all elements that belong to each of the sets C1 and
C2 is called the intersection of C1 and C2, written as C1 ∩C2.

I If C1 = {1, 2, 3}, C2 = {2, 3, 5}, then C1 ∪ C2 = {2, 3}.
I If C1 = [0, 1] and C2 = [−1, 0] then C1 ∩ C2 = {0}.
I If Ci = (0, 1/i), i = 1, . . . , k then ∩ki=1Ci = (0, 1/k).

Example (1.2.11)
Let

Ck =

{
x : 0 < x <

1

k

}
, k = 1, 2, . . . .

Then
C1 ∩ C2 ∩ C3 ∩ · · · = ∅.
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Example
Use Venn diagrams to depict the sets C1 ∪ C2, C1 ∩ C2,
(C1 ∪ C2) ∩ C3 and (C1 ∩ C2) ∪ C3.
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Space & Complement

I The set of all elements under consideration is called the
space, written as C.

I Number of heads in tossing a coin ten times. The space is
C = {0, 1, . . . , 10}.

I Let C be the sample space and C be its subset. The set that
consists of all elements of C that are not elements of C is
called the complement of C, written as Cc.

I Number of heads in tossing a coin ten times. If
C = {0, 1, 2, 3, 4} then Cc = {5, 6, 7, 8, 9, 10}.

1 C ∪ Cc = C.
2 C ∩ Cc = ∅.
3 (Cc)

c
= C.
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Important basic rules

1 DeMorgan’s laws: Let C denote the space and suppose
C1, C2 ⊂ C. Then

A : (C1 ∩ C2)
c = Cc1 ∪ Cc2.

B : (C1 ∪ C2)
c = Cc1 ∩ Cc2.

2 Distributive laws: Let C denote the space and suppose
C1, C2, C3 ⊂ C. Then

A : C1 ∪ (C2 ∩ C3) = (C1 ∪ C2) ∩ (C1 ∪ C3).

B : C1 ∩ (C2 ∪ C3) = (C1 ∩ C2) ∪ (C1 ∩ C3).
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Set functions

I Usual function maps each point to a real number.

I Set function maps each set to a real number:

More specifically, let C be a space and C be its subset. A
mapping Q that assigns a value to the subset C (rather than
an element x) is called a set function.

Example (1.2.18)

Let C be a set in one-dimensional space and let Q(C) be equal to
the number of points in C which correspond to positive integers.
Then Q(C) is a function of the set C. Thus:

I if C = {x : 0 < x < 5}, then Q(C) = 4.
I if C = {−2,−1}, then Q(C) = 0.
I if C = {x : −∞ < x < 6}, then Q(C) = 5.
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Example (1.2.23)
Let C be a set in one-dimensional space and let

Q(C) =

∫
C
e−xdx.

If C = {x : 0 ≤ x <∞}, then

Q(C) =

∫ ∞
0

e−xdx = 1.

If C = {x : 1 < x ≤ 3}, then

Q(C) =

∫ 3

1
e−xdx = e−1 − e−3.
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Example (1.2.24)
Let C be a set in n-dimensional space and let

Q(C) =

∫
· · ·
∫

C

dx1 · · · dxn.

If C = {(x1, x2, . . . , xn) : 0 ≤ x1, x2, · · · , xn ≤ 1}, then

Q(C) =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
dx1dx2 · · · dxn = 1.

If C = {(x1, x2, . . . , xn) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1}, then

Q(C) =

∫ 1

0

∫ xn

0
· · ·
∫ x3

0

∫ x2

0
dx1dx2 · · · dxn−1dxn =

1

n!
.
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Chapter 1 Probability and Distributions

1.3 The Probability Set Function
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σ-field

Definition (σ-field)

A collection of sets that is closed under complementation and
countable union of its members is a σ-field. This collection of
events is usually denoted by B.

I The collection is also closed under countable intersections
according to DeMorgan’s Laws.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Probability set function

Definition (Probability set function)

Let C be a sample space and B be a σ-field defined on C. Let P be
a real-valued function defined on B. Then P is a probability
function if

1 P (C) ≥ 0 for all C ∈ B;

2 P (C) = 1;

3 If Ci ∈ B (i = 1, 2, . . .) and Ci ∩ Cj = Φ ∀i 6= j, then
P (∪∞i=1Ci) =

∑∞
i=1 P (Ci).

I A collection of events whose members are pairwise disjoint is
said to be mutually exclusive.

I The collection is further said to be exhaustive if the union of its
events is the sample space.

I These three axioms imply many properties of the probability
set function. Let us see a few examples.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Basic results on probability functions

Theorem (1.3.1)

P (C) = 1− P (Cc).

Theorem (1.3.2)

P (φ) = 0.

proof: Let C = ∅ and follows from P (C) = 1.

Theorem (1.3.3)

If C1 ⊂ C2, then P (C1) ≤ P (C2).

proof: Let T = C1 ∪ (CC1 ∩ C2). Notice that C2 = C1 ∪ T and
C1 ∩ T = ∅.
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Theorem (1.3.4)

0 ≤ P (C) ≤ 1.

proof: 0 = P (∅) ≤ P (C) ≤ P (C).

Theorem (1.3.5)

For two arbitrary events C1 and C2, it holds that

P (C1 ∪ C2) = P (C1) + P (C2)− P (C1 ∩ C2).

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Inclusion Exclusion Formula

For three arbitrary events C1, C2 and C3, it holds that

P (C1 ∪ C2 ∪ C3) = P (C1) + P (C2) + P (C3)

− P (C1 ∩ C2)− P (C1 ∩ C3)− P (C2 ∩ C3)

+ P (C1 ∩ C2 ∩ C3).

I Boole’s inequality:

P (C1) + P (C2) + . . .+ P (Ck) ≥ P (C1 ∪ C2 ∪ . . . ∪ Ck).

I Bonferroni’s inequality:

P (C1 ∩ C2) ≥ P (C1) + P (C2)− 1.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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If an experiment can result in any one of N different outcomes,
and if exactly n of those outcomes correspond to event C, then the
probability of event C is

P (C) =
n

N

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Example 1.3.2

An unbiased coin is to be tossed twice and the outcomes are in an
ordered pair. Then,
C = {(TT ), (TH), (HT ), (HH)}.

Write C1 = {the first toss results in a head},
C2 = {the second toss results in a tail}.
Then, P (C1 ∪ C2) =?

Method 1: C1 = {HH,HT}, C2 = {HT, TT}, so
C1 ∪ C2 = {HH,HT, TT}. We see P (C1 ∪ C2) = 3/4.

Method 2: C1 = {HH,HT}, so P (C1) = 1/2, C2 = {HT, TT},
so P (C2) = 1/2. We have C1 ∩ C2 = {HT}, so
P (C1 ∩ C2) = 1/4. Thus by Inclusion Exclusion Formula,
P (C1 ∪ C2) = P (C1) + P (C2)− P (C1 ∩ C2) = 3/4.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Counting rules

I Suppose we have two experiments, The first experiment
results in m outcomes while the second results in n
outcomes. The composite experiment (the first experiment
followed by the second) has mn outcomes. This is called the
multiplication rule.

I Let A be a set with n elements. Suppose we are interested in
k−tuples whose components are elements of A. Then, by the
extended multiplication rule, there are nk such k−tuples.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Permutation

Suppose k ≤ n and we are interested in k−tuples whose
components are distinct elements of A. Hence, by the
multiplication rule, there are n(n− 1) . . . (n− (k − 1)) such
k−tuples with distinct elements.

Example
For the integers 1, 2, 3, 4, 5, and ordered subsets of size 2 we have:

(1,2), (1,3), (1,4), (1,5), (2, 1), (2,3), (2,4), (2,5), (3, 1), (3, 2),

(3,4), (3,5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4).

The number of permutations of n things taken k at a time is

Pnk = n(n− 1) · . . . · (n− j + 1) · . . . · (n− k + 1) =
n!

(n− k)!

I Apply to previous example: 5!/2! = 20.
Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Combination

I Suppose we have n objects, a1, . . . , an. How many subsets of
size k without regard for order can we choose from these
objects?
For the previous example we have 10.

I In general the number of combinations of n things taken k at a
time is (

n

k

)
=

n!

k!(n− k)!

Example
Poker hand example: 52 cards, 5 cards in a hand.

1 Probability of any specific hand: 1/
(
52
5

)
.

2 Probability that all cards are hearts:
(
13
5

)
/
(
52
5

)
.

3 Probability of a flush (all cards same suit):
(
4
1

)(
13
5

)
/
(
52
5

)
.

4 Probability of a full house (three kings and two queens):(
4
3

)(
4
2

)
/
(
52
5

)
.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Theorem
The number of distinct permutations of n objects of which n1 are of
one kind, n2 of a second kind, ..., nk of a kth kind is

n!

n1!n2! . . . nk!
.

Example
How many distinct permutations can be made form the word
INTERNET?

I The letters are 8 letters in the word ”INTERNET”:

I N T E R
1 2 2 2 1

I Number of different permutations:

8!

1!2!2!2!1!
= 5040.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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A different point of view

I If you put n distinct objects into k cells. And you want to put
n1 into cell 1, n2 into cell 2, . . . , nk into cell k, where
n = n1 + n2 + . . .+ nk, then the answer is the same as

n!

n1!n2! . . . nk!

I Multiplication rule:(
n

n1, n2, . . . , nk

)
=

(
n

n1

)(
n− n1
n2

)
. . .

(
n− n1 − . . . nk−1

nk

)
=

n!

n1!n2! . . . nk!

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Chapter 1 Probability and Distributions

1.4 Conditional Probability and Independence
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Motivation of conditional probability

I An experiment involves three tosses of a coin.
Sample space consists of 8 possible outcomes, all equally
likely:

HHH,HHT,HTH,HTT, THH, THT, TTH, TTT.

I Define two events:
C1 = {first toss results in a head},
C2 = {at least two heads}.
What is the probability of event C2?

P (C2) =

I Suppose we know event C1 occurs. Now what is the
probability of event C2?

P (C2|C1) =

(the conditional probability of C2 given that C1 occurs).

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Definition of conditional probability

Definition. For two events C1 and C2, with C1 satisfying
P (C1) > 0, the conditional probability of C2 given C1 is

P (C2|C1) =
P (C1 ∩ C2)

P (C1)
.

Properties of conditional probabilities:

1 P (C2|C1) ≥ 0;

2 P (C2 ∪C3 ∪ · · · |C1) = P (C2|C1) +P (C3|C1) + · · · , provided
that C2, C3, · · · are mutually disjoint;

3 P (C1|C1) = 1.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Example (1.4.2)
A bowl contains eight chips. Three of the chips are red and the
remaining five are blue. Two chips are to be drawn successively, at
random and without replacement. Compute the probability that the
first draw results in a red chip (C1) and the second draw results in
a blue chip (C2).

Solution:

P (C1 ∩ C2) = P (C1)P (C2|C1) =
3

8

5

7
=

15

56
.

P (C1 ∩ C2) = P (C2)P (C1|C2) = hard · hard.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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The multiplication rule can be extended to three or more events.
For example, if P (C1 ∩ C2) > 0, hence P (C1) > 0, we have

P (C1 ∩ C2 ∩ C3) = P (C1)P (C2|C1)P (C3|C1 ∩ C2).

Example (1.4.4)
Four cards are drawn successively, at random and without
replacement, from an ordinary deck of playing cards. Compute the
probability of receiving a spade, a heart, a diamond, and a club, in
that order?

Solution:
13

52

13

51

13

50

13

49
.

What is the probability of receiving a spade, a heart, a diamond,
and a club in any order?
Solution:

4! · 13

52

13

51

13

50

13

49
.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Law of total probability

Suppose C1, . . . , Ck form a partition of the sample space C, i.e.

1 C1, . . . , Ck are mutually exclusive

2 C1, . . . , Ck are exhaustive, i.e. P (C1 ∪ . . . ∪ Ck) = 1

Then for any event C ∈ B

P (C) = P (C|C1)P (C1) + P (C|C2)P (C2) + · · ·+ P (C|Ck)P (Ck)

Proof:

P (C) = P [C ∩ C)]

= P [(C1 ∪ C2 ∪ . . . ∪ Ck) ∩ C)]

= P [(C1 ∩ C) ∪ . . . ∪ (Ck ∩ C))]

= P (C1 ∩ C) + · · ·+ P (Ck ∩ C)

= P (C|C1)P (C1) + · · ·+ P (C|Ck)P (Ck).

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Bayes’s theorem

Suppose C1, . . . , Ck form a partition of the sample space C. Then
for any event C ∈ B,

P (Cj |C) =
P (C ∩ Cj)
P (C)

=
P (C|Cj)P (Cj)∑k
i=1 P (C|Ci)P (Ci)

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Example

On Friday evening 10% of the drivers in Iowa City are drunk. The
probability that a drunk driver will be involved in a traffic accident is
0.01% and the probability that a sober driver will be involved in a
traffic accident is 0.002%. If you read in the morning paper that a
particular individual was involved in a traffic accident, what is the
probability that this individual was drunk?
Solution:
Let C = Accident occurs; C1 = Drunk; C2 = Sober. Then

P (C1|C) =
P (C1)P (C|C1)

P (C1)P (C|C1) + P (C2)P (C|C2)

=
.10 · .0001

.10 · .0001 + .9 · .00002
= 0.357

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Four inspectors at a film factory are stamping the expiration date
on each package of a film at the end of the assembly line.

I John, 20% of the packages, fails to stamp 1 in 200,
I Tom, 60% of the packages, fails to stamp 1 in 100,
I Jeff, 15% of the packages, fails to stamp 1 in 90,
I Pat, 5% of the packages, fails to stamp 1 in 200.

If a customer complains that her package of film does not show the
expiration date, what is the probability that it was inspected by
John?

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Solution:

I Let B1 be the event that John inspected the package.
Similarly, denote the event that the package was inspected by
Tom, Jeff and Pat using B2, B3, B4 respectively. Then
B1, B2, B3, B4 form a partition of the sample space. Let F be
the event that the package failed to be stamped.

I P (B1) = 0.2, P (B2) = 0.6, P (B3) = 0.15, P (B4) = 0.05.
P (F |B1) = 1

200 , P (F |B2) = 1
100 , P (F |B3) = 1

90 ,
P (F |B4) = 1

200 .
I The probability that the package was inspected by John given

the failure is

P (B1|F ) =
P (F |B1)P (B1)

P (F |B1)P (B1) + P (F |B2)P (B2) + P (F |B3)P (B3) + P (F |B4)P (B4)

=
(0.2)(1/200)

(0.2)(1/200) + (0.6)(1/100) + (0.15)(1/90) + (0.05)(1/200)

= 0.112

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Suppose 5 out of 10000 employees at Lawrence Livermore
National Laboratory are spies. According to experts, a polygraph
test has sensitivity of 0.91 and specificity of 0.94.
Mathematically

Prevalence = P (S) = 0.0005

Sensitivity = P (+|S) = 0.91

Specificity = P (−|NS) = 0.94
1 Find the probability of a false positive test.

Solution:

P (+|NS) = 1− P (−|NS) = 1− 0.94 = 0.06

The complement rule can be used for conditional probabilities
if what is being conditioned on is held fixed (i.e. NS was held
fixed in the above computation). In other words,
P (+|NS) 6= 1− P (+|S).

2 Find the probability of a false negative test.
Solution:

P (−|S) = 1− P (+|S) = 1− 0.91 = 0.09

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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1 Suppose an employee is randomly selected. Find the
probability that he/she tests positive for being a spy.
Solution: By the law of total probability,

P (+) = P (+|S)P (S) + P (+|NS)P (NS)

= (0.91)(0.0005) + (0.06)(0.9995) = 0.060425.

2 Given that a randomly selected employee tested positive, find
the probability that he/she actually is a spy.
Solution: By Bayes’s theorem,

P (S|+) =
P (+ ∩ S)

P (+)

=
P (+|S)P (S)

P (+|S)P (S) + P (+|NS)P (NS)

=
(0.91)(0.0005)

0.060425
= 0.00753.

Therefore, if an employee tests positive for being a spy, there
is a 0.753% chance that he/she actually is a spy!

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Independence

Definition

Two events C1 and C2 with P (C1) > 0 and P (C2) > 0 are
independent if and only if P (C1 ∩ C2) = P (C1)P (C2).

Remark:
I Two events C1, C2 are independent if and only if
P (C1 ∩ C2) = P (C1)P (C2), which is equivalent to
P (C1|C2) = P (C1), when P (C2) > 0, and also equivalent to
P (C2|C1) = P (C2), when P (C1) > 0.

I Two events are independent if the occurrence (or
non-occurrence) of one event does not influence the likelihood
of occurrence of the other event.
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I If the two events C1 and C2 are independent, then the
following pairs of events are also independent:
(i) C1 and Cc2; (ii) Cc1 and C2; (iii) Cc1 and Cc2.

Proof.
It suffices to show that

P (Cc1 ∩ C2) = P (Cc1)P (C2) = (1− P (C1))P (C2),

where

P (C2) = P (C ∩ C2)

= P ((C1 ∪ Cc1) ∩ C2)

= P [(C1 ∩ C2) ∪ (Cc1 ∩ C2)] (distributive law)

= P (C1 ∩ C2) + P (Cc1 ∩ C2) (axiom of probability)

= P (C1) · P (C2) + P (Cc1 ∩ C2). (independence)
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Mutual independence

Suppose now we have three events, C1, C2, and C3. We say that
they are mutually independent if

P (C1 ∩ C2) = P (C1)P (C2),

P (C1 ∩ C3) = P (C1)P (C3),

P (C2 ∩ C3) = P (C2)P (C3).

and
P (C1 ∩ C2 ∩ C3) = P (C1)P (C2)P (C3).

More generally, we say the n events, C1, C2, . . . , Cn, are mutually
independent if for any collection of distinct integers, d1, d2, . . . , dk,
from {1, 2, . . . , n}, it holds that

P (Cd1 ∩ Cd2 ∩ · · · ∩ Cdk) = P (Cd1)P (Cd2) · · ·P (Cdk).
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Example

Suppose a circuit board contains 3 modules. The probability that
the first module works properly is 0.98, while the second and third
modules work properly with probability 0.95 and 0.92, respectively.
Modules are independent.

1 Find the probability that all 3 modules work properly.

P (W1 and W2 and W3)
indep
= P (W1)P (W2)P (W3)

= (0.98)(0.95)(0.92) = 0.8565

2 Find the probability that one or more modules work.

P (one or more work) = 1− P (0 work)
indep
= 1− P (W c

1 )P (W c
2 )P (W c

2 )

= 1− (1− 0.98)(1− 0.95)(1− 0.92)

= 1− 0.00008 = 0.99992Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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1.5 Random Variables
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Definition of random variable

Definition A random variable X is a map from the sample space
C to the real set R. It assigns to each element c ∈ C one and only
one value X(c) = x.

1 X induces a new sample space:

D = {x = X(c) : c ∈ C} ⊂ R.

Example 1: Coin flip: C = (T,H), and we create X(T ) = 0,
X(H) = 1.
Example 2: C = {c1, . . . , cn}, students at the UIowa.
X(ci) = ci’s height and Y (ci) = ci’s weight.
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2 X induces a probability set function on R:

PX(B) = P{c ∈ C : X(c) ∈ B} for B ⊂ R.

Consider D ∈ D. We have
P (X ∈ D) = P ({c ∈ C : X(c) ∈ D}).

Example
Flip a coin twice. Let X = total number of heads. The sample
space is C = {HH,HT, TH, TT} and all outcomes are equally
likely, so

x : 0 1 2

P (X = x) :
1

4

2

4

1

4
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Discrete random variables

Definition
A random variable X is discrete if it can assume a finite or
countably infinite (i.e. you can create a one-to-one
correspondence with the positive integers) number of values, then
X is a discrete random variable.

Example
1 Let X be the number of broken eggs in a dozen randomly

selected eggs.
Possible values for X are x = 0, 1, . . . , 12, so X is discrete.

2 Let X be the number of accidents at an intersection in a year.
Possible values for X are x = 0, 1, 2, . . ., so X is discrete.

3 Flipping a coin until you obtain Head.
Possible values for X are x = 1, 2, . . ., so X is discrete.
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Probability mass function

For the discrete random variables, the probability mass function
(pmf)

pX(di) = P (X = di) i = 1, 2 . . . ,

determines the probability set function PX .

The pmf pX(x) has the following properties,

1 0 ≤ pX(x) ≤ 1,

2
∑

x∈D pX(x) = 1,

3 P [X ∈ A] =
∑

x∈A pX(x).

Definition

The support of a discrete random variable is {x : P (X = x) > 0},
sometimes denoted S

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Suppose we have a bowl with 1 chip labeled “1”, 2 chips labeled
“2”, and 3 chips labeled “3”. Draw 2 chips without replacement.
Let X = sum of the two draws.

1 Find the probability mass function (p.m.f.) of X.
x : 3 4 5 6

pX(x) = P (X = x) : 2
15

4
15

6
15

3
15

2 Find the probability that the sum of the two draws is 5 or more.

P (X ≥ 5) = P (X = 5) + P (X = 6) =
9

15
.

3 Find the probability that the sum equals 6 given that the sum
is 4 or more.

P (X = 6|X ≥ 4) =
P (X = 6 ∩X ≥ 4)

P (X ≥ 4)
=
P (X = 6)

P (X ≥ 4)
=

3

13
.

4 Find the probability that the sum is 5 or less given that the
sum is more than 4.

P (X ≤ 5|X > 4) =
P (X ≤ 5 ∩X > 4)

P (X > 4)
=
P (X = 5)

P (X > 4)
=

2

3
.
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Cumulative distribution function

Let X be a random variable. Then its cumulative distribution
function (cdf) is defined by

FX(x) = PX((−∞, x]) = P (X ≤ x).

For a discrete random variable, this is a step function.

FX(x0) =
∑
x≤x0

PX(X = x). (cdf is sum of pmf)

For the previous example

F (x) =


0 x < 3
2/15 3 ≤ x < 4
6/15 4 ≤ x < 5
12/15 5 ≤ x < 6
1 x ≥ 6,

given the pmf
x : 3 4 5 6

pX(x) = P (X = x) : 2
15

4
15

6
15

3
15
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Continuous random variables

Definition
A random variable is a continuous random variable if its
cumulative function FX(x) is a continuous function for all x ∈ R.

The cumulative distribution function (cdf) defined for the
discrete random variables can be used to describe continuous
random variables too.

Example
Let X denote a real number chosen at random between 0 and 1.
Since any number can be chosen equally likely, it is reasonable to
assume

PX [(a, b)] = b− a, for 0 < a < b < 1. (1)

Describe its cdf.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Probability density function

I The notion of probability mass function (pmf) defined for
discrete random variables does NOT work here:
FX(x)− FX(x−) = 0 ∀x ∈ R, so P (X = x) = 0 ∀x ∈ R.

I Instead, for the continuous case, if there is a non-negative
function fX such that

FX(x) =

∫ x

−∞
fX(t)dt, for all −∞ < x <∞, (cdf is integral of pdf)

I We call fX the probability density function (pdf) of the
random variable X. It is easy to see that the following relation
usually holds:

fX(x) = F ′X(x), for all −∞ < x <∞.
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A pdf fX(x) always has the properties

1 f(x) ≥ 0 ∀x ∈ R.

2
∫
R f(x)dx = 1.

3 If A ⊂ R, then P (A) =
∫
A f(x)dx. In other word,

P (a < X < b) =

∫ b

a
f(x)dx.

Definition

The support of a continuous random variable is {x : fX(x) > 0},
sometimes denoted S
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Let

f(x) =

{
k(1− x2), −1 < x < 1,

0, otherwise.

Find

1 the constant k such that f(x) is a pdf.

2 P (−0.5 < X < 0.5).

3 P (X ≤ 0.1).

4 P (X > 0.7|X > 0.1).

5 Evaluate F (x).

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018



60/129

Solution:

1 We must have

1 =

∫ ∞
−∞

f(x) dx =

∫ 1

−1
k(1− x2) dx = k

∫ 1

−1
1− x2 dx

Thus k · 43 = 1 and k = 3
4 .

2 By the definition of PDF, we have

P (−0.5 < X < 0.5) =

∫ 0.5

−0.5

3

4
(1− x2) dx =

11

16
= 0.6875.

3 P (X ≤ 0.1) = P (X < 0.1) =

∫ 0.1

−1

3

4
(1− x2) dx = 0.57475.

4 For r.v.’s, the convention is to use comma instead of ∩.

P (X > 0.7|X > 0.1) =
P (X > 0.7, X > 0.1)

P (X > 0.1)

=
P (X > 0.7)

P (X > 0.1)
=

∫ 1
0.7

3
4(1− x2) dx∫ 1

0.1
3
4(1− x2) dx

= 0.143.
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Percentile & quartile

Definition

Let X be a continuous-type random variable with pdf f(x) and cdf
F (x). The (100p)th percentile is a number πp such that the area
under f(x) to the left of πp is p. That is,

p =

∫ πp

−∞
f(x)dx = F (πp).

The 50th percentile is called the median (m = π0.50). The 25th
and 75th percentiles are called the first and third quartiles,
respectively, denoted by q1 = π0.25 and q3 = π0.75. Of course, the
median m = π0.50 = q2 is also called the second quartile.
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Example
Let Y be a continuous random variable with probability density
function given by

f(y) =

{
3y2 0 ≤ y ≤ 1
0 otherwise.

Find the first, second and third quartiles.

Solution: ∫ π0.25

0
3y2dy = 1/4, π0.25 = 1/

3
√

4.∫ π0.5

0
3y2dy = 1/2, π0.5 = 1/

3
√

2.∫ π0.75

0
3y2dy = 3/4, π0.75 =

3
√

3/
3
√

4.
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Theorem 1.5.2

Let X be a random variable with cdf FX . Then,

PX(a, b] = P (a < X ≤ b) = FX(b)− FX(a).

Proof.
It holds that

{−∞ < X ≤ b} = {−∞ < X ≤ a} ∪ {a < X ≤ b}.

The theorem follows from the third axiom of the probability since
the two sets on the right-hand side are disjoint.
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Example 1.5.7 & 1.5.8

Determine the constant c and the probability P (2 < X ≤ 4) in the
following questions:

1 X has a pmf

pX(x) =

{
cx x = 1, 2, . . . , 10
0 otherwise.

2 X has a pdf

fX(x) =

{
cx 0 < x < 10
0 otherwise.
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Example

Consider an urn which contains balls each with one of the
numbers 1, 2, 3, 4 on it. Suppose there are i balls with the number
i for i = 1, 2, 3, 4. Suppose one ball is drawn at random. Let X be
the number on the ball.

(a) Determine the pmf of X;

(b) Compute P (X ≤ 3);

(c) Determine the cdf of X.
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Theorem 1.3.6 Continuity of Probability

For an increasing sequence of events {Cn}, define its limit as
limn→∞Cn =

⋃∞
n=1Cn. It holds that

lim
n→∞

P (Cn) = P ( lim
n→∞

Cn) = P

( ∞⋃
n=1

Cn

)
.

Symmetrically, for an decreasing sequence of events {Cn}, define
its limit as limn→∞Cn =

⋂∞
n=1Cn. It holds that

lim
n→∞

P (Cn) = P ( lim
n→∞

Cn) = P

( ∞⋂
n=1

Cn

)
.
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Theorem 1.5.1

Let X be a random variable with cdf F .

(a) If a < b, then F (a) ≤ F (b).
(b) limx→−∞ F (x) = 0.

(c) limx→∞ F (x) = 1.

(d) limx↘x0 F (x) = F (x0).

Proof.

(a) If a < b, then {X ≤ a} ⊂ {X ≤ b}. The result then follows
from the monotonicity of the probability.

(b) If {xn} is an decreasing sequence such that xn → −∞, then
Cn = {X ≤ xn} is decreasing with ∅ = ∪∞n=1Cn. From the
continuity of probability theorem,

lim
n→−∞

F (xn) = P (∩∞n=1Cn) = P (∅) = 0.
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Theorem 1.5.1 (cont’d)

Let X be a random variable with cdf F .
(c) limx→∞ F (x) = 1.
(d) limx↘x0 F (x) = F (x0) (right continuous).

Proof.

(c) If {xn} is an increasing sequence such that xn →∞, then
Cn = {X ≤ xn} is increasing with {X ≤ ∞} = ∪∞n=1Cn.
From the continuity of probability theorem,

lim
n→∞

F (xn) = P (∪∞n=1Cn) = 1.

(d) Let {xn} be any decreasing sequence of real numbers such
that xn ↓ x0. Then the sequence of sets {Cn} is decreasing
and ∩∞n=1Cn = {X ≤ x0}. The continuity of probability
theorem implies that

lim
n→∞

F (xn) = P (∩∞n=1Cn) = F (x0).
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Theorem 1.5.3

For any random variable,

P (X = x) = FX(x)− FX(x−), ∀x ∈ R.

Proof.

For any x, we have {x} =
⋂∞
n=1

(
x− 1

n
, x

]
. By the continuity of

the probability function,

P (X = x) = P

[ ∞⋂
n=1

{
x− 1

n
< X ≤ x

}]

= lim
n→∞

P

[
x− 1

n
< X ≤ x

]
= lim

n→∞
[FX(x)− FX(x− 1/n)]

= FX(x)− FX(x−).
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I Random variable X is a function from a sample space C into
the real numbers R.

I Every random variable is associated with a cdf:

FX(x) = PX(X ≤ x) for −∞ < x <∞.

I FX(x) is defined for all x, not just those in its domain D.
I Notation wise, random variables will always be denoted with

uppercase letters and the realized values of the variable will
be denoted by the corresponding lowercase letters. Thus the
random variable X can take the value x.

I We say a random variable X is discrete if FX(x) is a step
function: F (x0) =

∑
x≤x0 P (X = x).

I We say a random variable X is continuous if FX(x) is a
continuous function: F (x0) =

∫ x0
−∞ f(x)dx.
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Chapter 1 Probability and Distributions

1.6 Discrete Random Variables
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Review of discrete random variable

D = {x = X(c) : c ∈ C} is either finite or countable.
(“D is countable” means that there is a one-to-one correspondence
between D and the positive integers.)

The support of a discrete random variable X is {x : pX(x) > 0} =
(In English: the support of X consists of all points x such that
pX(x) > 0. )
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Example: geometric distribution

Consider a sequence of independent flips of a coin, each resulting
in a head with probability p and a tail with probability q = 1− p. Let
the random variable X be the number of tails before the first head
appears. Determine the pmf of X and the probability that X is
even.
Solution:

P (X = x) = qxp, x = 0, 1, 2, . . .

∞∑
k=0

P (X = 2k) = p

∞∑
k=0

(q2)k

= p/(1− q2).
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Example 1.6.2: hypergeometric distribution

A lot consists of m good fuses and n defective fuses. Choose k,
k ≤ min{m,n}, fuses at random from the lot. Let the random
variable X be the number of defective fuses among the k.
Determine the pmf of X.
Solution:

pX(x) =


(
m
x

)(
n
k−x
)(

m+n
k

) for x = 0, 1, . . . , k,

0 otherwise.
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Transformation of discrete random variables

Let X be a discrete random variable with pmf pX(x) and support
DX = {x : pX(x) > 0}. Suppose we are interested in Y = g(X).
Then Y is also a random variable, and we want to determine its
pmf.

Let DY = {y : y = g(x) for some x ∈ DX}. We have

pY (y) = P (Y = y)

= P (g(X) = y)

=
∑

x:g(x)=y

pX(x)

= pX(g−1(y)) if g is one to one

= P (X ∈ g−1(y)),

where g−1(y) = {x : g(x) = y}.
Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018
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Example Consider the geometric random variable X
pmf: P (X = x) = qxp, x = 0, 1, 2, . . ..
1 Let Y be the number of flips needed to obtain the first head.

Then Y = X + 1.
Y = g(X) = X + 1 and X = g−1(Y ) = Y − 1.

Determine the pmf of Y .
Solution:

pY (y) = pX(g−1(y)) = qy−1p.

2 Let Y = (X − 2)2. Determine the pmf of Y .
Solution:

pY (y) =


pX(2) if y = 0,

pX(1) + pX(3) if y = 1,

pX(0) + pX(4) if y = 4,

pX(
√
y + 2) if y ≥ 9, 16, 25 . . .
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Chapter 1 Probability and Distributions

1.7 Continuous Random Variables
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Review of continuous random variable

I Recall that a random variable is continuous if its cdf FX(x) is
a continuous function for all x ∈ R. Hence, if the random
variable X is continuous, then
P (X = x) = FX(x)− FX(x−) = 0, for all x ∈ R. This
means that there is no point of discrete mass.

I Recall that a nonnegative function fX is a pdf of the random
variable X if∫ x

−∞
fX(t)dt = FX(x), for all −∞ < x <∞,

I The support of a continuous random variable X is
{x : fX(x) > 0} = D.
(In English: the support of X consists of all points x such that
fX(x) > 0. )
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Example 1.7.1

Suppose we select a point at random in the interior of a circle of
radius 1. Let X be the distance of the selected point from the
origin. Determine the cdf and pdf of X and the probability that the
selected point falls in the ring with radius 1/4 and 1/2.
Solution:

P (X ≤ x) = x2,

FX(x) =


0, x < 0,

x2, 0 ≤ x < 1,

1, x ≥ 1,

fX(x) =

{
2x, 0 ≤ x < 1,

0, otherwise,

P (1/4 < X ≤ 1/2) =

∫ 1/2

1/4
2tdt = 3/16.
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Example 1.7.2 (Exponential Distribution)

Let the random variable X be the time in seconds between
incoming telephone calls at a busy switchboard. Suppose that X
has a pdf

fX(x) =

{
λe−λx x > 0
0 otherwise.

This is an exponential distribution with parameter/rate λ > 0.
Knowing that the parameter λ = 1/4, compute the probability that
the time between successive phone calls exceeds 4 seconds.
Solution:

P (X > 4) =

∫ ∞
4

1

4
e−x/4dx = e−1 = 0.3679.
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Sometimes we know the distribution of a continuous random
variable X. We are interested in the distribution of a random
variable Y which is a transformation (function) of X, say
Y = g(X), and we want to determine the distribution of Y .

Example 1.7.3. Let X be the random variable with the pdf

fX(x) =

{
2x 0 < x < 1
0 otherwise.

Determine the cdf and pdf of Y = X2.
Solution:

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √y) = FX(
√
y) = y.

fY (y) =

{
1 0 < y < 1,

0 otherwise.
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Theorem 1.7.1: Transformation of continuous r.v.

Assume that X is a continuous random variable with pdf fX(x) and
support SX . Suppose Y = g(X), where g is one-to-one. Then,

fY (y) = fX(h(y))|h′(y)|, where h = g−1.

Proof: Suppose that g (and thus h) is monotone increasing. Then

FY (y) = P (Y ≤ y) = P [g(X) ≤ y] = P [X ≤ h(y)] = FX [h(y)],

Therefore,

fY (y) = F ′Y (y) = F ′X [h(y)]·h′(y) = fX [h(Y )]h′(y) = fX [h(Y )]
dx

dy
.

Note that since h is increasing h′(y) is positive on SY .
(h′(y) = |h′(y)|).
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Proof (cont’d)

Suppose that g (and therefore h) is monotone decreasing. Then,

FY (y) = P (Y ≤ y) = P [g(X) ≤ y] = P [X ≥ h(y)] = 1−FX [h(y)]

Therefore,

fY (y) = F ′Y (y) = −F ′X [h(y)] · h′(y) = fX [h(Y )](−h′(y))

Note that since h is decreasing h′(y) is negative on SY .
(−h′(y) = |h′(y)|).

We refer to dx/dy = J as the Jacobian of the transformation.
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Example

Assume that f(x) = 1 when 0 < x < 1 and 0 otherwise.
Therefore SX = (0, 1).

1 Let Y = X2. g(x) = x2 is a one-to-one function on (0, 1).
h(y) = y1/2, and h′(y) = 1

2y
−1/2. Therefore,

fY (y) = fX(h(y))|h′(y)| = 1 · 1

2
y−1/2 =

1

2
y−1/2,

when 0 < y < 1. (SY = (0, 1)).

2 Suppose now that Y = g(X) = − log(X). Then
h(y) = exp(−y), and |h′(y)| = exp(−y). Therefore

fY (y) = fX(h(y))|h′(y)| = 1 · exp(−y) = exp(−y) y > 0.

You can verify that
∫∞
0 fY (y)dy = 1.
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Extended theorem: Transformation of continuous r.v.

Assume X is a continuous random variable with pdf fX(x) and
support SX . Suppose Y = g(X) and the support has a partition
A1, . . . Ak. Further, suppose there exist functions g1(x), . . . , gk(x)
such that

I g(x) = gi(x), for x ∈ Ai,
I gi(x) is monotone on each x ∈ Ai,
I define Yi = {y = gi(x), ∀x ∈ Ai}, then Y1 = Y2 = . . . = Yk.

Then

FY (y) =


∑k

i=1 fX(g−1i (y))

∣∣∣∣ ddyg−1i (y)

∣∣∣∣ , y ∈ Y,

0 otherwise.
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Example
I Assume that f(x) = 1/2 when −1 < x < 1 and 0 otherwise.

Therefore SX = (−1, 1).
I Let Y = X2 and g(x) = x2. Then g1(x) = x2 is a one-to-one

function on (−1, 0) and g2(x) = x2 is one-to-one on (0, 1).
We see Yi = {y : y = gi(x), x ∈ Ai} = (0, 1).

I Then h1(y) = g−11 (y) = −y1/2, and h′1(y) = −1
2y
−1/2.

h2(y) = g−12 (y) = y1/2, and h′2(y) = 1
2y
−1/2.

I Therefore,

fY (y) = fX(h1(y))|h′1(y)|+ fX(h2(y))|h′2(y)|

=
1

2
· 1

2
y−1/2 +

1

2
· 1

2
y−1/2

=
1

2
y−1/2,

when 0 < y < 1. (SY = (0, 1)).
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Example 1.7.6

Study the cdf

FX(x) =


0 x < 0
x+1
2 0 ≤ x < 1

1 1 ≤ x.

I What is P (−3 < X ≤ 1/2).
I What is P (X = 0).
I What is P (−3 < X ≤ 0).
I What is P (−3 < X < 0).

It always holds from the definition of cdf that

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a).
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Example 1.7.7

Let X equals the size of a wind loss in millions of dollars, and
suppose it has the cdf

FX(x) =

{
0 −∞ < x < 0

1−
(

10
10+x

)3
0 ≤ x <∞.

If losses beyond $10, 000, 000 are reported as 10, then the cdf of
this censored distribution is

FY (y) =


0 −∞ < y < 0

1−
(

10
10+y

)3
0 ≤ y < 10

1 10 ≤ y <∞.

where Y = min(X, 10),
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I This is an example of a mixed continuous and discrete
random variable. The particular example chosen is known as
censoring because it creates the discrete part by lumping
one end of the distribution into a single point.

I The continuous part of the random variable has the same pdf
as the pdf for X on (0, 10), i.e.

3 · 103

(y + 4)4
1(0,10)(y).

I The discrete part has the pmf

P (Y = 10) = 1− FX(10) =

(
10

20

)3

=
1

8
.
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Chapter 1 Probability and Distributions

1.8 Expectation of a Random Variable
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Definition of expectation

Let X be a random variable.
I If X is continuous with pdf f(x) then the expectation of X is

E(X) =

∫ ∞
−∞

xf(x)dx.

provided that
∫∞
−∞ |x| f(x)dx <∞.

We say the expectation does not exist if
∫∞
−∞ |x| f(x)dx =∞.

I If X is discrete with pmf p(x) then the expectation of X is

E(X) =
∑
x

xp(x).

provided that
∑

x |x| p(x) <∞.
We say the expectation does not exist if

∑
x |x| p(x) =∞.

I Sometimes the expectation of X is called the mathematical
expectation of X, the expected value of X, or the mean of X.
We often denote E(X) by µ (µ = E(X)).
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Example

Suppose we have a bowl with 1 chip labeled “1”, 2 chips labeled
“2”, and 3 chips labeled “3”. Draw 2 chips without replacement. Let
X = sum of the two draws. The pmf (derived before) is as follows:

x : 3 4 5 6
pX(x) = P (X = x) : 2

15
4
15

6
15

3
15

We now find the expected value (mean) of the random variable X.

µ =

6∑
x=3

xp(x) = 3

(
2

15

)
+ 4

(
4

15

)
+ 5

(
6

15

)
+ 6

(
3

15

)
= 4.667.

If the random variable X was observed many times and the
realizations were recorded, the expected value, µ, describes the
mean of the observed realizations. If I repeatedly drew 2 chips
from the bowl without replacement and recorded the sum of the
two draws, the mean of the recorded sums would equal µ = 4.667.
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Exponential distribution

Let X be a random variable that follows the exponential distribution
with parameter λ, that is,

fX(x) =

{
λe−λx x > 0
0 otherwise.

Compute its expectation.
Solution:

EX =

∫ ∞
0

λxe−λxdx

= −
∫ ∞
0

xde−λx

= −xe−λx
∣∣∣∣∣
∞

0

+

∫ ∞
0

e−λxdx

=
1

λ
.
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Two formulations of exponential distribution

1 The parameter λ is defined as rate:

fX(x) =

{
λe−λx x > 0
0 otherwise.

In this case, EX = 1/λ.

2 The parameter λ is defined as scale:

fX(x) =

{ 1

λ
e−

1
λ
x x > 0

0 otherwise.

In this case, EX = λ.

3 The first case is used in this course.
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Let X be a random variable and let Y = g(X) for some function g.
We can calculate EY = Eg(X) in two different ways.
Suppose X is discrete and

∑
x∈DX

∣∣g(x)
∣∣ pX(x) <∞, then

1

Eg(X) =
∑
x∈DX

g(x) pX(x).

2 Let pY (y) be the pmf of Y . Then
Eg(X) = EY =

∑
y∈DY y pY (y).

Suppose X is continuous and
∫∞
−∞

∣∣g(t)
∣∣fX(t)dt <∞, then

1

Eg(X) =

∫ ∞
−∞

g(x)fX(x)dx.

2 Let Y = g(X) and let fY (y) be the pdf of Y . Then
Eg(X) = EY =

∫∞
−∞ yfY (y)dy.
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Assume X has a pdf f(x) = 1, for 0 < x < 1. Let Y = − logX.
What is EY ?
Solution:

EY =

∫ 1

0
− log xdx = −[x log x− x]|10 = 1.
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For a certain ore samples the proportion X of impurities per
sample is a random variable with density function given by

f(x) =


3
2x

2 + x 0 ≤ x ≤ 1,

0 elsewhere.

The dollar value of each sample is Y = 5− 0.5X. Find the mean
of X and Y .
Solution:

EX =

∫ 1

0
x

(
3

2
x2 + x

)
dx =

17

24
= 0.708.

EY =

∫ 1

0
(5− 0.5x)

(
3

2
x2 + x

)
dx = 5− 17

48
= 4.646.
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Linearity of expectation

Theorem (1.8.2)

Let g1(X) and g2(X) be functions of a random variable X.
Suppose the expectations of g1(X) and g2(X) exist.
Then for any constants k0, k1 and k2, the expectation of
k0 + k1g1(X) + k2g2(X) exists and it is given by

E [k0 + k1g1(X) + k2g2(X)] = k0 + k1E [g1(X)] + k2E [g2(X)] .

Corollary: If g(X) = a+ bX, i.e. g is a linear function, then

E[g(X)] = a+ bE(X) = g[E(X)]
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Example

Assume X has a pdf f(x) = 1, for 0 < x < 1.

E(X + 3X2) = E(X) + 3E(X2) =
1

2
+ 3 · 1

3
=

3

2

Warning: If g is a nonlinear function, then in general
E[g(X)] 6= g[E(X)]. For the previous example

E(X2) =
1

3
6= (E(X))2 =

(
1

2

)2

=
1

4
.

Which one is larger? Jensen inequality...
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Example

Let X have a pdf f(x) = 3x2, 0 < x < 1, zero elsewhere.
Consider a random rectangle whose sides are X and (1−X).
Determine the expected value of the area of the rectangle.
Solution: ∫ 1

0
3x2 · x(1− x)dx = 0.15.
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Suppose X is a random variable such that E
(
X2
)
<∞. Consider

the function

h(b) = E
[(
X − b

)2]
.

The value of b that minimizes h(b) is EX.
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Let X be a continuous random variable with cdf F (x). Determine
the expectation of F (X).
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Chapter 1 Probability and Distributions

1.9 Some Special Expectations
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Mean and variance

Definition (Mean)

Let X be a random variable whose expectation exists. The mean
value µ of X is defined to be µ = E(X).

Definition (Variance)

Let X be a random variable with finite mean µ. Then the variance
of X is defined to be σ2 = Var(X) = E

[
(X − µ)2

]
.

The positive square root σ =
√

Var(X) is called the standard
deviation of X.

Computation of Var(X):

Var(X) = EX2 − (EX)2,

which is because E is a linear operator.
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Coin-flipping example

Define X = 1 if it is head and X = 0 if it is tail.
Assume P (X = 1) = p and then P (X = 0) = 1− p.
Find the mean and variance of X.

Solution:

E(X) = 1 · p+ 0 · (1− p) = p,

E(X2) = 12 · p+ 02 · (1− p) = p,

σ2 = p− p2 = p(1− p). σ =
√
p(1− p).
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Assume a > 0 and let

fX(x) =

{
1/a 0 < x < a
0 otherwise.

Solution:

µ =

∫ a

0
x

1

a
dx =

a

2
,

E(X2) =

∫ a

0
x2

1

a
dx =

a2

3
,

σ2 =
a2

3
− a2

4
=
a2

12
.
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Example 1.9.2

If X has the pdf

fX(x) =

{ 1

x2
1 < x <∞

0 otherwise.

then the mean value of X does not exist:∫ ∞
1

x · 1

x2
dx =

∫ ∞
1

1

x
dx

=∞.
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Linear transformation

I Suppose that Y = a+ bX. Then,
1 The mean of Y is E(Y ) = µY = a+ bE(X) = a+ bµX .
2 The variance of Y is

Var(Y ) = E(Y − µY )2 = E(b2(X − µX)2) = b2σ2
X .

In fact,

Var(Y ) = Var(a+ bX) = Var(bX) = b2Var(X).

3 The standard deviation of Y is |b|σX .

I Let the random variable X have a mean µ and a standard
deviation σ. Show that

E

[(
X − µ
σ

)2
]

= 1.
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Expectation of non-negative random variables

I Let X be a random variable of the discrete type with pmf p(x),
x = 0, 1, 2, . . .. It holds that

E(X) =

∞∑
x=0

[1− F (x)] .

I Let X be a continuous random variable with pdf f(x).
Suppose that f(x) = 0 for x < 0. It holds that

E(X) =

∫ ∞
0

[1− F (x)] dx.

Boxiang Wang, The University of Iowa Chapter 1 STAT 4100 Fall 2018



110/129

Proof for discrete case

∞∑
x=0

[1− F (x)] =

∞∑
x=0

[1− P (X ≤ x)] =

∞∑
x=0

P (X > x)

=

∞∑
x=0

∞∑
t=x+1

P (X = t)

=

∞∑
x=0

∞∑
t=0

1t>xP (X = t)

=

∞∑
t=0

∞∑
x=0

1x<tP (X = t) (interchangable due to absolute convergence)

=

∞∑
t=0

tP (X = t) = E(X).
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Proof for continuous case

In this 4000-level class, we only prove

E(X) =

∫ b

0
[1− F (x)] dx,

where the support of X is (0, b) and b <∞, although the equality
holds for b =∞.

Proof. ∫ b

0
[1− F (x)]dx = (x− xF (x))

∣∣b
0

+

∫ b

0
xf(x)dx

=

∫ b

0
xf(x)dx

= E(X).
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Moments

I The m’th raw moment of X is defined as E(Xm)
if the expectation exists.

I The m’th central moment of X is defined as E(X − µ)m

if the expectation exists.

Example

1 Coin flipping: P (X = 1) = p,

E(Xm) = 1m · p+ 0m(1− p) = p.

2 Assume a > 0 and let

fX(x) =

{
1/a 0 < x < a,
0 otherwise.

E(Xm) =

∫ a

0
xm

1

a
dx =

am

m+ 1
.
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Moment generating function

I Let X be a random variable. Assume there is a positive
number h such that E[exp(tX)] exists for all t ∈ (−h, h).

I The moment generating function (mgf) of X is defined to
be the function

MX(t) = E
(
etX
)
, −h < t < h.

Example

1 Assume P (X = 0) = 1− p and P (X = 1) = p.

MX(t) = E[etX ] = p·et+(1−p)·e0 = pet+1−p, for −∞ < t <∞.

2

fX(x) =

{
1/a 0 < x < a
0 otherwise.

MX(t) = E[etX ] =
1

a

∫ a

0

etxdx =
1

at
etx|a0 =

eat − 1

at
,

when t 6= 0 and MX(t) = 1 when t = 0.
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Properties of mgf

1 It is always true that MX(0) = 1.

2 The moments of X can be found (or “generated”) from the
successive derivatives of MX(t).

M ′X(0) = E(X), M ′′X(0) = E(X2), M
(n)
X = E(Xn).

I We have M ′X(0) = E(X) =
∫∞
−∞ xf(x)dx = µ, since

M ′(t) =
d

dt

∫ ∞
−∞

etxf(x)dx =

∫ ∞
−∞

d

dt
etxf(x)dx =

∫ ∞
−∞

xetxf(x)dx.

I We then see

M ′′(0) = E(X2) =

∫ ∞
−∞

x2f(x)dx = µ2 + σ2,

so σ2 = E(X2)− µ2 = M ′′(0)− [M ′(0)]2.
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The pdf of X is

fX(x) =

{
λe−λx x > 0
0 otherwise.

Find the mgf of X and use it to find the mean and the variance.
Solution:

The mgf is given as follows,

M(t) = Eetx =

∫ ∞
0

etxf(x)dx =
λ

λ− t
, t < 1,

and

M ′(t) =
λ

(λ− t)2
,

M ′′(t) =
2λ

(λ− t)3
.

Thus

µ = M ′(0) = 1/λ, σ2 = M ′′(0)− µ2 = 2/λ2 − 1/λ2 = 1/λ2.
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Theorem 1.9.1

Theorem
Let X and Y be random variables with moment generating
functions MX and MY , respectively, existing in open intervals
about 0. If MX(t) = MY (t) for all t in an interval counting t = 0,
then X and Y have identical probability distributions.
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Example

Suppose X is a random variable of the continuous type with mgf

M(t) =
1

1− 3t
, t <

1

3
.

Identify its distribution.

Solution:
The random variable X follows the exponential distribution with
rate λ = 1/3.
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Characteristic function

I Distributions may not have mgf.
I Can you show the mgf of Cauchy distribution does not exist?

f(x) =
1

π

1

x2 + 1
, −∞ < x <∞

I Characteristic function: (not in exams)

φ(t) = E(eitX), for an arbitrary real value t.

I Every distribution has a unique characteristic function, and
E(X) = iφ′(0) and E(X2) = −φ′′(0).

I Uniqueness of characteristic function is due to the uniqueness
of Fourier transform. In fact, uniqueness of mgf comes from
the uniqueness of Laplacian transform.
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Chapter 1 Probability and Distributions

1.10 Important Inequalities
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Motivation

I The variance of a random variable tells use something about
the variability of the observations about the mean.

I If a random variable has a small variance or standard
deviation, we would expect most of the values to be grouped
around the mean.

I For any random variable, the probability between any two
values symmetric about the mean should be related to the
standard deviation.
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Chebyshev’s Theorem

Theorem (1.10.3)

Suppose for a random variable X, E(X2) exists, then for any
constant k > 0,

P (µ− kσ < X < µ+ kσ) ≥ 1− 1

k2
.
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Example

A random variable X has a mean µ = 8, a variance σ2 = 9, and
an unknown probability distribution. Find the lower bounds of

1 P (−4 < X < 20),

2 P (|X − 8| ≥ 6).

Solution:

P (−4 < X < 20) = P (8− 4× 3 < X < 8 + 4× 3) ≥ 15/16.

P (|X − 8| ≥ 6) = 1− P (|X − 8| < 6)

= 1− P (−6 < X − 8 < 6)

= 1− P (8− 2× 3 < X < 8 + 2× 3) ≤ 1/4.
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Comments on Chebyshev’s Theorem

I Chebyshev’s theorem holds for any distribution of
observations.

I For this reason, the results are usually weak. The value given
by the theorem is a lower bound only.

I We know the probability of a random variable falling within two
standard deviations will be no less than 3/4, but we never
know how much more it might actually be, unless we can
determine exact probabilities.

I Chebyshev’s theorem is thus called distribution-free result.
The results will be less conservative when specific
distributions are known.
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Example

Compute P (µ− 2σ < X < µ+ 2σ), where X has the density
function

f(x) =

{
6x(1− x), 0 < x < 1,

0, elsewhere,

and compare with the result given in Chebyshev’s theorem.

Solution:
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Definition 1.10.1

A function φ defined on an interval (a, b) is said to be a convex
function if for all x and y in (a, b) and all 0 < γ < 1,

φ [γx+ (1− γ)y] ≤ γφ(x) + (1− γ)φ(y).

We say φ is strictly convex if the above inequality is strict.

If φ is a (strictly) convex function, then −φ is a (strictly) concave
function.
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Theorem 1.10.4

If φ is twice differentiable on (a, b), then

(a) (first-order condition) φ is convex if and only if

φ(x1) ≥ φ(x2) + φ′(x2)(x1 − x2).

(b) φ is strictly convex if and only if

φ(x1) > φ(x2) + φ′(x2)(x1 − x2).

(c) (second-order condition) φ is convex if and only if
φ′′(x) ≥ 0 for all x ∈ (a, b);

(d) φ is strictly convex if and only if
φ′′(x) > 0 for all x ∈ (a, b).

The second-order condition is usually used to check the convexity,
provided that the second-order derivative exists.
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Jensen’s inequality

Let φ be a convex function on an open interval I, let X be a
random variable whose support is contained in I. If µ = E(X)
exists then

φ [E(X)] ≤ E [φ(X)] .

The inequality reverses if φ is a concave function.

Proof.
By the first-order condition,

φ(x) ≥ φ(µ) + φ′(µ)(x− µ).

Then taking expectations of both sides leads to the result.
The inequality is strict if φ is strictly convex.

Example

We have µ2 < E(X2) as φ(t) = t2 is strictly convex.
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Example

Let X be a positive random variable. Argue that

1

E

(
1

X

)
>

1

E(X)
.

2

E(
√
X) <

√
E (X).

Solution:

1 When x > 0, φ′′(x) = 2x−3 > 0, so φ(x) = 1/x is strictly
convex.
The result follows from Jensen’s inequality.

2 When x > 0, φ′′(x) = −1/(4x3/2) < 0, so φ(x) =
√
x is

strictly concave.
The result follows from Jensen’s inequality.
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