
 
 

Cohort Data Analysis (171:242/243) 
Section 1: Role of Cohort Studies 

 
 
 
 
 
 
 
 
 
 
 

Brian J. Smith, Ph.D. 
April 4, 2005 



Table of Contents 
1.1 Study Designs ................................................................. 1 

1.1.1 Cross-Sectional Study ............................................ 1 

1.1.2 Case-Control Study ................................................ 1 

1.1.3 Cohort Study ........................................................... 1 

Historical Cohort .............................................................. 1 

Prospective Cohort .......................................................... 2 

1.2 Historical Role of Cohort Studies .................................... 2 

1.2.1 British Doctors Study .............................................. 2 

Comments ....................................................................... 3 

1.2.2 Bladder Cancer Study in British Chemical Industry 4 

1.3 Strengths and Limitations ............................................... 4 

1.3.1 Strengths ................................................................ 4 

1.3.2 Limitations ............................................................... 7 

1.3.3 Summary ................................................................ 8 

1.4 Implementation ............................................................... 8 

1.5 Interpretation ................................................................. 13 

Dose-Response ............................................................. 14 

Risk over Time ............................................................... 14 

1.5.1 Problems with Interpretation ................................. 16 

1.6 Proportional Mortality Studies ....................................... 17 

 i



1.1 Study Designs 

1.1.1 Cross-Sectional Study 
At one point in time data are collected on a sample of the 
population.  Exposure and disease prevalence information 
are obtained and correlations computed.  Such “population 
correlation” or “ecological” studies are useful in generating 
interesting hypotheses but are not normally useful in 
assessing basic causality in an exposure-disease 
relationship. 

1.1.2 Case-Control Study 
A sample of individuals with the disease (cases) and a 
sample of those without (controls) make up the study 
group.  Then their past exposure experience is obtained 
retrospectively. 

1.1.3 Cohort Study 
First identify a study group or “cohort” of people about 
whom you will collect exposure information.  Follow them 
forward in time and note disease occurrence for each 
individual. 

Historical Cohort 
By historical records, identify a group with certain exposure 
characteristics, at some specific point of time in the past, 
and then follow them forward towards the present, 
recording their disease experience. 
Example:  Want to study effects of exposure to levels of a 
carcinogen which is no longer found in manufacturing and 
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for which historical data exist and in a group which is such 
a small fraction of the general population that a case-
control study would miss them. 
Advantage:  Results may be obtained in a short amount of 
time. 

Prospective Cohort 
Assemble cohort in the present and follow them 
prospectively into the future. 
Advantage:  Collect exactly that information which is 
needed.  The records for a historical cohort study may 
have been collected for very different reasons and some 
information may be spotty. 

1.2 Historical Role of Cohort Studies 
Two landmark papers: 

1. Prospective cohort study of British doctors by Doll and 
Smith (1954), a “preliminary report” on tobacco 
smoking and lung cancer. 

2. Historical cohort study of Case et al. (1954) and Case 
and Pearson (1954) on bladder cancer in the British 
chemical industry. 

1.2.1 British Doctors Study 
Around 1950 results of several case-control studies had 
been published, including Doll and Hill (1950), 
demonstrating an association between lung cancer and 
cigarette smoking.  In their 1954 paper Doll and Hill made 
the case for further prospective studies of the exposure-
disease relationship, stating that, 
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‘In the last five years a number of studies have been made of the 
smoking habits of patients with and without lung cancer. All these 
studies agree in showing that there are more heavy smokers and 
fewer nonsmokers among patients with lung cancer than among 
patients with other diseases.  While, therefore, the various authors 
have all shown that there is an “association” between lung cancer 
and the amount of tobacco smoked, they have differed in their 
interpretation.  Some have considered that the only reasonable 
explanation is that smoking is a factor in the production of the 
disease; others have not been prepared to deduce causation and 
have left the association unexplained.’ 

 
Thus, a prospective cohort study was begun in 1951 to 
study lung cancer occurrence in a population whose 
smoking habits were already known. 
 
 Case-Control Cohort 
Study Start April 1948 October 1951 
Lung Cancers 1,488 411 men 

27 women 
Total Enrollment 4,342 34,440 mean 

6,194 women 
Final Results December 1952 1978 (men) 

1980 (women) 
References Doll and Hill 

(1950, 1952) 
Doll and Peto 

(1976, 1978, 1980)
 

Comments 
• The case-control design was cheaper, quicker, and 

able to enroll more cases. 
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• The cohort design acquired more detailed information 
on health effects of smoking. 

1.2.2 Bladder Cancer Study in British Chemical 
Industry 
The purpose was to determine whether the manufacture or 
use of aniline, benzidine, β-naphthylamine or α-
naphthylamine could be shown to produce tumors of the 
urinary bladder in exposed males. The cohort design was 
chosen because: 

• Only a small percentage of all bladder cancers are 
due to the chemical industry.  A general case-control 
design would be uninformative. 

• Answer needed urgently, current exposure levels 
were less than past exposure levels.  A prospective 
cohort study wouldn’t work. 

• Historical cohort study was the only possible 
approach. 

1.3 Strengths and Limitations 

1.3.1 Strengths 
This section gives the strengths of the cohort study, relative 
to the case-control design. 

1. Cohort study is better at establishing full range of 
health effects related to a particular exposure.  After 
all, cohort study starts with exposed and unexposed 
subjects, follows them through time and records all 
disease experiences.  Case-control starts with a 
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particular disease and a backward look at exposure 
history. 

2. Biases 
a. Recall Bias:  The results of a case-control study 

are questionable if there is a possibility of recall 
bias.  Recall bias should not occur in a properly 
carried out cohort study. 

b. Precision of Recall:  Suppose we have an ordinal 
exposure variable and there is some (unbiased) 
random error in the recalled level of exposure.  
Suppose also that the variability of this error 
differs between cases and controls (in a case-
control study).  Then the apparent odds ratio can 
be quite different from unity even when it 
shouldn’t be.  Again, recall bias should be 
minimized in a cohort study. 

c. Selection Bias: 
In case-control studies, this is possible if a high 
proportion of those contacted to be population-
based controls refuse.  If hospital controls are 
used, which disease categories are eligible? 
In cohort studies, the healthy-worker effect may 
introduce bias if the employed population is 
healthier (has lower morbidity rates) than the 
unemployed population.  Also, the chances of a 
highly-sensitive individual quitting work in a risky 
industry are probably higher than an insensitive 
individual. 
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Figure 1.  Evolution of the healthy worker effect following 

entry into a study of Swedish building workers. 
 

3. Efficiency – Cohort studies are more efficient than 
case-control when the exposure is both rare in the 
general population and responsible for only a small 
proportion of the cases.  This latter case rules out 
efficiency of the case-control study; the first case adds 
to this. 

4. Pre-disease exposure information may be impossible 
to determine retrospectively.  One may need blood 
samples to determine exposure.  These are rarely 
available for case-control studies, but can be handled 
routinely in prospective cohort studies. 

5. Retrospective information may be too inaccurate to be 
useful; e.g. dietary recall, chemical exposure recall. 
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6. Cohort studies allow serial measurements of 
exposure.  This will allow not only presence/absence 
of exposure but time-dependent levels of exposure.  
This increased accuracy of the exposure over time 
should improve our inference concerning the 
exposure-disease relationship. 

7. Case-control studies are good for estimating odds 
ratios.  If one also wants to know the actual incidence 
(morbidity) rates or the absolute risk measurements, a 
cohort study is necessary. 

1.3.2 Limitations 
1. Prospective cohort studies require a great 

commitment over a long period of time.  Few people 
or funding agencies have such patience for any but 
the most important health issues.  Expensive!!!  
Variations on cohort design are cheaper; e.g. nested 
case-control and case-cohort. 

2. Historical cohort studies can only be done when the 
cohort of interest exists and complete, accurate 
information on exposure as well as important 
confounding variables is available. 

3. If the disease is sufficiently rare, even a very large 
cohort may not develop a sufficient number of cases 
to make the cohort approach worth while.  In this case 
consideration of the effect or cost per case will favor 
the case-control over the cohort approach. 

4. Cohorts not representative of the general population 
cannot give estimates (even extrapolated ones) of the 
population attributable risk.  Population-based case-
control studies can estimate this. 
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1.3.3 Summary 
Cohort 

• Provides well-defined population from which cases 
arise in an unbiased fashion. 

• Complete covariate and exposure experience 
(duration times, levels, etc.) are available for entire 
study period. 

Case-Control 
• Concentrate effort on informative individuals (cases 

and controls) for whom extensive information is 
collected. 

• Inexpensive 
 
New procedures that combine advantages of these two 
designs are being developed and implemented. 
 

1.4 Implementation 
The two main issues to consider when planning a cohort 
study are: 

1. Is the planned cohort size adequate for detection of 
real differences? 

2. How to implement the study? 
 
Implementation includes consideration of: 

1. Inclusion/exclusion criteria – rules for including and 
excluding individuals should be clear. 
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2. Dates for subjects 
• Date of enrollment 
• Date of first exposure (often different from date of 

entry) 
• Date last seen and vital status 

3. Follow-up mechanism – the percentage of individuals 
lost to follow-up is a measure of the quality of the 
study.  The study will be called into question if that 
percentage is high.  The purpose of follow-up is: 

a. Determination of person-years information; who 
is still under observation and who is lost to 
follow-up? 
• The follow-up mechanism may vary from 

country to country. 
• Group-based cohort: labor union, insurance 

plan, pension plan, professional society, etc. 
b. Identification of cases 

• Death certificates 
• Cancer registry – more accurate, more cases, 

more information 
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Table 1.  Number of deaths occurring from five through 35 years after onset 
of work in an amosite asbestos factory, 1941-1945.  Cause of death coded 
in two different waysa,b. 

Underlying cause of death DC BE BE-DC Expected 
All causes 1946 1946  - 1148.0 
Cancer, all sites 845 912 +67 259.0 

Lung 397 450 +53 81.7 
Pleural mesothelioma 23 61 +38 - 
Peritoneal mesothelioma 24 109 +85 - 
Other mesothelioma  54 0 -54 - 
Larynx, buccal and pharynx 21 27 +6 7.5 
Esophagus 17 17 0 5.1 
Kidney 15 16 +1 8.5 
Colon-rectum 54 55 +1 8.5 
Stomach 18 21 +3 30.5 
Prostate 24 26 +2 12.5 
Bladder 7 9 +2 6.7 
Pancreas 46 21 -25 16.0 
Other 110 83 -27 72.1 Site Unknown 35 17 -18 

Noninfectious pulmonary disease 177 204 +27 68.2 
Cardiovascular disease 638 566 -72 660.1 
Other and unspecified causes 286 264 -22 160.8 

a DC, death certificate; BE, best evidence available 
b From Hammond et al. (1979) 

 
c. Confirmation of case information 

• Use of additional information to “refine” death 
certificate; e.g. X-rays and asbestos-related 
disease 

d. Coding of disease 
• World Health Organization (WHO) members 

code death certificates according to current 
International Classification of Disease (ICD).  
Disease codes can change from one revision 
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to another.  Be aware of different codings in a 
cohort spanning different revision periods. 

e. Assessment of disease 
• Coding an exposure variable as yes/no is 

insufficient for a dose-response relationship: 
cannot infer causality or set safety standards.  
Should quantify level of exposure as much as 
possible and when exposure occurred, for how 
long and when it stopped.  Such exposure 
information is needed on an individual level.  
Mean values for an entire cohort, though not 
valueless, cannot give dose-response 
estimates. 

• Starting and stopping dates of exposure are 
often easily obtained. 

• Exact level of exposure may be difficult, 
especially in historical cohorts.  One may have 
to use a categorical measurement of 
exposure; e.g. low, medium, high.  
Demonstrating a dose-response relationship 
on such an ordinal exposure variable is 
possible. 

f. Information on possible confounding factors 
• Spurious results arise when confounding 

factors are not adjusted for in the analysis.  
We use the term “misclassification” to denote 
that incorrect information has been collected 
on a variable. 

• For dichotomous variables, misclassification 
rates of 30% for the confounder can result in 
very little of the confounding effect being 
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removed.  If the misclassification rate is 10%, 
then in certain situations nearly half the effect 
of confounding is still in place. 

• Collect as accurate information as possible.  If 
this is not possible, it may be better to try a 
less expensive approach, like a case-control 
design and spend the extra money and time 
on gaining more accurate data. 

g. Construction of special comparison groups 
• Occasionally, one needs to construct a special 

group apart from the cohort.  For example, 
cohort consists of smoking and nonsmoking 
asbestos workers.  Need two groups: smoking 
and nonsmoking people unexposed to 
asbestos.  Unexposed and exposed may be 
matched in such situations. 

h. Power considerations 
• Unless your data are merged into a larger 

study, if your study has too low a power to 
detect realistic levels of excess risk, your 
study is most likely not worth doing. 

i. Other designs 
i. Synthetic case-control:  At each failure time 

consider the failing person as the case and 
take a random sample of the rest of the 
cohort at risk to be the controls.  Risk set at 
time t consists of the failing subjects plus 
the time-matched controls.  Use Cox 
regression to analyze. 
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ii. Case-cohort:  At beginning of study, 
randomly pick a sub-cohort of the complete 
cohort.  The risk set at time t is the 
intersection of those in the sub-cohort still at 
risk and those that have failed. 
Example:  Women’s Health Study was to 
study 15,000 women looking for an 
association between breast cancer and 
dietary fat.  Dietary forms were to be done 
and blood drawn on a routine basis.  Cost of 
dietary coding and blood analyses would 
cost millions.  Cheaper if done on a sub-
cohort of say 20-25% of the full cohort, plus 
5% that develop breast cancer.  Case-
cohort design is a natural choice for this. 

1.5 Interpretation 
A discussion of Hill’s criteria for assessing whether an 
association is causal can be found in most introductory 
Epidemiology text books: 

1. Strength of association 
2. Biologic credibility 
3. Consistency with other investigations 
4. Time sequence 
5. Dose-response relationship 

 
More and more, what is expected is not just qualitative 
evidence, but quantification of the degree of risk.  Two 
major aspects of excess risk are the dose response 
relationship and risk as a function of time. 
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Dose-Response 
Dose response can be assessed when exposure is 
quantified as a nominal categorical or numerical variable. 

Risk over Time 
Incidence or mortality rate often are functions of time, since 
exposure (e.g. excess leukemia rates 5 years after 
radiation) or of duration of exposure (e.g. lung cancer 
incidence rates rise with 4th power of smoking duration 
among continuing smokers).  Also of great importance is 
the change in risk after exposure stops: 

• Further evidence of causal relationship 
• Show effect of intervention 

So it is a good idea that the design of a cohort study 
accounts for subjects that are formerly exposed. 
CAUTION:  Need to know why someone stopped smoking; 
e.g. very poor health and physician told them they had to 
stop. 
 
Example:  Women treated by radiation for cancer of the 
cervix have four times the risk of lung cancer as expected. 
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Figure 2.  Observed to expected ratios of lung cancer by 
time since diagnosis of cervical cancer treated with and 

without radiotherapy. 
 
Upon first inspection it may seem that the excess lung 
cancer cases are due to the radiotherapy.  However, when 
compared to patients treated without radiotherapy, the 
same trend is observed.  An alternative explanation might 
be that the excess lung cancers are due to the 
misclassification of metastases from the original cervical 
cancer. 
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1.5.1 Problems with Interpretation 
1. Healthy worker effect 

• Can make comparison with external standard 
population difficulty to interpret.  Comparisons 
between different groups within the cohort should 
be less affected.  Special consideration should also 
be given to change in employment status (due to ill 
health?); e.g. retire, change jobs, move to area of 
lighter work.  Mortality is often high a year or two 
after employment change.  One solution is to lag 
employment status by 2 or 3 years. 

• Analog to healthy worker effect – those who 
respond to questionnaires.  In the British doctors 
study those who failed to respond had greater 
mortality rates.  In a N.Y. breast cancer screening 
trial those accepting invitation had half the risk of 
mortality as those not accepting. 

2. Loss to follow-up 
• Incidence rates can be biased downwards if there 

are people lost to follow-up and we don’t know that. 
3. Recall bias and misclassification of exposure rates 

• Cohort studies have the advantage of measuring 
exposure before disease status is ascertained. 

4. Lack of information on confounding factors 
5. Multiple comparisons 

• Level of test destroyed by number of comparisons.  
A priori you should have a few hypotheses you 
want to test.  The rest of the many, many things 
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you can test are not strict statistical tests, but by-
products of a hypothesis generating data mining. 

6. Identification of forerunners of disease rather than 
causes 
• An association that looks causal may only reflect an 

early state of the disease; e.g. cough is the cause 
of lung cancer or low serum cholesterol levels in 
people subsequently developing cancer. 

7. Conclusions from negative results 
• Can bias or confounding be ruled out? 
• What levels of risk are included within the 

confidence intervals? 
• How do the levels of exposure in the study 

compare with the levels in other exposed 
populations? 

• Had sufficient time elapsed between the start of 
exposure and the end of follow-up? 

• Is there any reason to suspect that the cohort is at 
a lower risk than the general population? 

• Are the results consistent with other studies? 

1.6 Proportional Mortality Studies 
Absolute mortality rates unknown; e.g. don’t know annual 
mortality rate for pancreatic cancer, but do know 
“proportional mortality rate.”  For example, 0.1% of all 
deaths were due to pancreatic cancer.  Could also have 
“proportional incidence rates,” possibly from cancer 
registry. 
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Study Design:  Case-Control, where cases are persons 
dying from the disease of interest and controls are selected 
from persons dying of other causes. 
Advantage:  Quick, cheap look at data.  May generate 
some hypotheses in the initial stage of investigation. 
Disadvantage:  Excess proportion of one cause of death 
may mean 1) absolute risk increased for that cause and 2) 
decrease in rate for some other cause.  For example, more 
hypertensive men survive heart disease and can die of 
prostate cancer at higher rates.  Hypertension is not 
protective of prostate cancer?!?  Serious biases are 
possible. 
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2.1 Rates 

2.1.1 Crude Rate 
Need to estimate disease rate among cohort members 
during study period; e.g. 
 

incident casesdiseae incidence rate = 
person-years at risk

. 

 
Suppose there are N subjects in the cohort and the l-th 
subject is at risk for nl years.  Then the number of person 
years at risk for the entire cohort is 

1

N
ll

n n
=

= ∑ .  If d 
individuals are diagnosed with the disease during the study 
period, then the overall or crude incidence rate is 
 

ˆ cases per person-yeard
n

λ = . 

 
This crude rate ignores any stratification existing within the 
cohort.  It is often of interest to calculate the stratum 
specific rates.  The cohort may be stratified by age 
intervals and calendar year periods.  First, we need to be 
able to calculate the number of person-years at risk in each 
stratum. 

 19



2.1.2 Calculation of Person-Years 
Suppose that subjects are stratified by 5-year age intervals 
and 5-year calendar periods.  Consider a subject who 
entered the study in 1972.2 at age 24.6 and exited the 
study in 1984.6 at age 37.0. 
 

1970 1975 1980 1985

20
25

30
35

40

Calendar Year

A
ge

 
 
The following table demonstrates the calculation of the 
subject’s contribution to the person-years spent in each 
stratum, where the strata are derived from two factors.  Of 
course there could be more than two factors. 
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Exact Approx Year Age Person-Years 
Exact Approx

(1972.2, 24.6) (1972, 24) - - - - 
(1972.6, 25.0) (1972, 25) 1970-75 20-25 0.4 0.5 
(1975.0, 27.4) (1975, 27) 1970-75 25-30 2.4 2.0 
(1977.6, 30.0) (1977, 30) 1975-80 25-50 2.6 3.0 
(1980.0, 32.4) (1980, 32) 1975-80 30-35 2.4 2.0 
(1982.6, 35.0) (1982, 35) 1980-85 30-35 2.6 3.0 
(1984.6, 37.0) (1984, 37) 1980-85 35-40 2.0 2.5 

Totals    12.4 13.0 

 
When using integer dates and ages, assign ½ year to first 
and last years of age and 1 year to every age in between.  
Someone entering and exiting the same year gets ¼ year.  
The exact and approximate methods for computing person-
years usually produce similar results. 

2.1.3 Stratum-Specific Rates 
Suppose there are 1, ,j J= …  strata, and let dj and nj denote 
the stratum-specific number of incident cases and person-
years, respectively.  We calculate the number of person-
years within each stratum as 
 

1
j

N

j l
l

n n
=

= ∑  

 
where N is the total number of subjects in the cohort and 

jl
n  is the amount of time the l-th person spent in stratum j.  
Then the stratum-specific incidence rate is calculated as 
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ˆ j
j

j

d

ˆ

n
λ = . 

 
If dj represents the number of deaths, then this is 
interpreted as a mortality rate.  jλ  is an estimate of the 
true, unknown rate jλ .  Note that the crude rate is 

 

ˆ d
n

λ = ∑ j

∑ j

. 

 
Table 1.  Respiratory cancer deaths (d), person-years at risk (n, in thousands), 
and death rate ( λ̂ , per 1000 person-years) in a cohort study of Montana 
smelter workers. 

Age  Calendar Period Totals 1938-1949 1950-1959 1960-1969 1970-1977 
40-49 d 

n 
λ̂  

5 
9.217 
0.542 

5 
14.949 
0.334 

7 
16.123 
0.434 

4 
9.073 
0.441 

21 
49.363 
0.425 

50-59 d 
n 
λ̂  

11 
6.421 
1.713 

24 
10.223 
2.348 

28 
13.663 
2.049 

17 
11.504 
1.478 

80 
41.811 
1.913 

60-69 
 

d 
n 
λ̂  

14 
4.006 
3.495 

24 
4.896 
4.902 

44 
7.555 
5.824 

35 
7.937 
4.410 

117 
24.394 
4.796 

70-79 d 
n 
λ̂  

4 
1.507 
2.654 

12 
1.851 
6.483 

15 
2.724 
5.506 

27 
3.341 
8.081 

58 
9.423 
6.155 

Totals d 
n 
λ̂  

34 
21.151 
1.608 

65 
31.920 
2.036 

94 
40.066 
2.346 

83 
31.855 
2.606 

276 
124.991
2.208 
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2.2 Rate Standardization 
The crude rate λ̂  often depends on the age distribution of 
the cohort.  Crude rates of different cohorts cannot be 
compared if they have different age distributions; e.g. 
comparing death rates for ischemic heart disease between 
a predominantly young smoking cohort and a 
predominantly older nonsmoking cohort. 
 
Q1:  How can we summarize stratum specific rates into a 
meaningful single rate? 
Q2:  Can stratum-specific rates be summarized into an 
appropriate single rate? 
 
Suppose, for now, that the strata are age categories; e.g. 
0-4, 5-9, …, 75-79, 80-84, 85+. 
 

Notation 
We will use the following notation in our discussion of 
standardized rates. 
 
Notation Description 
λ̂  Crude rate in the cohort 

1̂
ˆ, , Jλ λ…  Crude rates in each strata 

1, , Jd d…  Number of cases in each strata 

1, , Jn n…  Number of person-years in each strata 

1, , Jp p…  Proportion of subjects in each strata 
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A superscript “( ” will be used to denote quantities that 
are based on a “standard population.” 

)s

2.2.1 Direct Standardization 
Direct standardization is a method of combining the 
stratum-specific rates for the age groups so that the age 
distribution matches some “standard population.”  Let ( )s

jp  
denote the proportion of people in the standard population 
that are in stratum j.  Then the direct standardized rate 
(DSR) is 
 

( )

1

ˆ
J

s
j j

j

DSR p λ
=

=∑ . 

 

External Standard Population 
One can use an external population as a standard 
population.  For example, census counts are often used. 
 
Table 2.  Census Bureau 1950 U.S. population (per 
1,000,000). 

Age Population Age Population 
0 – 4 107,258 45 – 49 60,190 
5 – 9 85,591 50 – 54 54,893 

10 – 14 73,785 55 – 59 48,011 
15 – 19 70,450 60 – 64 40,210 
20 – 24 76,191 65 – 69 33,199 
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Age Population Age Population 
25 – 29 81,237 70 – 74 22,641 
30 – 34 76,425 75 – 79 14,725 
35 – 39 74,629 80 – 84 7,025 
40 – 44 67,712 85+ 3,828 

 
Or one could use some other census year, other country, 
specific state, gender, shortened age ranges, etc. 

Internal Standard Population 
If the cohort is large enough, one may calculate direct 
standardized rates for sub-cohorts using the entire cohort 
as the standard population.  For example, stratification by 
two sub-cohorts: exposed and unexposed, where the 
standard population is the complete cohort. 

Comparability of Direct Standardized Rates 
Suppose we compute the direct standardized rate for two 
cohorts, using the same standard population, 
 

( )

( )

1 1
1

2 2
1

ˆ

ˆ

J
s

j j
j

J
s

j j
j

DSR p

DSR p

λ

λ

=

=

=

=

∑

∑
. 

 
Scenario 1 
If 1 j ja cλ = ⋅  and 2 j jb cλ = ⋅  for some constants a and b, 
then 
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( )

( )
1

2

s
j j
s

j j

a p cDSR a
DSR bb p c

= =∑
∑

 

regardless of the standard population that is used. 
 
Scenario 2 
If 1 j ja cλ = ⋅  and 2 j jb dλ = ⋅ , then depending on the choice 
of standard population 1 2DSRDSR  may by equal to, less 
than, or greater than a b . 

 
Example 
Consider the following data. 
 

stratum 1̂ jλ  2̂ jλ  1s
jp  2s

jp  
1 0.10 0.20 1/3 1/2 
2 0.20 0.25 1/3 1/3 
3 0.40 0.20 1/3 1/6 

 
The direct standardized rates will differ depending on 
whether the standard population s1 or s2 is used.  Using s1 
gives 
 

1

2

0.10 3 0.20 3 0.40 3 0.233
0.20 3 0.25 3 0.20 3 0.217

DSR
DSR

= + + =

= + + =
 

 
whereas, s2 gives 
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1

2

0.10 2 0.20 3 0.40 6 0.183
0.20 2 0.25 3 0.20 6 0.217

DSR
DSR

= + + =

= + + =
. 

 
Since the stratum-specific rates are not proportional across 
the two cohorts, the relative magnitude of the two DSRs 
depends on the choice of a standard population. 
 

2.2.2 Standard Errors for the DSR 
Standard errors are typically computed under the 
assumption that the number of incident cases follows a 
Poisson distribution 
 

( )~j j jd Poisson n λ  

 
where the expected value and variance are 
 

( )
( )
j j j

j j j

E d n

Var d n

λ

λ

=

=
. 

 
Under this assumption the estimated variance of the direct 
standardized rate is 
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( ) ( )( ) ( )( )
( )( ) ( ) ( )( )
( )( )

2 2

2

ˆ

ˆ

s s
j j j j j

s s
j j j j j

s
j j j

Var DSR Var p Var p d n

j jp n Var d p n n

p n d

λ

λ

= =

= ≅

=

∑ ∑
∑ ∑
∑

. 

or 

( ) ( )( )2s
j j jSE DSR p n d= ∑  

 
The distribution of the DSR is somewhat skewed.  For the 
purposes of computing confidence intervals it’s better to 
use the log scale 
 

( ) ( )ln
SE DSR

SE DSR
DSR

≅  

 
Consequently, a Wald 95% confidence interval could be 
constructed as 
 

( ){ }exp ln 1.96 lnDSR SE DSR± ⋅ . 
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Smelter Workers Example 
Consider using a standard population with a uniform 
distribution for the summary age data from Table 1. 

 Age 
40-49 50-59 60-69 70-79 

d 
n 
λ̂  

21 
49.363 
0.425 

80 
41.811 
1.913 

117 
24.394 
4.796 

58 
9.423 
6.155 

( )s
jp  0.25 0.25 0.25 0.25 

 
The direct standardized rate is 

0.25 0.425 0.25 1.913 0.25 4.796
0.25 6.155 3.322

DSR = ⋅ + ⋅ + ⋅
+ ⋅ =

 

with a variance and standard error of 

( ) ( ) ( )
( ) ( )

( )

2 2

2 2

0.25 49.363 21 0.25 41.811 80

0.25 24.394 117 0.25 9.423 58
0.05651

0.0.05651 0.2377

Var DSR

SE DSR

= +

+ +

=

= =

. 

 

Comments 
1. The variance estimator given here assumes that the 

incident rates are independent across strata. 
2. When the stratum-specific rates are estimated form 

cross-sectional data, the ˆ, , J1̂λ λ…
1

 are independent.  
However, in a cohort study the , , J  are 
dependent.  If an individual dies in period j, then he 

d d…
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could not die during any previous period.  
Nevertheless, when the sample size is large, the 
assumption of independence is reasonable for 
computing the variance. 

3. A potential weakness of the direct method is that the a 
priori choice of weights is made without regard for the 
precision with which the stratum-specific rates are 
estimated. 

2.2.3 Indirect Standardization 
The indirect standardized rate (ISR) is 
 

( )
( )

ˆ
ˆ

ˆ
j js

s
j j

p
ISR

p

λ
λ

λ
= ∑

∑
. 

 

Down’s Syndrome Example 
In Michigan from 1950-64, 731,177 infants were first-borns, 
of whom 412 had Down’s syndrome ( ˆ 56.3λ =  per 100,000 
first-born live births).  In the same period 442,811 infants 
were fifth-born or more to their mothers, of whom 740 were 
Down’s ( ˆ 167.1λ =  per 100,000 fifth-born or more live 
births).  The two rates cannot be compared directly 
because maternal age is associated with both birth order 
and Down’s syndrome.  Hence, maternal age should be 
adjusted for in the analysis.  We will use indirect 
adjustment using Down’s syndrome crude ( ˆ 89.5λ =  per 
100,000 live births) and age-specific rates for Michigan. 
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Maternal 
Age 

( )ˆ s
jλ  

First-born Fifth-born or more
jp  ( )s

j jp λ  jp  ( )s
j jp λ  

<20 42.5 0.315 13.4 0.001 0.0 
20-24 42.5 0.451 19.2 0.069 2.9 
25-29 52.3 0.157 8.2 0.279 14.9 
30-34 87.7 0.054 4.7 0.339 29.7 
35-39 264.0 0.019 5.0 0.235 62.0 
40+ 864.4 0.004 3.5 0.078 67.4 

Totals   54.0  176.6 
* Rates are per 100,000 individuals 
 
Therefore, the indirect adjusted rates are 

First-born Fifth-born or more 
56.3

= =89.5 93.3
54.0

ISR  167.1
= =89.5 84.7

176.6
ISR  

 

Comments 
It is not necessarily true that the indirect standardized rates 
will be equal for two cohorts that have equal stratum-
specific rates.  This is one potential drawback of the 
indirect method. 

2.3 Comparative Measures of Incidence and 
Mortality 
Need to compare rates between a study cohort and a 
standard population.  Comparison needs to be free from 
effects of confounding factors. 
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Strategy:  Stratify comparison groups so that within each 
stratum they are homogeneous with respect to the 
confounding variables.  For example, if age is a 
confounder, stratify the cohort and standard population into 
age intervals.  We then calculate stratum specific rates and 
summarize these rates.  Direct and indirect standardization 
are two traditional methods for doing this.  Later we will 
discuss some preferred methods based on the Poisson 
distribution.  For now, we will consider: 

1. Comparative Mortality Figures 
2. Standardized Mortality Ratios 

 

2.3.1 Comparative Mortality Figure 
The comparative mortality figure (CMF) or comparative 
incidence figure (CIF) is linked to direct standardization.  
CMF is the ratio of DSR to the standard population rate 
 

( )

( ) ( )

ˆ

ˆ

s
j j
s s

j j

p
CMF

p

λ

λ
= ∑
∑

. 

 
Note that the ratio of two study cohorts using the same 
standard population rates is just the ratio of two DSRs.  
When the standard population is used as the referent 
group, the CMF simplifies to 
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( ) ( )

( ) ( ) ( ) ( )

( )

( )

ˆ ˆs s s
j j j

s s s s s
j j j

n n n
CMF

n n d n d
j

j

λ λ×
= =

×
∑ ∑

∑ ∑
. 

 
From this expression one can see that the CMF can be 
interpreted as the ratio of the number of deaths expected in 
the cohort if it had the same age distribution as in the 
standard population, divided by the number of deaths in the 
standard population. 

Comments 
A disadvantage of the CMF is that it may not give stable 
estimates if the stratum-specific rates are based on small 
numbers of deaths. 

2.3.2 Standard Error of the CMF 
Assuming that the size of the standard population is large 
relative to the cohort so that sampling error of the standard 
rate can be ignored and ( )~j j jd Poisson n λ , the estimated 
variance and standard error are 
 

( )
( )

( ) ( )

( )( ) ( )
( ) ( )( )

( )( )
( ) ( )( )

2

2

2

2

ˆ ˆ

ˆ

ss
j j jj j j

s s s s
j j j j

s
j j j

s s
j j

p n Var dp d n
Var CMF Var

p p

p n d

p

λ λ

λ

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

≅

∑∑
∑ ∑

∑
∑

 

 33



( )
( )( )
( ) ( )

2

ˆ

s
j j j

s s
j j

p n d
SE CMF

p λ
=
∑
∑

. 

 
A 95% confidence interval could be calculated on the log 
scales as 
 

( ){ }exp ln 1.96 lnCMF SE CMF± ⋅  

 
where ( ) ( )lnSE CMF SE CMF CMF≅ .  Likewise, one could 
test the null hypothesis of CMF = 1 with the test statistic 
 

( ) ( )ln ~ 0,1
ln
CMFX N

SE CMF
= . 

 
However, there is a better way, in terms of age-specific 
rates which we will see in Section 3. 

2.3.3 Standardized Mortality Ratio 
The standardized mortality ratio (SMR) or standardized 
incidence ratio (SIR) is computed as 
 

( )s
DSMR

E
=  
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where D is the observed number of deaths in the cohort 
and  is the expected number of deaths in the cohort if 
the standard population stratum-specific rates apply; i.e. 

( )sE

 

( ) ( )ˆ
j

s s
j j

D d

E n λ

=

=

∑
∑

. 

 
Note that the SMR is related to indirect standardization 
since 
 

( ) ( )

ˆ

ˆ ˆ
j j

s s
j j

n ISRSMR
n

λ

λ λ
= =∑
∑

. 

 
In other words, the standardized ratio can be interpreted as 
the ratio of the indirect rate divided by the crude rate in the 
standard population. 

Comments 
1. Calculation of the SMR is made under the assumption 

that the rate ratios are constant across strata. 
2. Advantages of SMR over CMF: 

a. Suffices to only know D (can often calculate the 
SMR for published data). 

b. When analyzing cross-sectional data according 
to birth cohort rather than calendar period, often 
the CMF cannot be calculated because age 
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intervals differ for different birth cohorts.  SMR 
would work in this situation. 

c. SMR more stable then CMF; not as sensitive to 
specific rates based on small numbers of deaths. 

3. The SMR has smaller variance than the CMF and is 
therefore more appropriate for smaller samples. 

2.3.4 Standard Error of the SMR 
Assuming that the standard population size is large relative 
to the cohort and ( )~j j jd Poisson n λ , the estimated 
variance and standard error are 
 

( ) ( )
( )( ) ( )( ) ( )( )

( ) ( )

2 2ˆ
j j

s s
j j

s

Var d d DVar SMR
n E E

SE SMR D E

λ
= ≅ =

=

2s

∑ ∑
∑ . 

 
Confidence intervals and statistical tests could be 
performed on the log scale where 
 

( ) ( ) ( )

( )
1ln

s

s

SE SMR D ESE SMR
SMR DD E

≅ = = . 

 
Wald confidence intervals and test statistics can be 
computed in the usual way.  Alternative methods for 
hypothesis testing are described in the next section. 
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2.3.5 Hypothesis Testing for the SMR 
Conventional Test 

Proposed by Monson (1980) this is based on the test 
statistic 

( )( )
( )

2

2 2
1

0.5
~

s

s

D E
X

E
χ

− −
=  

where it is assumed that ( )( )~ sD Poisson E . 

Exact Method 
For small number of deaths, normal approximations to the 
skewed Poisson distribution are poor, so get exact p-
values directly from the Poisson distribution 

. ( )( )~ sD Poisson E

Byar’s Method 
The Byar approximation to the exact Poisson test is based 
on the test statistic 

( )
( )

1 3
19 1 0,1

9

sEX D N
D D

⎧ ⎫⎛ ⎞⎪ ⎪= − − ⎜ ⎟⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

� ∼� �  

where 
( )if 

1 otherwise

sD D ED
D

⎧ >= ⎨
+⎩

� . 

Variance Stabilizing Transformation 
The test statistic for this approximate method is 
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( ){ } ( )2 ~sX D E N= − 0,1

U

. 

2.3.6 Confidence Intervals for the SMR 
Exact Method 

Exact 95% confidence intervals for the SMR are of the form 
 where ( ),LSMR SMR

( )

( )

s
L L

s
U U

SMR E

SMR E

μ

μ

=

=
 

and μL  and μL  are obtained from Table 3. 

 
Table 3.  Exact multiplies for computing confidence 
intervals for the SMR. 

95% Intervals 99% Intervals 
D μL  μL  D μL  μL  
1 0.025 5.572 1 0.005 7.430 
2 0.121 3.612 2 0.052 4.637 
3 0.206 2.922 3 0.113 3.659 
4 0.272 2.560 4 0.168 3.149 
5 0.325 2.334 5 0.216 2.830 

10 0.480 1.839 10 0.372 2.140 
15 0.560 1.649 15 0.460 1.878 
20 0.611 1.544 20 0.518 1.733 
25 0.647 1.476 25 0.560 1.640 
50 0.742 1.318 50 0.673 1.425 
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Byar’s Method 
Byar’s approximation to the exact method gives very good 
results.  It is of the form ( ),LSMR SMRU  where 

( )

( )

s
L L

s
U U

SMR E

SMR E

μ

μ

=

=
 

and 

( ) ( )

3
1 2

3
1 2

11
9 3

11 1
9 1 3 1

L

U

z
D

D D

z
D

D D

α

α

μ

μ

−

−

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

⎛ ⎞
= + − +⎜ ⎟+ +⎝ ⎠

. 

Example:  If  and 15D = ( ) 8.33sE =  then the SMR is 

( )
15 1.80

8.33s
DSMR

E
= = =  

the Byar approximation to the 95% confidence interval is 
computed as follows: 

( )

( )

3

3

1 1.9615 1 8.38917
9 15 3 15

1 1.9616 1 24.74182
9 16 3 16

L

U

μ

μ

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠

⎛ ⎞
= − + =⎜ ⎟

⎝ ⎠

 

and so 
( )

( )

8.38917 8.33 1.007

24.74182 8.33 2.970

s
L L

s
U U

SMR E

SMR E

μ

μ

= = =

= = =
. 
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The Byar and exact confidence intervals are the same out 
to two decimal places: ( )1.01,2.97 .  The exact method is 
the best. The Byar method is the best approximation to the 
exact. 

Comments 
1. The exact method for the confidence interval is 

described by Mulder (AJE, 1983).  Formally, the exact 
100(1-α)% confidence interval for the SMR is 

( ) ( )

2 21 1
2,2 1 2,2 22 2,D D
s sE E

α αχ χ − +⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

2. Byar’s approximate method is based on the so-called 
Wilson-Hilferty approximation to the chi-square 
distribution.  For this reason you will sometimes see 
this method referred to as the Wilson-Hilferty 
approximation. 

2.3.7 Comparison of CMF and SMR 
A comparison of the CMF and SMR can be viewed in terms 
of bias and variance.  The CMF has greater variance and 
the SMR has greater bias.  A disadvantage of the SMR, 
relative to the CMF, is that 

• Ratio of SMRs for two comparison groups may differ 
substantially from the age-specific rate ratios.  The 
reason for this is analogous to the “summing of 2×2 
tables in the presence of confounding.” 
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Q: When can we combine age-groups?  When might the 
pooled SMR (odds ratio) differ from the stratum-specific 
SMRs (odds ratios)? 

A: If (1) the SMRs from each cohort vary across age 
groups and (2) the age distributions of the two cohorts 
differ. 

 

Example 
In the following table 

1. SMRs are larger in the 45-64 group 
2. There is a larger proportion of older subjects in Cohort 

1 than in Cohort 2. 
 
  Age 
  20-44 45-64 Total (20-64)
Cohort 1 D 

E(s) 

SMR1 

100 
200 
50 

1600 
800 
200 

1700 
1000 
170 

Cohort 2 D 
E(s) 

SMR2 

80 
120 
67 

180 
60 
300 

260 
180 
144 

 1

2

SMR
SMR

 0.75 0.67 1.18 

 
The stratum specific SMRs are smaller in Cohort 1; 
however, the pooled SMR is larger.  CMF does not have 
this problem when the stratum-specific rate ratios are 
proportional.  Specifically, if 1 2

ˆ ˆ
j jλ λ θ=  for all j then the 
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CMF is unbiased for the overall rate ratio 1 2λ λ , but the 
SMR is biased. 

Unbiasedness of CMF 
Note that 

( )

( ) ( )

( )

( )
11

2 2

ˆ ˆ

ˆ ˆ

s s
j j j
s s s

j

j j j

p pCMFCMF
CMFp p j

λ λ

λ λ
= ⇒ =∑ ∑
∑ ∑

 

which, under the assumption that 1 2
ˆ ˆ

j jλ λ θ= , is equal to 

( )

( )
2

2

ˆ

ˆ

s
j j

s
j j

p

p

θλ
θ

λ
=∑

∑
 

the constant rate ratio. 

Biasedness of SMR 
Note that 

( )

( )

( )

( )
1 1 1 1 11

2 2 2 2 2 2

ˆ ˆ

ˆ ˆ

s s
j j j j j

s s
j

j j j j j

D E n nSMR
SMR D E n n j

λ λ

λ λ
= =∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

 

which, under the assumption that 1 2
ˆ ˆ

j jλ λ θ= , is equal to 

( )

( )
1 2 1

2 2 2

ˆ ˆ

ˆ ˆ

s
j j j

s
j

j j j

n n

n n j

λ λ
θ

λ λ
∑ ∑
∑ ∑

. 

This quantity does not equal θ  unless either ( )
2̂

ˆ s
j jλ λ∝  or 

1 2j jn n∝  for all j.  Consequently, the CMF is unbiased for 
the common rate ratio 1 2

ˆ ˆλ λ . 
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Comments 
1. In practice the CMF and SMR are often close (but not 

always).  Despite the bias of the SMR, it is not true 
that the CMF will be closer to the true rate ratio 
because the CMF may have a large variance. 

2. In the above discussion we assumed that the rate 
ratios were constant across strata.  If they are not, 
then we cannot summarize the stratum specific rate 
ratios; i.e. the CMF and SMR are not recommended. 

3. Interpretations: 
a. The CMF is the proportionate increase (or 

decrease) in the disease rate that would be 
expected in the standard population if its 
members had the same exposure as those in the 
cohort. 

b. The SMR is the proportionate increase (or 
decrease) in the cohort disease rate due to 
exposures that occurred as a result of cohort 
membership, relative to the standard population. 
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3.1 Introduction 
Section 2 focused on the single exposure category 
problem, comparing mortality rates of a cohort with those of 
a standard population.  In this section we will 

1. Describe time-dependent exposure categories and 
how to allocate person-years at risk to them, 

2. Describe the Montana Smelter Workers Study as an 
example, 

3. Explore methods for comparing death rates among 
several exposure groups: 

a. External SMRs 
b. Internal SMRs 
c. Relative risk based on Mantel-Haenszel methods 

4. Describe methods/warnings for proportional mortality 
analyses. 

 
Methods discussed for external SMRs and internal SMRs 
in this section are largely of historical interest.  The most 
appropriate methods are the so-called Mantel-Haenszel 
procedures and the Poisson regression analysis for 
grouped data given in Section 4.  The section ends with 
proportional mortality analysis which is only used when 
person-years-at-risk data are unavailable and even then is 
of dubious value. 
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3.2 Allocation of Person-Years to Time-
Dependent Exposure Categories 
When exposure groups are defined from data available at 
entry into study, we can just treat each exposure group as 
a separate cohort and calculate person-years at risk. 
 
However, exposure is often time-dependent; i.e. cumulative 
exposure changes with time.  Each increment in person-
years of follow-up is assigned to the same exposure 
category as would a death had it occurred at that time.  
Each person may contribute to several categories. 
 
Caution:  Do not place someone in an exposure group 
based solely on total cumulative exposure or duration of 
employment. 
 
If exposure is continuous over time, then those who live the 
longest have the highest exposure; the shortest lived have 
the lowest exposure.  This results in the calculated death 
rates being too low for the high exposure category (number 
of person-years too larger) and the death rates will be too 
high in the low exposure category (number of person-years 
too small).  Hence, exposure could be mistakenly found to 
be beneficial if the time-dependent nature of exposure is 
ignored. 
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Person-years Example 

Follow-up (Years)

0-4 yrs 5-9 yrs 10-14 yrs

C

C

D

C

C

D

D

D D = Death
C = Censored

 
 
 0 – 4 yrs 5 – 9 yrs 10 – 14 yrs 
Cases 1 2 1 
Person-years 

Correct 
Incorrect  

 
37 
7 

 
23 
23 

 
7 

37 
 

3.2.1 Algorithms for Exact Allocation of Person-
Years 
Can get complicated – for each person must assign his/her 
person-years to a multidimensional table.  For example, 
time since employment, age, calendar year, time since 
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cessation of employment ⇒ 4-dimensional table and each 
of these factors is time-dependent. 

Clayton’s Method (1982) 
Appropriate for time-dependent covariates.  Need to know 
exact dates of entry and exit for each cell in the table.   The 
method will be illustrated with an example. 
Algorithm 
Suppose the three stratification variables are: age, 
calendar year, and years since first exposure.  Consider 
the strata with age 40-49, calendar period 1950-54, and 5-
10 years since first exposure.  Let 

A = latest date of {date of birth + 40 yrs, 31 December 
1949, date of first exposure + 5 yrs} 
B = earliest of {date of birth + 50 yrs, 31 December 
1954, date of first exposure + 10, date of exit from 
study}. 

If B precedes A, the person contributes no person-years to 
that strata.  Otherwise, the person contributes B – A 
person-years.  Repeat for each person and each stratum in 
the 3-dimensional table. 

3.2.2 Approximate Methods of Allocating Person-
Years 
A drawback to Clayton’s method is that exact dates must 
be known.  Alternatives include 

1. Use approximate dates in Clayton’s method 
2. If integer ages and calendar years are available, use 

the approximate method from Section 2. 
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3. Divide each subject’s observation period into annual 
intervals that are allocated in their entirety to a given 
time-exposure strata. 

 

3.3 Grouped Data from the Montana Copper 
Smelter Workers Study 
Person-years is allocated into a 3-dimensional table 
defined by age, calendar period, and arsenic exposure.  
Exposures received during each 10-year period (starting in 
1910) are prorated on a linear basis; each individual was 
classified into the appropriate arsenic exposure duration 
category at each point in time: 

1. Less than one year 
2. 1 – 4.9 years 
3. 5 – 14.9 years 
4. 15+ years 

 
Assignment was based on duration of heavy/moderate 
exposure at a point two years earlier.  This is a crude way 
of adjusting for bias due to 

• Workers who just entered a new cumulative exposure 
category are necessarily still employed ⇒ lower risk of 
death 

• Workers who change employment or retire for health 
reasons ⇒ higher death rates.  Also, think about 
“healthy worker effect”.  Health status affects hiring, 
job change, quitting. 
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Due to a change in the smelting process (average 
exposure reduced after 1925, the cohort was divided into 
two groups: 1) 1,482 men employed prior to 1925 and 2) 
6,532 men employed on or after 1925.  Definition of “high” 
exposure changes before and after 1925 ⇒ very different 
dose-response curves. 
A more appropriate method might have been to classify 
exposure to pre-1925 and post-1925 in a time-dependent 
fashion; a person could contribute to both. 
 
For illustrative purposes, the data is summarized in Table 1 
by 10-year age and calendar periods. 
 
Table 1.  Standard respiratory cancer death rates and 
standard weights used for comparative analyses of the 
Montana Smelter Workers data. 
Age Calendar Year Std. Wgt. 

(%) 1938-49 1950-59 1960-69 1970-79 
40-49 0.14817 0.21896 0.28674 0.37391 37.4 
50-59 0.47412 0.80277 1.05824 1.25469 30.1 
60-69 0.73136 1.55946 2.33029 2.90461 21.5 
70-79 0.73207 1.63585 2.85724 4.22945 11.0 
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3.4 Comparison of Directly Standardized 
Rates 
For the k-th exposure category the direct standardized rate 
is  

( )

1

ˆ
J

s
k j

j

DSR p jkλ
=

=∑  

where 1, ,j J= …
( )s

 denote the age-calendar year categories 
and jp  are weights form a standard population.  The 
comparative mortality figure for the k-th exposure category 
is 

( ) ( ) ( )
k k

k s s s
j j

DSR DSRCMF
p λ λ

= =
∑

. 

 

Comments 
1. In practice, comparison of DSRs or CMFs is limited to 

studies with a substantial number of deaths in each 
exposure category; i.e. so that the resulting 
standardized rates are stable. 

2. Hypothesis testing is not commonly done with CMFs. 
 

3.5 Comparison of Standardized Mortality 
Ratios 
Note that if data are not extensive and sampling variability 
is of concern, then SMRs are more appropriate than CMFs.  
Define the observed and expected number of deaths (using 
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rates from an external standard population) for the k-th 
exposure category as follows 
 

( ) ( )

1

1

J

k jk
j

J
s s

k jk
j

O d

E n jλ

=

=

=

=

∑

∑
. 

 
Then the SMR for the k-th exposure category can be 
written as ( )s

k k kSMR O E= .  We will denote the SMR for 
the entire cohort as ( )sSMR O E+ += . 

 
Recall from Section 2 that ratios of SMR have serious 
problems when the ratios of cohort-to-standard-population 
rates vary widely from one stratum to another.  In these 
cases, the SMRs are poor summary measures.  For SMR 
analyses to be appropriate, stratum specific rates for each 
exposure category must be proportional to the external 
standardized rates. 

( )
jk

ks
j

k k

jkk

l j

SMR

SMR
SMR l

λ
θ

λ

θ
λ
λ

=

⇒ =

⇒ =

. 

 
If the proportionality assumption holds, then assume that 
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( )( )~ s
k kO Poisson Eθ k  

where kθ  is the true, unknown SMR for the k-th exposure 
category.  Define the relative risk (or rate ratio) as the ratio 
of the age-specific rates for the k-th and first exposure 
categories ( 1k kRR θ θ= ).  Note that 1 1RR = .  Under the 
null hypothesis that 

0 1: KH θ θ= =…  or 0 2: 1KH RR RR= = =…  

the “adjusted expected values” of  are kO

( )
( )

( )

s
s k

k s
EE O
E+

+

=� . 

3.5.1 Two Dose Levels: Exposed versus 
Unexposed 
Both exact and normal-based approximate methods are 
available to test the null hypothesis that 

0 2: 1H RR = . 

 

Exact Binomial Distribution 
The exact test is based on the test statistic 

( )0~ ,Y Bin O π+  

where 

( ) ( )
0 2

ij

s s

O d

E Eπ

+

+

=

=

∑ . 

The two-sided p-value is 
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[ ] ( )

[ ]
2 2

2

2Pr if 
2Pr otherwise

sY O O Ep
Y O

⎧ ≤ ≤⎪= ⎨
≥⎪⎩

�
2 . 

 

Normal Approximation 
Usually the number of observed deaths is sufficient to use 
Normal-theory methods to calculate an approximate p-
value.  A common choice of test statistic is 

( )( )
( )

( )( )
( )

2 2

1 1 2 22 2
1

1 2

0.5 0.5
~

s s

s s

O E O E
X

E E
χ

− − − −
= +

� �

� � . 

This chi-square statistic is inherently two-sided. 

3.5.2 Point and Interval Estimation for the Relative 
Risk 
The maximum likelihood estimate of the relative risk is 

1

k
k

SMRRR
SMR

=  

and there are several methods that can be used to 
compute confidence intervals. 

Exact Confidence Intervals (Pearson and Hartley) 
An exact method proposed by Pearson and Hartley in 1962 
has the form 

( )

( ) ( )

( )

( ) ( )
11 ,

1 1

ss
UL

s s
L k U k

EE
E E

ππ
π π

⎛ ⎞
⎜ ⎟⎜ ⎟− −⎝ ⎠

��
� �  

where 
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Approximate Confidence Intervals 
Approximate confidence intervals based on the normal 
approximation to the binomial distribution are of the form 

 where  and  are solutions to the 
quadratic equations: 
( ),L URR RR LRR URR

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1

1 1 1 2 1

0.5 0.5

0.5 0.5

s s s s

k L k L k

s s s s

k U k U K

E O RR E O z RR E E O O

E O RR E O z RR E E O O

α

α

−

−

− − − = +

− − − = − +

1

1

k

k

. 

3.5.3 Testing for Association and Trend in the 
SMRs 
In this section we will consider tests of the null hypothesis 

0 2: 1KH RR RR= = =… . 

 

Test of General Association 
The test for general association is appropriate when the 
alternative hypothesis is 

:A kH RR RRl≠  

for at least two exposure categories k and l.  The test 
statistic is 
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Test for Trend 
When it is of interest to test for an ordering of the relative 
risk, as is the case with alternative hypotheses such as 

0 2:1 KH RR RR< < <…  

or 

0 2:1 KH RR R> > >… R , 

a trend statistic of the form 

( )( )
( ) ( )

2

12 2
12

2

1 1

~

K
s

k k k
k

K K
s s

k k k k
k k

x O E
X
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+
= =

⎡ ⎤
−⎢ ⎥

⎣ ⎦=
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

∑

∑ ∑

�

� �
 

may be used, where 1, , kx x…  are scores associated with 
the exposure categories.  The p-value is inherently two-
sided; i.e. a test for an increasing or decreasing trend. 
 

Example: Two Exposure Groups 

Suppose , 1 5O = 2 14O = , ( )
1 7.3sE = , and ( )

2 5.5sE = .  Then 
the overall standardized mortality ratio is 

( ) 19 12.8 1.484sSMR O E+ += = =  

and the adjusted expected number of deaths are 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1

2 2

7.3 1.484 10.84

5.5 1.484 8.16

s s
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The estimated relative risk is 
( )

( )
2 2 2

2
1 1 1

14 5.5 3.7196
5 7.3

s

s
SMR O ERR
SMR O E

= = = = . 

Hypothesis Testing 
An approximate test of the hypotheses 

0 2

2

: 1
: 1A

H RR
H RR

=

≠
 

is based on the statistic 

( ) ( )2 2
2 2

1
5 10.84 0.5 14 8.16 0.5

6.126 ~
10.84 8.16

X χ
− − − −

= + = . 

The resulting two-sided p-value is 
2
12Pr 6.125 0.0133p χ⎡ ⎤= ≥ =⎣ ⎦ . 

Therefore, at the 5% level of significance, the estimated 
relative risk is greater than unity. 
Confidence Interval 
We will use the exact method to compute a 95% 
confidence interval.  Noting that 

1 2

1

1 2,2 2,2 0.975,12,28

2,2 ,2 2 0.025,10,30

2.45

0.302
k

O O

O O

F F

F F
α

α

− +

+

= =

= =
 

we compute 
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which gives the following confidence interval 
( )

( ) ( )
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Example: Four Exposure Groups 
Suppose that we have the following data from four 
exposure groups: 

{ }
( ) { }

{ }

100,38,15,8

121.21,22.63,11.17,5.99

1,2,3,4

s

O

E

x

=

=

=

� . 

Test for General Association 
The test statistic is 

( ) ( ) ( )

( )

2 2
2

2
2
3

100 121.21 38 22.63 15 11.17
121.21 22.63 11.17

8 5.99
16.1383 ~

5.99

X

χ

− − −
= + +

−
+ =

2

. 
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At the 5% level of significance, there is a difference 
between at least two of the relative risks (p = 0.0011). 
Test for Trend 
The trend statistic is 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }2

2
1

21 100 121.21 2 38 22.63 3 15 11.17 4 6 5.992
1 121.21 4 22.63 9 11.17 16 5.99 1 121.21 2 22.63 3 11.17 4 5.99 161

8.74 ~

X

χ

− + − + − + −⎡ ⎤⎣ ⎦=
+ + + − + + +

=

 

At the 5% level of significance, there is an increasing trend 
in the relative risks (p = 0.0031). 

 

Comments 
1. Both of these tests are efficient score tests.  This 

means that they can be computed easily using 
Poisson regression software. 

2. The test of association must be sensitive to all 
deviations from 0H  whereas the trend test need be 
sensitive to just two: increasing or decreasing.  
Hence, the K – 1 degree of freedom association test 
has far less power to detect a dose-response 
relationship than the one degree of freedom trend 
test. 

3.5.4 Trend Test for Exposure Effect versus Test 
for Dose-Response 
The trend test may be significant even when the relative 
risks are not continuously increasing across exposure 
levels.  Fro example, in the figure below, the relative risk is 
higher for exposure (1-4) categories than for the non-
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exposed (0) category; however, the relative risks are not 
strictly increasing across exposure categories. 
 

0 1 2 3 4

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Exposure Category

R
el

at
iv

e 
R
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k

 
 
Causal Relationship:  Trend test may be significant, but 
causal inference relating exposure to disease is less 
secure.  You may need to worry about how the non-
exposed group was chosen (selection bias, confounding).  
For example, in studies of coffee drinking and bladder 
cancer, coffee drinkers may be generally more health 
conscious with respect to diet, exercise, etc.  What to try: 
trend test without the zero exposure category. 
 
Possible Carcinogenic Effect:  Need to include zero 
category.  Issue with zero dose group: Should the intercept 
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for the regression of SMR on dose go through 1?  Not 
necessarily. 
The trend statistic assumes that the intercept is estimated 
from the data.  This may be appropriate 

• To account for healthy worker effect (zero exposure 
SMR < 1). 

• When more dying than expected in the zero exposure 
category. 

In these cases a trend test would be biased if the intercept 
is assumed to be unity. 

3.5.5 Selection of the Dose Metameter 
The choice of scores 1, , Kx x…  to use for the dose 
categories in the trend test will affect the conclusion.  For 
example, using the observed – expected number of deaths 
from a hematological cancer study of navy shipyard 
workers: 
 

Scores Trend Statistic p-value 
Linear 1.19 0.14 
Log 2.25 0.07 

Threshold 3.53 0.03 
 
Of course, it is cheating to plot the data, pick the scores, 
and then do a strict hypothesis test.  This is not an easy 
problem and some serious thought needs to be devoted to 
it. 
If dose level is smoking, how does one quantify an ex-
smoker?  If exposure is asbestos, it is clear that an ex-
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asbestos worker is categorized by cumulative dosage, 
unlike an ex-smoker.  For other exposures, the time-
dependent rate of exposure may be more important than 
the time-dependent cumulative dose. 

 

3.6 Comparison of Internally Standardized 
Mortality Rates 
The appropriateness of using standard rates from an 
external population is sometimes questionable.  Making 
internal comparisons using only observed data is 
reasonable in this case. 
*The methods described in this section are a rough 
approximation to the preferred methods discussed in the 
next section. 

Adjusted Expected Values 
Previously we computed the expected number of deaths 
under the assumption that an external standard population 
was being used to compute the SMRs; i.e. 

[ ] ( )
( )

( )

s
s k

k k s
EE O E O
E+

+

= =�  

where ( ) ( )ˆs s
k jkj

E n jλ=∑ . 

When internal standardization is used, the expected 
number of deaths is 

[ ]k kE O E=  

where ˆ
k jj

E n k jλ=∑ . 
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Estimation and Testing using Internal Rates 

Same form as those using external rates, just replace ( )s
kE�  

by .  For example, kE

1 1

k k
k

O ERR
O E

= . 

Tests of  are based on the statistic 0 2:H RR =1

( ) ( )2 2
1 1 2 22 2

1
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0.5 0.5
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E E
χ
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Tests of  are based on the general chi-
square statistic 

0 2: KH RR RR= =…
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or the trend statistic 
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∑

∑ ∑
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The latter two tests are conservative. 

Comments 
1. Internal standardization is a rough approximation to 

the methods presented in the next section as well as 
Poisson regression. 
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2. If age and calendar time (or other stratification 
variables) confound the exposure-disease 
relationship, this procedure is conservative. 

3. If there are more than two exposure groups, internal 
standardization does not eliminate the problem of 
non-comparability of SMRs: the pooled “internal” 
group may be dominated by one or more large 
exposure groups. 
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3.7 Preferred Methods of Analysis for 
Grouped Data 
Preferred methods for cohort data are very similar to those 
for case-control data.  Replace “cases” by “deaths”, 
“controls” by “number of person-years” and you have made 
the link between the two. 
 
In the j-th stratum and k-th exposure group, let 

jka  = number of cases jkd  = number of deaths 

jkc  = number of controls jkn  = number of person years 

 

Case-Control Data 
The following are properties of case-control analyses: 

• The relative measure of risk is 

1 1

jk jk
jk

j j

a c
OR

a c
= . 

• The given 2×K table margins { }1, ,j jKa a…  are 
assumed to have a multivariate hypergeometric 
distribution. 

• Regression is performed with the logistic model. 
 

Cohort Data 
The following are properties of cohort analyses: 

• The relative measure of risk is 
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1 1

jk jk
jk

j j

d n
RR

d n
= . 

• The observed deaths j jkk
D = d∑  is assumed to have 

a multinomial distribution. 
• Regression is performed with the Poisson model. 

 

3.7.1 Crude Relative Risk 
Suppose that we wish to compare two cohorts for which 
the number of deaths and person-years are  and , 

.  In the case of no stratification, the relative risk is 
simply 

iO iN
1,2i =

2 2

1 1

O NRR
O N

= . 

The approximate chi-square statistic that can be used to 
test the null hypothesis 0 : 1H RR =  is 

[ ]( )
[ ]

2
2 22
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0.5O E O
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such that  and 1O O O+ = + 2 1 2N N N+ = + . 
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Example 
Consider the data: 
 Deaths ( )iO  Person-Years ( )iN
Unexposed 5 7300 
Exposed 14 5500 
Totals 19 12800 

The estimated relative risk is 

2 2

1 1

14 5500 3.716
5 7300

O NRR
O N

= = =  

and the approximate chi-square statistic is 

( )( )
( )

2

2

2

550014 19 0.5
12800 6.115

7300 5500
19

12800

X

⎛ ⎞− −⎜ ⎟
⎝ ⎠= = . 

At the 5% level of significance, the relative risk is different 
from unity (p = 0.0134). 

3.7.2 Mantel-Haenszel Estimator (Two Exposure 
Groups) 
Suppose there are 2K =  exposure categories and J strata.  
Denote the j-th table of data as 
 
 Deaths Person-Years 
Unexposed 1jd  1jn  

Exposed 2jd  2jn  

Totals jD  jN  
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Then the Mantel-Haenszel estimator of the exposure-
disease relative risk is 
 

2 1
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j j jj
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j j jj

d n N
RR

d n N
=
∑
∑

 

 
with variance and standard error given by 
 

[ ]
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Since the distribution is so skewed, it is recommended to 
compute confidence intervals and test statistics on the 
natural log scale where 

[ ] [ ]ln MH
MH

MH

SE RR
SE RR

RR
= . 

 
Thus, a 95% Wald confidence interval is 

 

[ ]{ }exp ln 1.96 lnMH MHRR SE RR±  
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for which the associated test statistic for  is 0 : 1H RR =

 

[ ] ( )ln ~ 0,1MHRRX N=

0 : 1R =

[ ]

ln MHSE RR
. 

 

Approximate Test 
Although the Wald statistic can be used to test the null 
hypothesis H R , the preferred approximate test 
statistic is 

{ }
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2
2 22
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British Doctors Example 
Consider the data below from a study of coronary heart 
disease in British male doctors. 
 
Table 2.  Deaths from coronary disease among British 
male doctors. 

Age Group 
(j) 

Smoker 
(i) 

Deaths 
( )jid ( ) 

Person-Years 
jin  

35-44 No 2 18,790 
 Yes 32 52,407 
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Age Group 
(j) 

Smoker 
(i) 

Deaths 
( )jid  

Person-Years 
( )jin  

45-54 No 12 10,673 
 Yes 104 43,248 
55-64 No 28 5,710 
 Yes 206 28,612 
65-74 No 28 2,585 
 Yes 186 12,663 
75-84 No 31 1,462 
 Yes 102 5,317 

 
The Mantel-Haenszel estimate is 

 
32 18,790 71,197 102 1,462 6,779
2 52,407 71,197 31 5,317 6,779MHRR × + + ×

=
× + + ×

…
…

1.42=

( ) ( )0 1: JH RR RR

. 

 

3.7.3 Tests for Homogeneity of Relative Risks 
The fundamental assumption when estimating a common 
relative risk is that the relative risks across the J strata are 
the same (homogeneous); i.e. age is not an effect modifier.  
A test of the homogeneity, that 

= =…  

can be carried out based on the chi-square statistic 
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where one typically uses 
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3.7.4 Tests for Trend 
A test for trend across the J stratum-specific relative risks 
can be carried out with the test statistic 
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where the 1, , Jx x…  are stratum-specific scores and, as in 
the previous section, 
 

2
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British Doctors Example 
From Table 2 we have the following 
 
 35-44 45-54 55-64 65-74 75-84 

j
x  1 2 3 4 5 

( )1 1
ˆ

j j
d d  2 

(6.83) 
12 

(17.13) 
28 

(28.75) 
28 

(26.82) 
31 

(21.52) 

( )2 2
ˆ

j j
d d  32 

(27.16) 
104 

(98.87) 
206 

(205.25) 
186 

(187.18) 
102 

(111.48) 

j
D  34 116 234 214 133 

 
Note that 

( ) ( ) ( )2 2

2
1 2

1 2

1 2

ˆ 1 32 27.16 5 102 111.48

34.92
ˆ ˆ 1116.72231

ˆ ˆ 294.23598

ˆ ˆ 86.74386

j j jj

j j j jj

j j j jj

j j jj

x d d

x d d D

x d d D

d d D

− = − + + −

= −

=

=

=

∑

∑
∑
∑

…

 

and so 

[ ]
( )

2
2 2

12

34.920
10.3 ~

294.23598
1116.72231

86.74386

X χ
−

= =

−

 

Therefore, at the 5% level of significance, there is an 
increasing trend in the relative risks across age groups (p = 
0.0013). 
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3.7.5 Mantel-Haenszel Estimator (Multiple 
Exposure Groups) 
There is a generalization of the Mantel-Haenszel estimator 
to accommodate more two or more exposure categories.  
In general there are 1, ,k K= …  exposure categories and we 
would like to test the hypothesis 

0 2: 1KH RR RR= = =… . 

Under this null hypothesis the { }1, ,j jKd d…  have a 
multinomial distribution with mean and covariance matrix 
given by 

{ } ( ) 2

2

if 
,

if 

j
jk jk

j

jk j jk j j
j jk jlkl

jk jl j j

D
E d n

N

n N n D N k
Var d d

n n D N k l

⎡ ⎤ =⎣ ⎦

⎧ l− =⎪⎡ ⎤= = ⎨⎣ ⎦ − ≠⎪⎩
Σ

. 

Define { }1 1, ,T
KO O −=O … , { }1, ,T

KE E 1−=E … , and  such 
that 

Σ

k jkj

j
k jkj j jk

j

jj

O d

D
E E d n

N

=

⎡ ⎤= =⎣ ⎦

=

∑

∑ ∑

∑Σ Σ

. 

 
The Mantel-Haenszel test for equal risks across exposure 
categories is based on the statistic 

( ) ( )2 1 2
1~T

KX − χ −= − −O E Σ O E . 
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Tests of trend can be carried out with the statistic 

( )

( )

2

2 2
122

~k k kk

k k k jk j j jk j k

x O E
X

x E x n D N D
χ

⎡ ⎤−⎣ ⎦=
−

∑
∑ ∑ ∑

. 

3.7.6 Conservatism of Indirect Standardization 
This section provides an example of how statistical 
confounding can make the internal standardized test 
conservative. 
 
 Stratum 1 Stratum 2 Totals 
Exposed Cases P-Yrs Cases P-Yrs Cases P-Yrs 
No 25 10,000 5 4,000 30 14,000
Yes 5 1,000 25 10,000 30 11,000
RR 2.0 2.0 1.27 

 

Method of Internal Standardization 
Using internal standardization yields the following expected 
number of deaths: 

2

1 1
1

2

30 3010,000 4,000 35.844
11,000 14,000

30 301,000 10,000 24.156
11,000 14,000

j
j

jj

D
E n

N

E

=

= = + =

= + =

∑
. 

The resulting relative risk and test statistic are 
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{ } { }

2 2

1 1
2 2

2

2
1

30 24.156 1.48
30 35.844

30 35.844 0.5 30 24.156 0.5
35.844 24.156

1.98 ~

O ERR
O E

X

χ

= = =

− − − −
= +

=

. 

for which the two-sided  p-value is p = 2
1Pr 1.98χ⎡ ⎤≥⎣ ⎦  = 

0.1594. 

Method of Mantel-Haenszel 
For this method 

[ ]
2

2
2

1

1,000 10,00030 30 24.156
11,000 14,000

j
j

jj

n
E O D

N=

= = + =∑  

[ ]

( )( ) ( )( )

2
2

2 1 2
1

2 2

30 10,000 1,000 30 4,000 10,000
11,000 14,000

8.6018

j j j j
j

Var O D n n N
=

=

= +

=

∑

. 

The relative risk estimate and test statistic are 

{ }

2 1

1 2

2
2 2

1

2.0

30 24.156 0.5
3.32 ~

8.6018

j j jj
MH

j j jj

d n N
RR

d n N

X χ

= =

− −
= =

∑
∑  

for which the two-sided p-value is p = 2
1Pr 3.32χ⎡ ⎤≥⎣ ⎦  = 

0.0684. 

 74



Comments 
1. The stratum-specific rate ratios are constant (2.0) and, 

thus, it is appropriate to estimate an overall relative 
risk. 

2. The internal standardization here uses the ratio of the 
SMRs to estimate the relative risk.  The estimate is 
biased because of the difference in the distribution of 
person-years for exposed and unexposed across 
strata. 

3. The Mantel-Haenszel estimate is not biased and 
yields a more powerful statistical test. 

 

3.8 Proportional Mortality and Dose-
Response Analysis 
Setting:  Suppose that one needs to conduct a dose-
response analysis using number of deaths only, without 
person-year information.  This may be due to: 

1. Person-year data not being available 
2. Complete exposure history has been reconstructed for 

the dead and we want an initial evaluation of relative 
risk to see if it’s worthwhile to go through the lengthy 
process of acquiring person-year information in the 
rest of the cohort. 

 
Let jkd  denote the number of deaths from cause of interest 
(stratum j, exposure group k), jkt  the number of deaths 
from all causes, and kx  the dose level associated with 
exposure group k.  Define 
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j jkk

j jkk

D d

T t

=

=

∑
∑

 

 
Goal:  Determine whether the proportion of death due to 
cause of interest increases with increasing levels of 
exposure while adjusting for the stratified variables. 
 
Warning:  Competing Risk Problem – If other causes of 
death are affected by the exposure, then the cause-specific 
proportion deaths will not allow unbiased estimation of the 
relative risk. 
 
Assumption:  The necessary assumption is that the other 
causes of death are not related to the exposure – in 
practice, we may need to exclude those “other” causes that 
are known to be related to the exposure. 
 

Analysis 
Assume that those dying from other causes represent an 
unbiased sample of the population at risk within each 
stratum.  These will be the controls; those dying from the 
cause of interest are the cases.   Use case-control 
methods to analyses the data. 
 
Note:  The “controls” are assumed to be representative of 
the population at risk.  We are typically uncertain of this.  
Thus, inference for a proportional mortality study is more 
tentative than for a case-control study. 
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3.9 Overview of Estimation and Testing 
Procedures 

Notation 
Term Description 

1, ,k K= …  Index for the exposure groups 
1, ,j J= …  Index for the stratification variable 

jkd  Number of cases 
jkn  Number of person-years 
jkλ  Rate in the cohort 
( )s
jλ  Rate in the standard population 

j jkk
D d=∑  Observed cases in stratum j 

k j
O d=∑ jk  Observed cases at exposure k 

( ) ( )s
k jkj

E n s
jλ=∑  Expected cases using an external 

population 
( ) ( )s

kk
E+ = ∑ sE  Total expected cases 

ˆ
k j

E njk jλ=∑  Expected cases using the entire cohort 
as the standard population 

j jkk
N n=∑  Person-years in stratum j 

Proportionality Assumption 
Necessary assumption for comparing SMRs from two 
cohorts; i.e. jk jlλ λ = θ  for all 1, ,j J= … .
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Summary of Methods 
 

 External 
Standardization 

Internal 
Standardization Mantel-Haenszel 

Comparison Across 
Strata - - Homogeneity (3.7.3) 

Trend (3.7.4) 
    
Estimation ( )

( )
1 1

s
k k

k s

O E
RR

O E
=  

1 1

k
k

kO E
RR

O E
=  1

1

jk j j
k

j jk j

d n N
RR

d n N
= ∑
∑

 

Confidence Interval Exact (3.5.2) 
Approximate (3.5.2) 

Same as for external; 
replace ( )  by  s

kE� kE
Exact – Software 

Approximate (3.7.2) 
Test of Association 

0 2: 1H RR =  
Exact (3.5.1) 

Approximate (3.5.1) Approximate (3.6)* Approximate (3.7.2) 

Test of Association 
0 2: KH RR RR= = =… 1 Approximate ( 3.5.3) Approximate (3.6)* Approximate (3.7.5) 

Trend Test Approximate (3.5.3) Approximate (3.6)* Approximate (3.7.5) 
* Mantel-Haenszel methods are preferred 
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4.1 Introduction 
In this section we discuss Poisson regression, a method 
that is appropriate for modeling a discrete response 
variable that takes on non-negative values (0, 1, 2...). 

4.1.1 Montana Smelter Workers Study Revisited 
Consider the follow-up data from the Montana study that 
was grouped by exposure, age, calendar, year, and hiring 
categories.  We will use the variables summarized in the 
table below to model the risk of death from respiratory 
cancer in this cohort. 
 
Variables Description Values 
Outcome respiratory Number of deaths 

from respiratory 
cancer 

numerical 

 pyears Number of person-
years 

numerical 

Predictor arsenic Years of arsenic 
exposure 

1 = 0.0-0.9 
2 = 1.0-4.9 
3 = 5.0-14.9 
4 = 15.0+ 

Confounders age Age groups 1 = 40-49 
2 = 50-59 
3 = 60-69 
4 = 70-79 

 year Calendar year 1 = 1938-1949 
2 = 1950-1959 
3 = 1960-1969 
4 = 1970-1977 

 period Hiring periods 1 = before 1925 
2 = 1925+ 
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Years of arsenic exposure is the primary risk factor of 
interest in this study.  One could use the Mantel-Haenszel 
or SMR approaches of Section 3 to estimate the adjusted 
relative risk of death associated with arsenic exposures.  
Recall that, in Section 3, stratification was used to adjust 
for the confounding variables.  A limitation of this approach 
is that it does not allow for the joint estimation of relative 
risk across both the exposure and stratification variables. 
In this section, a multivariate regression approach is 
presented for the estimation and standardization of rates 
for cohort data. 

4.1.2 The Poisson Distribution 
The Poisson distribution can be used to describe a discrete 
random variable that takes on non-negative values.  We 
will use it to model the observed number of deaths d given 
n person-years of follow-up.  Let λ denote the true rate of 
death.  Our multivariate regression model will be based on 
the assumption that d is distributed 

( )λ∼d Poisson n . 

The probability function for this random variable is given by 

[ ] ( )Pr
!

xne n
d x

x

λ λ−

= =  

For example, suppose that the true death rate for a 
particular cohort is 1 per 100 person-years ( )0.01λ = .  If a 
study of individuals in this cohort yielded n = 5000 person-
years of follow-up, the Poisson distribution function for the 
number of deaths would be 
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[ ]
( ) ( ) ( )5000 0.01 505000 0.01 50

Pr
! !

x xe e
x

x x

− −⋅
= =  

and is plotted in Figure 1. 
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Figure 1.  Probabilities for a ( )50Poisson  random variable 

 
Properties: 

• A Poisson random variable may take on any non-
negative value, including zero. 
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• The Poisson distribution for the number of deaths has  
expected value and variance equal to 

[ ] [ ]E d Var d nλ= = . 

• The Poisson parameter nλ  must be positive. 
 
The Poisson distribution is an approximation to the exact 
distribution for d n  and will be an adequate approximation 
provided: 

1. The rate of death λ  is sufficiently small, and 
2. Only a fraction of the cohort members are expected to 

die during the follow-up period. 
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4.2 Poisson Regression Model 

4.2.1 Model Specification 
In Poisson regression, the observed number of deaths is 
modeled as a multivariate function of the predictor 
variables ( 1 2, , , )px x x=x …  according to the following 
relationship: 
 

( )( )
( ) 0 1 1 2 2ln p p

d Poisson n

x x x

λ

λ β β β β⎡ ⎤ = + + + +⎣ ⎦

x

x

∼

…
. 

 
It can be seen that this is a multiplicative model for the rate 
parameter be re-writing the formula as 

( ) { }
0 1 1 2 2

0 1 1 2 2exp
p p

p p

xx x

x x x

e e e eββ β β

λ β β β= + + + +

=

x …

"

β
 

The multiplicative model is commonly used in practice 
because it ensures that the rate parameter λ  will be 
positive for all possible values of the predictors and 
coefficients. 

4.2.2 Generalized Linear Model 
Poisson regression models fall within the generalized linear 
models framework.  Specifically, the mean of the assumed 
Poisson distribution can be written as a function of the 
linear predictor, 
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( ) [ ] ( )
[ ] 0 1 1 2 2

ln ln ln

ln p p

n n

n x x

λ λ

β β β β

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦
= + + + + +

x x

… x
 

 
The [ ]ln n  term is called an “offset”.  An offset is a term in 
the linear predictor with a coefficient that is fixed, rather 
than estimated.  It is needed here because the mean of the 
Poisson distribution ( )nλ x  must be linked to the linear 
predictors in the estimation routines. 

Smelter Study Example 
Define the following indicator variables for the regression 
analysis: 
 

arsenic2 = I(arsenic = 2) 
arsenic3 = I(arsenic = 3) 
arsenic4 = I(arsenic = 4) 

year2 = I(year = 2) 
year3 = I(year = 3) 
year4 = I(year = 4) 

age2 = I(age = 2) 
age3 = I(age = 3) 
age4 = I(age = 4) 

period2 = I(period = 2) 

 
We will model the reported deaths from pulmonary cancer 
in this cohort using Poison regression with the following 
model for the death rate: 

( )

0 1 2 3

4 5 6

7 8 9

10

2 3
2 3 4

exp
2 3 4

2

arsenic arsenic arsenic
age age age
year year year
period

β β β β
β β β

λ
β β β
β

+ + +⎧ ⎫
⎪ ⎪+ + +⎪ ⎪= ⎨ ⎬+ + +⎪ ⎪
⎪ ⎪+⎩ ⎭

x

4
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SAS Poisson Regression 
data smeltermod; 
 set smelter; 
 arsenic2 = (arsenic = 2); 
 arsenic3 = (arsenic = 3); 
 arsenic4 = (arsenic = 4); 
 age2 = (age = 2); 
 age3 = (age = 3); 
 age4 = (age = 4); 
 year2 = (year = 2); 
 year3 = (year = 3); 
 year4 = (year = 4); 
 period2 = (period = 2); 
 lpyears = log(pyears); 
run; 
 
proc genmod data=smeltermod; 
 model respiratory = arsenic2 arsenic3 arsenic4 age2 age3 age4 
                     year2 year3 year4 period2 

                    / dist=poisson offset=lpyears; 
run; 

 
Details 

• PROC GENMOD is a SAS procedure for fitting 
generalized linear models, which includes the linear, 
logistic, and Poisson models 

• Poisson regression is specified with the dist option in 
the model statement.  The default is to model the 
natural log-transformed Poisson parameter as a 
function of the linear predictor. 

• The offset option is available to add a linear predictor 
for which the coefficient is fixed and not estimated.  
Note that the log-person-years offset must be first 
defined in the data step. 
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The GENMOD Procedure 
 
          Model Information 
 
Data Set              WORK.SMELTERMOD 
Distribution                  Poisson 
Link Function                     Log 
Dependent Variable        respiratory 
Offset Variable               lpyears 
 
 
Number of Observations Read         114 
Number of Observations Used         114 
 
 
           Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
 
Deviance                 103        105.7389          1.0266 
Scaled Deviance          103        105.7389          1.0266 
Pearson Chi-Square       103        105.3665          1.0230 
Scaled Pearson X2        103        105.3665          1.0230 
Log Likelihood                      122.6024 
 
 
Algorithm converged. 
 
 
                            Analysis Of Parameter Estimates 
 
                               Standard     Wald 95% Confidence       Chi- 
Parameter    DF    Estimate       Error           Limits            Square    Pr > ChiSq 
 
Intercept     1     -8.0670      0.2857     -8.6269     -7.5071     797.38        <.0001 
arsenic2      1      0.7982      0.1582      0.4880      1.1083      25.44        <.0001 
arsenic3      1      0.5734      0.2062      0.1692      0.9776       7.73        0.0054 
arsenic4      1      0.9218      0.1810      0.5670      1.2766      25.93        <.0001 
age2          1      1.3870      0.2468      0.9034      1.8706      31.60        <.0001 
age3          1      2.1926      0.2445      1.7133      2.6719      80.40        <.0001 
age4          1      2.3447      0.2702      1.8150      2.8744      75.28        <.0001 
year2         1      0.5336      0.2151      0.1120      0.9552       6.15        0.0131 
year3         1      0.6870      0.2143      0.2669      1.1071      10.27        0.0013 
year4         1      0.6588      0.2305      0.2070      1.1106       8.17        0.0043 
period2       1     -0.5116      0.1530     -0.8114     -0.2118      11.19        0.0008 
Scale         0      1.0000      0.0000      1.0000      1.0000 
 
NOTE: The scale parameter was held fixed. 
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4.3 Inference 

4.3.1  Relative Risk Estimation 
The relative risk (RR) is the risk in one group relative to the 
risk in another.  In the multivariate regression setting, it is 
often of interest to estimate the risk ratio for subjects with 
covariates  relative to those with covariates . The 
general steps for computing relative risks from the results 
of a Poisson regression are: 

′x ′′x

1. Write out the ratio of rates using the model specified 
in the Poisson regression, 

( )
( )

{ }
{ }

0 1 1 2 2

0 1 1 2 2

exp
exp

p p

p p

x x x
RR

x x x

β β β βλ
λ β β β β

′ ′ ′+ + + +′
= =

′′ ′′ ′′+ + + +

x
x

…
… ′′

. 

2. Reduce this equation to a form that is the exponential 
of the estimated regression parameters. 

( ) ( ) ( ){ }1 1 1 2 2 2exp p p pRR x x x x x xβ β β′ ′′ ′ ′′ ′ ′′= − + − + + −…  

3. Insert the regression estimates for the parameters in 
order to calculate the relative risk. 

 
If the value of a predictor variable is the same in the 
numerator and denominator rates, then that predictor 
does not factor into the calculation of the hazard ratio.  
For instance, if p px x′ ′′=  then 

( ) 0p p px xβ ′ ′′− =  

and so the term for the pth predictor drops out of the 
equation. 
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4.3.2 Wald Statistics 
Estimates of relative risks are often accompanied by 
confidence intervals and p-values in order to provide 
measures of statistical significance.  Suppose that a 
Poisson regression model of the form 

( ) { }0 1 1 2 2exp p px x xλ β β β= + + + +x … β  

is fit to a dataset, and interest lies in making inference 
about the relative risk 
 

{ }1 1 2 2

1

exp

exp

p p

p

i
i

RR c c c

c

β β β

β
=

= + + +

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑

…
 

 
where  are specified constants.  The Wald 100(1 - α)% 
confidence interval for this relative risk is 

ic

 

( ){ }
( ){ }

1 2

1 2

exp

exp

i i i i

i i

CI c z se c

RR z se c

α

α

β β

β

−

−

= ±

= ±

∑ ∑
∑

 

 
Corresponding tests are based on the Wald statistic 
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( )

2

2 2
1~i i

i i

c
X

se c

β
χ

β

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑
∑

. 

 

Summary of Regression Results 
 
Variable Parameter Estimate SE 
Intercept 0β  -8.067 0.2857 
arsenic2 1β  0.7982 0.1582 
arsenic3 2β  0.5734 0.2062 
arsenic4 3β  0.9218 0.181 
age2 4β  1.387 0.2468 
age3 5β  2.1926 0.2445 
age4 6β  2.3447 0.2702 
year2 7β  0.5336 0.2151 
year3 8β  0.687 0.2143 
year4 9β  0.6588 0.2305 
period2 10β  -0.5116 0.153 

 
• Recall that our model is 

( )( )

( )

0 1 2 3

4 5 6

7 8 9

10

~

2 3
2 3 4

exp
2 3 4

2

d Poisson n

arsenic arsenic arsenic
age age age
year year year
period

λ

β β β β
β β β

λ
β β β
β

+ + +⎧ ⎫
⎪ ⎪+ + +⎪ ⎪= ⎨ ⎬+ + +⎪ ⎪
⎪ ⎪+⎩ ⎭

x

x

4
. 
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• The coefficients are the estimated effect of the 
predictors on the log of the respiratory cancer death 
rate. 

• The relative risk of death for the highest, relative to 
the lowest, arsenic exposures is: 

( )
( )

( ){ }
{ }

3

ˆ 4 1 ˆexp 1 0ˆ 4 0

exp 0.9218 2.51

arsenic
RR

arsenic
λ

β
λ

=
= =

=

= =

−
. 

Thus, the rate of death in the highest exposure 
category is 2.51 times the rate in the lowest exposure 
category, after controlling for the effects of age, 
calendar year, and hiring period. 

• The 95% Wald confidence interval is 

( ){ }
( ){ }

( )

3 3exp 1.96se

exp 0.9218 1.96 0.181

1.76,3.58

β β±

± . 

• The Wald test statistics is 
2

2 2
1

0.9218 25.9 ~
0.181

X χ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

which gives a p-value of 2
1Pr 25.9 0.0001p χ⎡ ⎤= ≥ <⎣ ⎦ .  

Thus, the risk for high, relative to low, arsenic 
exposure is significant, after controlling for the other 
covariates in the model. 
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4.4 Model Fit 

4.4.1 Goodness-of-Fit Statistics 
Two commonly used measures of model fit are the 
Pearson Chi-Square statistic 
 

( )22

1

ˆ

ˆ

N
i i

i i

d d
X

d=

−
=∑  

 
and the Deviance statistic 
 

( )2

1

ˆ2 ln ˆ

N
i

i i
i i

d
iX d d

d=

= +∑ d−

N

 

 
where  indexes the observations in the dataset, 
and  is number of deaths predicted from the model.  If the 
model fit is adequate, these statistics have an approximate 
chi-square distribution with degrees of freedom equal to N 
minus the number of estimated parameters in the model. 

1, ,i = …
d̂

 
• Deviance and Pearson Chi-Square goodness-of-fit 

statistics are provided in the SAS PROC GENMOD 
output. 

•  In the Smelter example, the Deviance and Pearson 
Chi-square goodness-of-fit results are 
 

 91



GOF df Value Value/df 
Pearson 
Chi-Square 103 105.37 1.02 

Deviance 103 105.74 1.03 
 
for which the respective p-values are 

2
103

2
103

Pr 105.37 0.4167

Pr 105.74 0.4069

p

p

χ

χ

⎡ ⎤= ≥ =⎣ ⎦
⎡ ⎤= ≥ =⎣ ⎦

. 

Therefore, these statistics do not provide evidence of 
a lack of fit to the data. 

• Evidence of a lack-of-fit may indicate that (1) 
systematic effects are not accounted for or (2) the 
Poisson assumption is not appropriate. 

• The expected value of a chi-square random variable is 
equal to its degrees of freedom.  Thus, the ratio of the 
goodness-of-fit statistic to its degrees of freedom 
provides a measure of the observed to expected 
variability in the residuals.  Ratios that are larger than 
unity are suggestive of a lack of fit; i.e. that there is 
more residual variability than would be expected 
under the specified Poisson regression model. 

4.4.2 R-Square 
The method of Nagelkerke (Biometrika, 1991) can be used 
to compute an R2 statistic as 
 

( ) ( )( )2 2 ˆ1 exp ln lnR L
N

L⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

β 0  
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where  and ( )ˆlnL β ( )lnL 0  denote the log-likelihoods for the 
Poisson regression models with and without the covariates, 
respectively.  In our Smelter example the resulting R2 is 
 

( )ˆlnL β  ( )lnL 0  N R2 

122.60 -12.54 114 90.7% 
 

4.4.3 Overdispersion 
Poisson regression is particularly susceptible to lack-of-fit 
problems.  Recall that, in Poisson regression, we treat the 
response variable d  as a Poisson random variable with 
mean equal to ( )nλ x .  Moreover, the Poisson distribution 
is such that the mean and variance are equal.  Therefore, 
in our example 
 

[ ] [ ] ( )
0 1 2 3

4 5 6

7 8 9

10

2 3
2 3 4

exp
2 4 4

2

E d Var d n

arsenic arsenic arsenic
age age age

n
year year year
period

4

λ

β β β β
β β β
β β β
β

= =

+ + +⎧ ⎫
⎪ ⎪+ + +⎪ ⎪= ⎨ ⎬+ + +⎪ ⎪
⎪ ⎪+⎩ ⎭

x

. 

 
Perhaps there are omitted covariates or interaction terms 
that are important predictors of death. 
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• Omission of important covariates, from the Poisson 
model could lead us to underestimate the mean and 
the variance. 

• Underestimation of the variance leads to 
underestimation of the standard errors which, in turn, 
gives test statistics that are more significant than 
warranted. 

• Overdispersion refers to the situation where there is 
more variability in the data than is accounted for by 
the model. 

 

Pearson Scaled Standard Errors 
One way to correct for overdispersion is to multiply the 
standard error estimates from the Poisson analysis by the 
square root of the Pearson Chi-Square statistic divided by 
its degrees of freedom.  For instance, the Pearson scale 
factor of 1.023 1.011=  would be used in the Smelter 
example to correct the standard errors. 
 
Variable Estimate SE Pearson Scaled SE* 
Intercept -8.067 0.2857 0.2857 × 1.011 = 0.2889 
arsenic2 0.7982 0.1582 0.1582 × 1.011 = 0.1600 
arsenic3 0.5734 0.2062 0.2062 × 1.011 = 0.2086 
arsenic4 0.9218 0.181 0.181 × 1.011 = 0.1831 
age2 1.387 0.2468 0.2468 × 1.011 = 0.2496 
age3 2.1926 0.2445 0.2445 × 1.011 = 0.2473 
age4 2.3447 0.2702 0.2702 × 1.011 = 0.2733 
year2 0.5336 0.2151 0.2151 × 1.011 = 0.2176 
year3 0.687 0.2143 0.2143 × 1.011 = 0.2168 
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Variable Estimate SE Pearson Scaled SE* 
year4 0.6588 0.2305 0.2305 × 1.013 = 0.2332 
period2 -0.5116 0.153 0.153 × 1.013 = 0.1547 

* The scaled standard errors may be obtained in SAS. 
 

SAS Poisson Regression (Pearson Scaled SE) 
proc genmod data=smeltermod; 
 model respiratory = arsenic2 arsenic3 arsenic4 age2 age3 age4 
                     year2 year3 year4 period2 

                    / dist=poisson offset=lpyears pscale; 
run; 

 
Details 

• The option pscale requests the Pearson scaled 
standard errors. 

 
The GENMOD Procedure 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    -8.0670     0.2889    -8.6333    -7.5007    779.47       <.0001 
arsenic2     1     0.7982     0.1600     0.4845     1.1118     24.87       <.0001 
arsenic3     1     0.5734     0.2086     0.1646     0.9822      7.56       0.0060 
arsenic4     1     0.9218     0.1831     0.5629     1.2807     25.35       <.0001 
age2         1     1.3870     0.2496     0.8979     1.8761     30.89       <.0001 
age3         1     2.1926     0.2473     1.7078     2.6773     78.59       <.0001 
age4         1     2.3447     0.2733     1.8090     2.8804     73.59       <.0001 
year2        1     0.5336     0.2176     0.1072     0.9601      6.02       0.0142 
year3        1     0.6870     0.2168     0.2621     1.1119     10.04       0.0015 
year4        1     0.6588     0.2332     0.2018     1.1158      7.98       0.0047 
period2      1    -0.5116     0.1547    -0.8148    -0.2084     10.94       0.0009 
Scale        0     1.0114     0.0000     1.0114     1.0114 
 
NOTE: The scale parameter was estimated by the square root of Pearson's 
      Chi-Square/DOF. 
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4.5 External Standardization 
Poisson regression may also be used to estimate and 
compare standardized mortality ratios (SMRs). 

4.5.1 Notation 
Let us start with a slight redefinition of some notation that 
was used in past sections. 
 

1, ,j J= …  
Indexes the strata defined by the 
variables for which standard rates are 
available 

1, ,k K= …  
Indexes the strata defined by the 
variables for which standard rates are 
not available 

( )s
jλ  Standard population rate in the jth 

stratum  
k j

O d=∑ jk  Total deaths in the kth stratum 
( ) ( )s
k jkj

E n s
jλ=∑  Total deaths expected in the kth stratum 

if the standard rates held true. 

1 , ,k pkx x…  Regression covariates specific to the kth 
stratum 

 
Recall that the true SMR for the kth stratum is defined as 
 

( ) ( )
jk jk jk jkj j

k s s
jk j kj

n n
SMR

n E

λ λ

λ
= =
∑ ∑
∑
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and the corresponding estimate of the SMR is 
 

n
( ) ( )

jkj k
k s s

jk j kj

d OSMR
n Eλ

= =
∑
∑

. 

Smelter Example 
Suppose that we are interested in estimating SMRs for this 
cohort study using the U.S. population of white males as 
the standard population (Table 1). 
 
Table 1.  Respiratory death rates* for white U.S. males 
Age Calendar Year 

1938-49 1950-59 1960-69 1970-77 
40-49 0.14817 0.21896 0.28674 0.37391 
50-59 0.47412 0.80277 1.05824 1.25469 
60-69 0.73136 1.55946 2.33029 2.90461 
70-79 0.73207 1.63585 2.85724 4.22945 

* Rates are per 1000 person-years 
 
Note that 

• Our previous regression analysis of this cohort study 
included categorical variables for age (4 levels), 
calendar year (4 levels), hiring period (2 levels), and 
arsenic exposure (4 levels). 

• If we standardize the rates from the cohort by those in 
the U.S. population, the indexing defined above is as 
follows: 1, ,16j = …  for the age-year strata, and 
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1, ,8  for the hiring period-arsenic exposure 
strata. 
k = …

• For each of the k stratum we will compute the total kO  
and expected ( )s

kE  number of deaths. 

 
For example, consider the follow-up data in Table 2 for the 
cohort of smelter workers in the first hiring period and 
lowest exposure category. 
 
Table 2.  Deaths and person-years for the cohort of 
Montana Smelter Workers in the first hiring period and 
lowest arsenic exposure category  
Age  Calendar Year 

1938-49 1950-59 1960-69 1970-77 
40-49 d 

n 
2 

3075.27 
0 

936.75 
0 

0.00 
0 

0.00 
50-59 d 

n 
2 

2849.76 
3 

2195.59 
3 

747.77 
0 

0.00 
60-69 d 

n 
2 

2085.43 
7 

1675.91 
10 

1501.73 
1 

440.21 
70-79 d 

n 
3 

833.61 
6 

973.32 
6 

1027.12 
6 

674.44 
 
The observed and expected number of deaths for this 
hiring period-arsenic exposure stratum are 
 

 98



( )

1

1

2 6 51
0.14817 4.229453075.27 674.44

1000 1000
21.47

s

O

E

= + + =

⎛ ⎞ ⎛= + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

=

…

… ⎞
⎟
⎠
 

 
Repeating this calculation for all eight strata yields the 
following results: 
 
Table 3.  Observed and expected number of deaths in the 
Smelter Study 
k period arsenic kO  ( )s

kE  
1 1 1 51 21.47 
2 1 2 17 2.95 
3 1 3 13 2.76 
4 1 4 34 4.44 
5 2 1 100 74.12 
6 2 2 38 13.84 
7 2 3 15 6.83 
8 2 4 8 3.66 

 

4.5.2 Model Specification 
As before the observed number of deaths is assumed to 
follow a Poisson distribution 
 

( )~jk jd Poisson n k jkλ  
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where jkn  and jkλ  are the number of person years and the 
true death rate, respectively, in the j-k stratum.  It can be 
shown that the sum of Poisson random variables 

 also has a Poison distribution, kO = jkj∑ d

 

( )
( )( )

~

~

k jj

s
k k

O Poisson n

Poisson E SMR

k jkλ∑
. 

 
In particular the outcome variable in the Poisson regression 
models for the SMR will be .  The mean of the Poisson 
distribution will be linked to the linear predictor as follows 

kO

 
( ) ( )

0 1 1ln lns s
k k k k pE SMR E x xβ β β⎡ ⎤ ⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦ … pk

⎤
⎦

. 

 

Note that  is included as an offset term in this 

model.  The reason for choosing this offset is that it results 
in a mean function that can be rewritten as 

( )ln s
kE⎡⎣

 
( ) ( )

( )

( )

[ ]

0 1 1

0 1 1

0 1 1

ln ln

ln

ln

s s
k k k k p

s
k k

k ps
k

k k

E SMR E x x

E SMR

pk

pk

p pk

x x
E

SMR x x

β β β

β β β

β β β

⎡ ⎤ ⎡ ⎤− = + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤

= + + +⎢ ⎥
⎢ ⎥⎣ ⎦

= + + +

…

…

…
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or, more specifically, 
 

{ }0 1 1expk kSMR x xβ β β= + + +… p pk

4

. 

 
Therefore, this formulation of the Poisson regression model 
allows for estimation and comparison of the SMRs across 
the k strata. 

Smelter Example 
Suppose that we are interested in comparing hiring periods 
and exposure categories after adjusting the rates in the 
cohort by the age-year rates for white U.S. males.  This 
can be accomplished with the Poisson model 
 

( )( )
0 1 2 3

4

~

2 3
exp

2

s
k k k

k

O Poisson E SMR

arsenic arsenic arsenic
SMR

period
β β β β

β
+ + +⎧ ⎫

= ⎨ ⎬
+⎩ ⎭

. 

 

where the expected deaths ( )s
kE  are calculated using the 

age-year rates from the standard population.  Table 3 
summarizes the data that are needed for this analysis.  
Note that there are no effects for age or calendar year in 
the model because they have already been adjusted for in 
the calculation of expected deaths. 
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SAS Poisson Regression (SMR Analysis) 
data smeltersmr; 
 input period arsenic O E; 
 period2 = (period = 2); 
 arsenic2 = (arsenic = 2); 
 arsenic3 = (arsenic = 3); 
 arsenic4 = (arsenic = 4); 
 lnE = log(E); 
 cards; 
 1 1  51 21.47 
 1 2  17  2.95 
 1 3  13  2.76 
 1 4  34  4.44 
 2 1 100 74.12 
 2 2  38 13.84 
 2 3  15  6.83 
 2 4   8  3.66 
; 
 
proc genmod data=smeltersmr; 
 model O = arsenic2 arsenic3 arsenic4 period2 
           / dist=poisson offset=lnE; 
run; 
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The GENMOD Procedure 
 
          Model Information 
 
Data Set              WORK.SMELTERSMR 
Distribution                  Poisson 
Link Function                     Log 
Dependent Variable                  O 
Offset Variable                   lnE 
Observations Used                   8 
 
 
           Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
 
Deviance                   3          2.8747          0.9582 
Scaled Deviance            3          2.8747          0.9582 
Pearson Chi-Square         3          2.6964          0.8988 
Scaled Pearson X2          3          2.6964          0.8988 
Log Likelihood                      780.4926 
 
 
Algorithm converged. 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1     0.9570     0.1139     0.7337     1.1803     70.55       <.0001 
arsenic2     1     0.7711     0.1577     0.4619     1.0802     23.90       <.0001 
arsenic3     1     0.5628     0.2060     0.1590     0.9665      7.46       0.0063 
arsenic4     1     0.9491     0.1797     0.5969     1.3014     27.89       <.0001 
period2      1    -0.7078     0.1266    -0.9560    -0.4596     31.24       <.0001 
Scale        0     1.0000     0.0000     1.0000     1.0000 
 
NOTE: The scale parameter was held fixed. 
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4.5.3 Estimation 
The parameter estimates from the Poisson regression 
analysis of the Smelter Study are given in the table below. 
 
Variable Parameter Estimate SE 
Intercept 0β  0.957 0.1139 
arsenic2 1β  0.7711 0.1577 
arsenic3 2β  0.5628 0.206 
arsenic4 3β  0.9491 0.1797 
period2 4β  -0.7078 0.1266 

 
The methods for relative risk estimation and inference are 
completely analogous to those presented in Section 4.2. 

• The relative risk of death for the highest, relative to 
the lowest, arsenic exposures is: 

m
n ( )
n ( )

( ){ }
{ }

3

4 1 ˆexp 1 0
4 0

exp 0.9491 2.58

SMR arsenic
RR

SMR arsenic
β

=
= =

=

= =

−
. 

Thus, the rate of death in the highest exposure 
category is 2.58 times the rate in the lowest exposure 
category, after controlling for the effects of hiring 
period and adjusting for the age and calendar year 
death rates in the U.S. population. 

• The 95% Wald confidence interval is 
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( ){ }
( ){ }

( )

3 3exp 1.96se

exp 0.9491 1.96 0.1797

1.82,3.67

β β±

± . 

• The Wald test statistics is 
2

2 2
1

0.9491 27.90 ~
0.1797

X χ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

which gives a p-value of 2
1Pr 27.90 0.0001p χ⎡ ⎤= ≥ <⎣ ⎦ .  

Thus, the risk for high, relative to low, arsenic 
exposure is significant, after controlling hiring period, 
age, and calendar year. 

• The relative risk estimates for the top three exposure 
categories, relative to the first, are summarized in the 
following plot. 

Years of Arsenic Exposure

R
el

at
iv

e 
R

is
k

0.0-0.9 1.0-4.9 5.0-14.9 15.0+

0
1

2
3
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4.5.4 Notes 
The general steps for performing a Poisson regression 
analysis of the SMRs are 

1. Construct appropriate categories for the variables to 
be included in the analysis. 

2. Calculate the number of deaths and person-years 
within each of the strata defined by the categorical 
variables. 

3. Apply rates from a standard population to compute the 
expected number of deaths ( )s

kE , and record the 
associated observed number of deaths kO . 

4. Fit a Poisson model to the observed number of deaths 

kO .  Include ( )ln s
kE⎡ ⎤

⎣ ⎦  as an offset term and the other 

covariates that were not controlled for in the 
standardization as predictors in the model. 
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5.1 Introduction 
Suppose that the SMR is to be used to compare the observed 
number of deaths in the cohort to the number that would be 
expected if the standard population rates held.  Recall that the 
form of the SMR is 
 

( ) ( )s s
D DSMR

E nλ
= = . 

 
Goal:  Perform sample size and power calculations in order to 
determine the number of subjects needed for a cohort study.  
Note that 

• The calculations involve the number of person-years, 
which is a function of both the number of subjects and the 
follow-up periods. 

• Exact and approximate methods will be discussed in this 
section when the hypotheses of interest are 

0 : 1
: 1A

H SMR
H SMR

=

>
. 

•  In practice the SMR is sometimes referred to as a relative 
risk.  

 

5.2 Exact Method 
5.2.1 Exact Poisson Test 

The exact p-value for testing the significance of the SMR is 
 

[ ]Prp Y D= ≥  
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where . ( )( )s

( ) 9s = 16D

~Y Poisson E

Example 

Suppose that E  and = , for which 
( ) 16 9 1.78sSMR D E= = = .  Under the null hypothesis, the 

observed number of deaths is distributed as ( )~ 9PoissonY .  
Thus, the one-sided p-value is 
 

[ ] . ≥ =16 0.0220P Y

( )sE

 

5.2.2 Power Calculation 
Power estimates for various expected number of deaths and 
SMRs are given in Table 1 and Table 2. 
 
Table 1.  Probability of obtaining a result significant at the 5% 
level (one-sided) for varying values of the expected value E 
assuming no excess risk, and of the true SMR 

 True SMR 
1.0 1.5 2.0 3.0 4.0 5.0 7.5 10.0 15.0 20.0 

1.0 1.90 7 14 35 57 74 94 99 100 100 
2.0 1.66 8 21 55 81 93 100    
3.0 3.35 17 39 79 95 99     
4.0 2.14 15 41 84 98 100     
5.0 3.18 22 54 93 100      
6.0 4.26 29 65 97 100      
7.0 2.70 26 64 98 100      
8.0 3.42 32 73 99 100      
9.0 4.15 38 79 100       
10.0 4.87 43 84 100       
11.0 3.22 39 83 100       
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12.0 3.74 44 87 100       
13.0 4.27 48 90 100       
14.0 4.79 53 93 100       
15.0 3.27 49 92 100       
20.0 3.43 60 97 100       

 
Table 2.  {continued} 

( )sE  True SMR 
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

20.0 3.43 9 18 30 45 60 73 83 90 94 
25.0 4.98 13 26 42 59 74 85 92 96 98 
30.0 4.63 13 27 46 64 79 89 95 98 99 
35.0 4.25 13 29 49 69 83 92 97 99 100 
40.0 3.87 13 30 52 72 86 94 98 99 100 
45.0 4.73 16 36 60 79 91 97 99 100  
50.0 4.24 16 37 61 81 93 98 99 100  
60.0 4.42 18 42 69 88 96 99 100   
70.0 4.48 19 47 75 92 98 100    
80.0 4.46 21 5 80 94 99 100    
90.0 4.39 22 55 83 96 99 100    
100.0 4.28 23 58 86 97 100     

 

Example 
Suppose that we are interested in the power to detect a true 
SMR of 2.0, for a one-sided test performed at the 5% level of 
significance.  If the expected number of deaths is 9, then the 
estimated power is 79%. 
 

5.2.3 Sample Size 
Suppose that we want to have 80% power to detect an SMR of 
1.50 using a one-sided test at the 5% level of significance.  
According to Table 2, ( ) 30.0sE =  expected deaths are needed.  
Thus, the required number of person-years is 
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( ) ( )30 30s sE n nλ λ= = ⇒ = . 

 
which is a function of the death rate in the standard population.  
If, say, ( ) 0.0001sλ = , then 30 0.0001 300,000n = =  person-
years of follow-up are needed.  This could be obtained in 
various ways; e.g. 

• 10 years follow-up on 30,000 subjects 
• 20 years follow-up on 15,000 subjects 
• 30 years follow-up on 10,000 subjects 

 

5.3 Approximate Method 
In Section 2 several approximate tests were discussed for 
testing the SMR.  We will use the one based on the square-root 
(variance stabilizing) transformation. 

5.3.1 Approximate Test 
The test statistic is 
 

( )( ) ( )2 ~sD E N− 0,1 . 

 
for which the one sided p-value is 
 

( )( )Pr 2 sp Z D E⎡ ⎤= ≥ −⎢ ⎥⎣ ⎦
. 

 

 110



Alternatively, we could use a critical-value approach to 
conclude that the  if 1SMR >
 

( )( ) 12 sD E Z α−− ≥  

 
or, equivalently, 
 

( )
1 2sD E Z α−≥ + . 

 
Note that the probability of rejecting the null hypothesis if there 
is no difference between the observed and expected number of 
deaths is 
 

( )
α α−

⎡ ⎤≥ + = =⎢ ⎥⎣ ⎦1Pr 2 1sD E Z SMR . 

 

5.3.2 Power Calculation 
Power (1 )β−  is defined as the probability of rejecting the null 
hypothesis for a given value ( )R  of the SMR; i.e. 

 
( )

1Pr 2 1sD E Z SMR Rα β−
⎡ ⎤≥ + = = −⎢ ⎥⎣ ⎦

. 

 

If the  then SMR R= [ ] ( )sE D RE= .  Therefore, the power is 
computed with standard normal probabilities according to the 
following formula 
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( ) ( ) ( )

( )( ) ( ) ( )( )
( ) ( )( )

1

1

1

1 Pr 2

Pr 2 2

Pr 2

s s s

s s s

s s

D RE E RE Z

D RE E RE Z

Z E RE Z

α

α

α

β −

−

−

⎡ ⎤− = − ≥ − +⎢ ⎥⎣ ⎦
⎡ ⎤= − ≥ − +⎢ ⎥⎣ ⎦
⎡ ⎤= ≥ − +⎢ ⎥⎣ ⎦

 

 
Note that 
 

( ) ( )( ) 12 s sE RE Z Zα β−− + = . 

 

Example 
Suppose that we are interested in the power to detect a true 
SMR of 2.0, for a one-sided test performed at the 5% level of 
significance.  If the expected number of deaths is 9, then the 
estimated power is 
 

( ) ( )( )
( )( )

[ ]

1Pr 2

Pr 2 9 2.0 9 1.645

Pr 0.8403 80%

s sZ E RE Z

Z

Z

α−
⎡ ⎤≥ − +⎢ ⎥⎣ ⎦
⎡ ⎤= ≥ − +⎣ ⎦

= ≥ − =

. 

 

5.3.3 Sample Size 
For a given significance level ( )α  and power ( )1 β− , we can 
calculate the required number of expected deaths as 
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( ) ( )( )

( ) ( )
( ) ( )

( )

1

1 1

2
1 1

2

2

1
2

4 1

s s

s

s

E RE Z

Z Z
E R

Z Z
E

R

Zα β

α β

α β

−

− −

− −

− + =

+
− =

+
=

−

. 

 

Example 
Suppose that we want to have 80% power to detect an SMR of 
1.50 using a one-sided test at the 5% level of significance.  The 
required number of expected deaths is 
 

( ) ( )
( )

( )
( )

α β− −+
=

−

+
= =

−

2
1 1

2

2

2

4 1

1.645 0.8403
30.57

4 1.50 1

s Z Z
E

R
. 

 
The number of subjects and associated lengths of follow-up 
can be computed as before. 
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