Modeling the Distribution of Environmental Radon Levels in Iowa: Combining Multiple Sources of Spatially Misaligned Data

> Brian J. Smith, Ph.D. The University of Iowa Joint Statistical Meetings August 10, 2005

Environmental Radon

- Radon is a radioactive gas that originates from uranium in rocks and soil.
- Present to some extent in all dry-land surface air.
- Decay products of radon emit alpha particles which are potentially harmful to lung tissue.
- 18,600 annual lung cancer deaths attributed to radon.
- EPA recommends remediation if home levels exceed 4 pCi/L.

Radon in the Home

- 1. Cracks in solid floors
- 2. Construction joints
- **3.** Cracks in walls
- 4. Gaps in suspended floors
- Gaps around service pipes
- 6. Cavities inside walls
- 7. Water supply

Outline

- Epidemiologic study of residential radon and lung cancer.
- Radon and uranium measurements in lowa.
- Geostatistical model specification.
 Posterior estimates from Bayesian analysis.

Iowa Radon Lung Cancer Study

- Retrospective study to estimate the lung cancer risk associated with residential radon exposure.
- 413 lung cancer cases; 614 population-based controls.
- Multivariate regression used to estimate the effect of radon exposure on the odds of lung cancer.
- Excess odds estimates for 15-year exposure to 4 pCi/L
 - All subjects: 0.24 (95% CI -0.05 0.92)
 - Live subjects: 0.49 (95% CI 0.03 1.84)

Exposure Assessment

- Ambient Radon Measurements: Home, outdoors, other buildings
- Subject Mobility: Time spent in different locations within and outside the home
- Cumulative Exposure = Sum of ambient concentrations times subject mobility over the past 20 years.
- Risk estimates attenuated due to random error in the exposure assessment.

IRLCS Radon Monitoring Sites

+¢ +°o Control Homes € 이 +Outdoor Sites $^{\circ}$ + $^{\circ}$ +++ $^{\circ}$ ା õ + $^{\circ}$ l٥ ++ +++ $^{\circ}$ 븂 ംക ¢&± +++ $^{\circ}$ ₀ ♦ $^{\circ}$ + $^{\circ}$ + ° ~~* 4 0 ≄ + $^{\circ}$ ++ ° +\$8\$. +&**P**o $\overline{\circ}$ $+ \circ$ +0 0 ++°+ +。 ° ቆ +++

IRLCS Radon Monitoring Sites

National Uranium Resource Evaluation

- Database of surficial uranium concentrations for the contiguous U.S.
- Surficial uranium concentrations serve as an indicator of soil radium concentrations, and hence of ambient radon.
- Surficial radium concentrations have been shown to be useful in explaining variation in indoor radon concentrations.
- Duval, J.S., Jones, W.J., Riggle, F.R., and Pitkin, J.A., 1989, Equivalent uranium map of the conterminous United States: U.S. Geological Survey Open-File Report 89-478, 1989.

NURE Mean Concentrations

Mean Uranium Concetrations

Spatial Modeling

- Assume (point-source) radon measurements and (county average) uranium data arises from a common spatial process.
- Prediction at any point in the geographic region.
- Estimate the mean outdoor radon levels and characterize the distribution of indoor radon levels.
- Develop a unified statistical approach that accounts for the sources of variability.
 - Detector measurement error, housing effect, choice of spatial correlation structure.

Underlying Spatial Process

Latent Spatial Process

- Assume an underlying Gaussian random process that accounts for the spatial correlation in the data.
- Let z_s denote a random draw at site s from a Gaussian process with the following properties:

$$E[z_{s}] = 0$$

$$\operatorname{cov}[z_{s}, z_{s'}] = \sigma_{s}^{2} c(s - s'; \theta)$$

$$c(s - s'; \theta) = \exp\{-\|s - s'\|/\rho_{s}\}$$

where

- $c(s-s';\theta)$ is an exponential correlation function
- ||s s'|| is the arc distance between geographic sites
- $\rho_{\rm s}$ controls the range of decay

Exponential Correlation Function

IRLCS Indoor Radon Measurements

- 2,590 radon measurements were taken at 614 control subject homes (at least one measurement per floor).
- Mean levels differ between floors and potentially as a function of housing characteristics.
- Measurements are subject to independent detector measurement error.

$$\begin{split} &\ln y_{H,ij} = \beta_{H}^{T} \chi_{H,ij} + \gamma_{i} + Z_{s,i} + \varepsilon_{H,ij} \\ &\gamma_{i} \sim N \Big(0, \sigma_{BH}^{2} \Big) \\ &\varepsilon_{H,ij} \sim N \Big(0, \sigma_{WH}^{2} \Big) \end{split}$$

where

У_{Н,іј}	- j th measurement at the i th home
X _{H,ij}	- housing covariates
β_{H}	- mean covariate parameters
γ _i	- random effect for home
${\mathcal E}_{H,ij}$	- independent measurement error

IRLCS Outdoor Radon Measurements

- 136 Outdoor measurements were taken across lowa (approximately one per county).
- Outdoor levels tend to be lower than indoor levels.
- Measurements are subject to independent detector measurement error.

 $\ln y_{OS,i} = \beta_{OS} + z_{s,i} + \varepsilon_{OS,i}$ $\varepsilon_{OS,i} \sim N(0, \sigma_{OS}^2)$

where

y_{OS,i}	- <i>i</i> th outdoor measurement
β_{OS}	- mean concentration
E _{OS,i}	- independent measurement error

NURE Uranium Measurements

- Assume a model for a potential uranium measurement at site s.
- Allow the spatial variance parameter to differ between the uranium and radon measurements.

$$\ln y_U = \beta_U + z_s + \varepsilon_U$$
$$\varepsilon_U \sim N(0, \sigma_U^2)$$

where

- y_U uranium measurement for a site
- β_U mean concentration
- ε_U independent measurement error

 Measures of the mean surficial uranium concentrations are available for each of the 99 lowa counties.

$$\ln y_{U,k} = \frac{1}{|B_k|} \int_{B_k} (\beta_U + Z_s + \varepsilon_U) ds$$
$$= \beta_U + Z_{B,k} + \varepsilon_{U,k}$$
$$\varepsilon_{U,k} \sim N(0, \sigma_U^2 / |B_k|)$$

Spatial Distribution

The latent spatial variables are distributed as

$$\begin{pmatrix} z_{s} \\ z_{B} \end{pmatrix} \middle| \sigma_{S}^{2}, \phi_{S}, \theta \sim N \Biggl(0, \sigma_{S}^{2} \Biggl(\begin{array}{c} H_{s}(\theta) & \phi_{S}H_{s,B}(\theta) \\ \phi_{S}H_{s,B}^{T}(\theta) & H_{B}(\theta) \end{array} \Biggr) \Biggr)$$

where

$$(H_{s}(\theta))_{ii'} = c(s_{i} - s_{i'};\theta)$$

$$(H_{s,B}(\theta))_{ik} = \frac{1}{|B_{k}|} \int_{B_{k}} c(s_{i} - s;\theta) ds$$

$$(H_{B}(\theta))_{kk'} = \frac{1}{|B_{k}||B_{k'}|} \int_{B_{k}} \int_{B_{k'}} c(s - s';\theta) ds' ds$$

Grid for Monte Carlo Integration

Monte Carlo Integration

The spatial covariance for the county uranium data can be approximated via Monte Carlo integration.
 Integration over county k is replaced with summation over a uniform grid of L_k discrete geographic points.

$$(H_{s}(\theta))_{jj'} = C(s_{j} - s_{j'};\theta)$$
$$(\hat{H}_{s,B}(\theta))_{jk} = \frac{1}{L_{k}}\sum_{j=1}^{L_{k}} C(s_{j} - s_{j};\theta)$$
$$(\hat{H}_{B}(\theta))_{kk'} = \frac{1}{L_{k}L_{k'}}\sum_{j=1}^{L_{k}}\sum_{j'=1}^{L_{k'}} C(s_{j} - s_{j'};\theta)$$

Bayesian Modeling Approach

- Conceptually straight-forward method for fitting the proposed hierarchical spatial model.
- Provides an estimate of the posterior distribution for all model parameters.
- Markov chain Monte Carlo methods (Gibbs and Slice Sampling) used to draw from the posterior.
- Uncertainty regarding all components of the model is accounted for and results in more realistic prediction errors.
- Allows for the specification of prior information about the model parameters.

Posterior Estimates

Parameter	Mean	SD	95% HPD
β_{OS}	-0.331	0.137	(-0.582, -0.036)
$\sigma_{ m OS}^2$	0.081	0.012	(0.059, 0.103)
$\beta_{H,0}$	1.472	0.138	(1.214, 1.759)
$\beta_{H,1}$	0.836	0.138	(0.573, 1.117)
$\beta_{H,2}$	0.752	0.138	(0.495, 1.041)
σ_{BH}^2	0.52	0.032	(0.458, 0.582)
σ_{WH}^2	0.064	0.002	(0.060, 0.068)
β_U	0.616	0.119	(0.405, 0.878)
σ_U^2	0.099	0.137	(0.000, 0.388)
$\phi_{\rm S}$	0.336	0.147	(0.036, 0.596)
$ ho_{S}$	166.9	48.6	(86.6, 249.8)
$\sigma_{ m S}^2$	0.061	0.02	(0.028, 0.099)

Posterior Estimates

- 80.6% (95% HPD 75.3 85.3) of the variability in the indoor radon measurements is due to the random variation between homes.
- Mean outdoor and basement radon levels are 0.73 pCi/L (0.54 - 0.94) and 4.40 pCi/L (3.32 - 5.74), respectively
- First floor radon levels are 0.53 (0.52-0.54) times that of basement levels.
- Levels on the second floor and above are 0.49 (0.47 0.50) times those in the basement.
- Mean uranium concentrations are 1.87 ppm (95% HPD 1.50 2.40ppm).

Posteriors Spatial Parameters

Posterior Mean Predicted Radon

Posterior HPD Predicted Radon

Probability Radon Levels > 4 pCi/L

Comments

- Combination of point-source and aggregate data based on
 - Gelfand AE, Zhu L, and Carlin BP. On the change of support problem for spatio-temporal data. *Biostatistics* 2(1):31-45, 2001.
- MCMC algorithms implemented in R; computationally intensive
- Extension to include temporal variability:
 - Correlation = $c_s(s s') \times c_T(t t')$