Iowa Radon Leukemia Study: A Hierarchical Population Risk Model for Spatially Correlated Exposure Measured with Error

> Brian J. Smith Lixun Zhang William R. Field

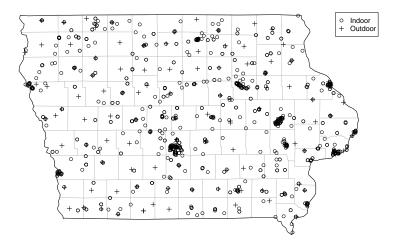
Department of Biostatistics College of Public Health The University of Iowa

ENAR Spring Meeting March 13, 2007

Introduction

- Man-made sources of exposure to ionizing radiation (x-rays and gamma rays) have been implicated as causative agents in several forms of Leukemia.
- Radon is a naturally occurring gas that is the largest contributor to individuals' background exposures to radiation.
- The association between leukemia risk and individuals' exposure to residential radon has not been studied.
- Ecologic radon studies examine associations between disease outcomes and exposures aggregated over geographic regions.
- Exposures in such studies cannot be observed directly and are generally predicted from samples of radon measurements within geographic regions.

イロト イポト イヨト イヨト


Iowa Radon Lung Cancer Study

- Epidemiologic case-control study in lowa to estimate the effect of residential radon on lung cancer risk.
- 2,590 radon detectors were installed in 614 population-based, control subject homes.
- At least one measurement was taken on each floor of the home, for an average of 4.2 measurements per home.
- Distribution of home sites is similar to that of the general population.
- 136 radon measurements collected from an approximately uniform grid of 109 outdoor sites.

イロト イポト イヨト イヨト

Radon IRLCS SEER Goals

Geographic Radon Monitoring Sites

< ⊡ >

< ∃ >

문 문 문

SEER Cancer Registry

- The NCI Surveillance, Epidemiology, and End Results (SEER) Program collects cancer incidence and survival data.
- Our dataset includes incidence cancers from 1973–2002 in Connecticut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland, and Utah.
- Leukemia and total population counts by disease type, county, 5-year age strata, gender, race, and calendar year.
- Leukemia cases in Iowa included:
 - 1,189 Acute Lymphocytic Leukemias (ALL)
 - 3,124 Acute Myelogenous Leukemias (AML)
 - 5,393 Chronic Lymphocytic Leukemias (CLL)
 - 1,679 Chronic Myelogenous Leukemias (CML)

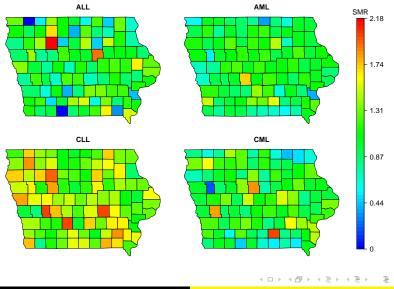
イロト イポト イヨト イヨト

Radon IRLCS SEER Goals

Standardized Mortality Ratio

• The expected number of cases in the *k*th county and *l*th demographic subgroup is denoted

$$E_{kl} = \sum_{i} m_{kli} \lambda_i$$


where the summation is over age-gender strata, m_{kli} is the person-years at risk, and λ_i is the stratum-specific rate based on all SEER registry data.

• The observed standardized mortality ratios (SMR) are the number of observed / expected cases and are plotted by Iowa counties on the following slide.

- ロト - (同下 - 王下 - 王下 -

Radon IRLCS SEER Goals

Age and Gender-Standardized Leukemia SMRs

Smith, Zhang, and Field lowa Radon Leukemia Study

Analysis Goals

- Study the effect of residential radon on leukemia risk in lowa, while controlling for potential confounding effects of important covariates.
- Relate point-referenced radon and areal leukemia data using a geostatistical model to characterize the continuous spatial distribution of radon.
- Apply a hierarchical Bayesian model to simultaneously predict county-average radon and estimate the associated leukemia risk.
- Resulting risk estimates accurately reflect the uncertainty in predicting radon.

・ロト ・回ト ・ヨト ・ヨト

Leukemia Risk Model

• The reported number of cases is assumed to have the following Poisson distribution

$$\begin{array}{lll} y_{kl} & \sim & \textit{Poisson}\left(E_{kl}\exp\left\{\psi_{kl}\right\}\right) \\ \psi_{kl} & = & \boldsymbol{\beta}^{\mathsf{T}}\mathbf{x}_{kl} + \beta_{r}\overline{r}_{k}' + \theta_{kl} + \phi_{k} \\ \theta_{kl} & \stackrel{\textit{iid}}{\sim} & N\left(0, \sigma_{h}^{2}\right) \\ \phi & \sim & N\left(\mathbf{0}, \sigma_{c}^{2}\left(D_{w} - \rho_{c}C\right)^{-1}\right) \end{array}$$

- \mathbf{x}_{kl} is a vector of known covariates with mean parameters $\boldsymbol{\beta}$.
- β_r is the effect of the predicted county-average radon \overline{r}'_k on leukemia rate.
- θ_{kl} accounts for state-wide heterogeneity and ϕ_k spatial correlation not due to radon.

() < </p>

Outdoor Radon Model

- Let $r_{os,ij}$ denote the j^{th} radon measurement from outdoor site $i = 1, ..., n_{os}$.
- We specify the following model for outdoor measurement:

$$\begin{array}{ll} \ln r_{os,ij} & = & \beta_{OS} + z \left(s_i \right) + \epsilon_{os,ij} \\ \epsilon_{os,ij} & \stackrel{iid}{\sim} & N \left(0, \sigma_{os}^2 \right) \end{array}$$

where β_{os} is an overall mean parameter, $\epsilon_{os,ij}$ is an exchangeable error term, and σ_{os}^2 is the measurement error variance.

• The *z*(*s_i*) parameter accounts for spatial correlation among radon measurements.

イロト イポト イヨト イヨト 二日

Home Radon Model

- Let $r_{hm,ij}$ denote the j^{th} radon measurement from home site $i = 1, ..., n_{hm}$.
- We model home radon measurements as

$$\begin{split} & \ln r_{hm,ij} = \beta_{hm}^{T} \mathbf{x}_{hm,ij} + \gamma_{i} + z\left(s_{i}\right) + \epsilon_{hm,ij} \\ & \gamma_{i} \stackrel{iid}{\sim} N\left(0, \sigma_{bh}^{2}\right) \\ & \epsilon_{hm,ij} \stackrel{iid}{\sim} N\left(0, \sigma_{wh}^{2}\right). \end{split}$$

where $\mathbf{x}_{hm,ijk}$ and β_{hm} are vectors of covariates and corresponding mean parameters; γ_i is a random effect for the home; $z(s_i)$ is the latent spatial parameter; and $\epsilon_{hm,ij}$ is an exchangeable error term.

・ロト ・回ト ・ヨト ・ヨト

Home Radon Model

- In the present analysis, only indicator variables for the floors on which the measurements were taken are included in the covariate vector x_{hm,ij}.
- The error variance σ_{wh}^2 is a combination of variability due to systematic differences within the home and random detector measurement error.
- The between-home variance σ_{bh}^2 includes unaccounted for differences in home environments.

・ロト ・回ト ・ヨト ・ヨト

Latent Spatial Process for Radon

• Let
$$\mathbf{z}^{T} = (z(s_{1}), ..., z(s_{n}))$$
, for $i = 1, ..., n$ and $n = n_{OS} + n_{H}$.

• The assumed distribution for these latent spatial parameters is

$$\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{s}^{2} R_{\mathbf{z}}\left(\boldsymbol{\rho}_{s}\right)\right)$$

where $R_z(\rho_s)$ is correlation matrix; σ_s^2 is a scalar variance; and ρ_s is a correlation parameters such that

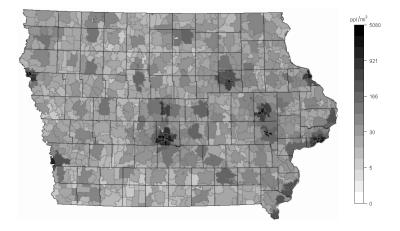
$$(R_{z}(\rho_{s}))_{ii'} = \exp\left\{-\|s_{i}-s_{i'}\|^{2}/\rho_{s}^{2}\right\}.$$

・ロト ・回ト ・ヨト ・ヨト

Predicted County-Average Radon

- The county radon concentrations \bar{r}'_k is needed to complete the specification of our risk model.
- For this, we use the average predicted radon concentration defined as

$$\overline{r}_{k}^{\prime} = \exp\left\{ \left. \int_{B_{k}} w\left(s\right) \ln r^{\prime}\left(s\right) ds \right/ \int_{B_{k}} w\left(s\right) ds \right\}$$


- B_k denotes the geographic region.
- r'(s) is a predicted radon concentration at site s.
- w(s) is a function of location that allows for weighted averaging of radon concentrations within a county.
- We set w(s) to be the population densities (people per square mile) for lowa state zip codes, as reported in the 2000 U.S. Census.

《曰》《圖》《臣》《臣》

Ξ

590

Population Density by Zip Codes

() < </p>

Numerical Integration

- County-average, first-floor radon concentration is the primary radon exposure of interest.
- The previous integral cannot be solved explicitly due to the irregular shape of geographic regions.
- An alternative is to replace the integration by summation over a new set of sites $\{s'_i: i=1,\ldots,L_k\}$ so that

$$\bar{r}_{k}^{\prime} \approx \exp\left\{\beta_{hm}^{T} \mathbf{x}_{hm} + \sum_{i=1}^{L_{k}} w\left(s_{i}^{\prime}\right) z\left(s_{i}^{\prime}\right) \middle/ \sum_{i=1}^{L_{k}} w\left(s_{i}^{\prime}\right)\right\}.$$

 We employ a fixed grid of approximately 3,000 equally spaced sites {s_i'} across lowa, thus partitioning the state into 18.5 square-mile regions.

Leukemia Radon Spatial Prediction Bayesian Approach

・ロト ・回ト ・ヨト ・ヨト

Ξ

Predictive Distribution

• The joint distribution for the latent spatial parameters at observed and unobserved grid sites is

$$\begin{pmatrix} \mathbf{z} \\ \mathbf{z}' \end{pmatrix} \sim N\left(\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \sigma_s^2 \begin{pmatrix} R_{\mathbf{z}}(\rho_s) & R_{\mathbf{z},\mathbf{z}'}(\rho_s) \\ R_{\mathbf{z},\mathbf{z}'}^{\mathsf{T}}(\rho_s) & R_{\mathbf{z}'}(\rho_s) \end{pmatrix} \right)$$

so that the predictive distribution for ${\bf z}' \mid {\bf z}, \sigma_s^2, \rho_s$ is a normal with mean

$$R_{\mathbf{z},\mathbf{z}'}^{T}\left(
ho_{s}
ight) R_{\mathbf{z}}^{-1}\left(
ho_{s}
ight) \mathbf{z}$$

and variance

$$\sigma_{s}^{2}\left(R_{\mathbf{z}'}\left(\rho_{s}\right)-R_{\mathbf{z},\mathbf{z}'}^{T}\left(\rho_{s}\right)R_{\mathbf{z}}^{-1}\left(\rho_{s}\right)R_{\mathbf{z},\mathbf{z}'}\left(\rho_{s}\right)\right).$$

I D > I A B > I B > I B >

Joint Posterior Distribution

A fully Bayesian approach is taken to obtain the joint posterior distribution of all model parameters.

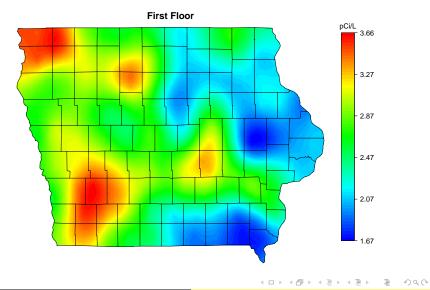
$$\begin{bmatrix} \prod_{k} \prod_{l} f(y_{kl} \mid \boldsymbol{\beta}, \beta_{r}, \bar{r}_{k}', \theta_{kl}, \phi_{k}) \end{bmatrix} f(\boldsymbol{\theta} \mid \sigma_{h}^{2}) f(\boldsymbol{\phi} \mid \sigma_{c}^{2}, \rho_{c}) \pi(\boldsymbol{\beta}, \beta_{r}, \sigma_{h}^{2}, \sigma_{c}^{2}, \rho_{c}) \\ \times \begin{bmatrix} \prod_{i} \prod_{j} f(\ln r_{os,ij} \mid \beta_{os}, \mathbf{z}, \sigma_{os}^{2}) \end{bmatrix} \pi(\beta_{os}, \sigma_{os}^{2}) \\ \times \begin{bmatrix} \prod_{i} \prod_{j} f(\ln r_{hm,ij} \mid \beta_{hm}, \sigma_{bh}^{2}, \mathbf{z}, \sigma_{wh}^{2}) \end{bmatrix} \pi(\boldsymbol{\beta}_{hm}, \sigma_{bh}^{2}, \sigma_{wh}^{2}) \\ \times f(\mathbf{z}' \mid \mathbf{z}, \sigma_{s}^{2}, \rho_{s}) f(\mathbf{z} \mid \sigma_{s}^{2}, \rho_{s}) \pi(\sigma_{s}^{2}, \rho_{s}) \end{bmatrix}$$

where \bar{r}'_k is a function of the home radon mean parameters β_{hm} and the predicted latent parameters \mathbf{z}' .

Leukemia Radon Spatial Prediction Bayesian Approach

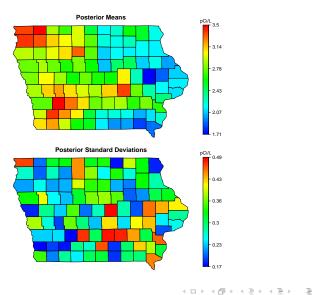
同下 イヨト イヨト

Prior Specification and MCMC Methods


• Vague, independent priors:

Mean	β	\sim	<i>Normal</i> (0, 1000)
Variance	$1/\sigma^2$	\sim	<i>Gamma</i> (0.001, 0.001)
CAR	ρ_c	\sim	Uniform(-1.78, 1.00)
Spatial Decay	ρ_{s}	\sim	Uniform (0, 100)

- Markov chain Monte Carlo methods used to sample from the joint posterior.
- Simulated three parallel chains of 50,000 iterations each.
- Analyses performed with a version of R compiled against an ATLAS-tuned BLAS matrix algebra library.


Radon Leukemia

Posterior Mean First Floor Radon

Radon Leukemia

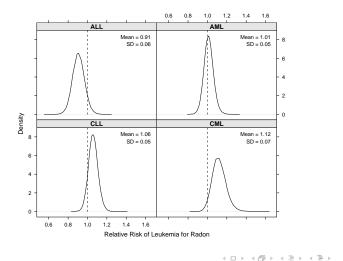
Posterior Mean First Floor County-Average Radon

DQC

Radon Leukemia

Posterior Risk Estimates

Covariate			ALL	AML		
		Mean	95% HPD	Mean	95% HPD	
Race	Non-black	1.0	-	1.0	-	
	Black	0.74	(0.42, 1.09)	0.92	(0.61, 1.27)	
Year	1973–1982	1.0	-	1.0	-	
	1983–1992	1.06	(0.98, 1.13)	1.12	(1.07, 1.17)	
	1993–2002	1.12	(0.97, 1.28)	1.25	(1.14, 1.36)	
			ALL	AML		
Race	Non-black	1.0	-	1.0	-	
	Black	0.67	(0.43, 0.92)	1.22	(0.70, 1.76)	
Year	1973–1982	1.0	-	1.0	-	
	1983–1992	1.01	(0.97, 1.05)	0.95	(0.90, 1.01)	
	1993-2002	1.02	(0.94, 1.10)	0.90	(0.80, 1.02)	


Smith, Zhang, and Field Iowa Radon Leukemia Study

《日》《圖》《臣》《臣》

Ξ

Radon Leukemia

Posterior Distributions of Leukemia Risk for 1 pCi/L Increase in Radon

1

- The lowa study offers several advantages over previous ecologic radon studies.
- Bayesian approach allows for prediction of county-average radon levels while accounting for spatial dependencies, systematic differences between homes, and detector measurement error.
- Joint distribution of all model parameters.
- Relative risk estimates accurately reflect uncertainties in the predicted radon exposure covariate.
- Iowa has the highest mean residential radon concentration in the United States and provides a wide distribution of county radon concentrations for use in the analyses.
- SEER registry provides accurate information on the leukemia incidence in all counties.
- Ecologic findings should be limited to hypothesis generating and not to determine risk.

- The lowa study offers several advantages over previous ecologic radon studies.
- Bayesian approach allows for prediction of county-average radon levels while accounting for spatial dependencies, systematic differences between homes, and detector measurement error.
- Joint distribution of all model parameters.
- Relative risk estimates accurately reflect uncertainties in the predicted radon exposure covariate.
- Iowa has the highest mean residential radon concentration in the United States and provides a wide distribution of county radon concentrations for use in the analyses.
- SEER registry provides accurate information on the leukemia incidence in all counties.
- Ecologic findings should be limited to hypothesis generating and not to determine risk.

- The lowa study offers several advantages over previous ecologic radon studies.
- Bayesian approach allows for prediction of county-average radon levels while accounting for spatial dependencies, systematic differences between homes, and detector measurement error.
- Joint distribution of all model parameters.
- Relative risk estimates accurately reflect uncertainties in the predicted radon exposure covariate.
- Iowa has the highest mean residential radon concentration in the United States and provides a wide distribution of county radon concentrations for use in the analyses.
- SEER registry provides accurate information on the leukemia incidence in all counties.
- Ecologic findings should be limited to hypothesis generating and not to determine risk.

- The lowa study offers several advantages over previous ecologic radon studies.
- Bayesian approach allows for prediction of county-average radon levels while accounting for spatial dependencies, systematic differences between homes, and detector measurement error.
- Joint distribution of all model parameters.
- Relative risk estimates accurately reflect uncertainties in the predicted radon exposure covariate.
- Iowa has the highest mean residential radon concentration in the United States and provides a wide distribution of county radon concentrations for use in the analyses.
- SEER registry provides accurate information on the leukemia incidence in all counties.
- Ecologic findings should be limited to hypothesis generating and not to determine risk.

- The lowa study offers several advantages over previous ecologic radon studies.
- Bayesian approach allows for prediction of county-average radon levels while accounting for spatial dependencies, systematic differences between homes, and detector measurement error.
- Joint distribution of all model parameters.
- Relative risk estimates accurately reflect uncertainties in the predicted radon exposure covariate.
- Iowa has the highest mean residential radon concentration in the United States and provides a wide distribution of county radon concentrations for use in the analyses.
- SEER registry provides accurate information on the leukemia incidence in all counties.
- Ecologic findings should be limited to hypothesis generating and not to determine risk.

- The lowa study offers several advantages over previous ecologic radon studies.
- Bayesian approach allows for prediction of county-average radon levels while accounting for spatial dependencies, systematic differences between homes, and detector measurement error.
- Joint distribution of all model parameters.
- Relative risk estimates accurately reflect uncertainties in the predicted radon exposure covariate.
- Iowa has the highest mean residential radon concentration in the United States and provides a wide distribution of county radon concentrations for use in the analyses.
- SEER registry provides accurate information on the leukemia incidence in all counties.
- Ecologic findings should be limited to hypothesis generating and not to determine risk.

- The lowa study offers several advantages over previous ecologic radon studies.
- Bayesian approach allows for prediction of county-average radon levels while accounting for spatial dependencies, systematic differences between homes, and detector measurement error.
- Joint distribution of all model parameters.
- Relative risk estimates accurately reflect uncertainties in the predicted radon exposure covariate.
- Iowa has the highest mean residential radon concentration in the United States and provides a wide distribution of county radon concentrations for use in the analyses.
- SEER registry provides accurate information on the leukemia incidence in all counties.
- Ecologic findings should be limited to hypothesis generating and not to determine risk.