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1.1 Review of Basic Statistical Methods 
 

1.1.1 Length of Hospital Stay Example 
The Health Services Administration was interested in 
comparing the length of stay for patients at two different 
hospitals.  Patients with the same diagnosis were enrolled 
in a two-day pilot study – 11 from the first hospital and 13 
from the second.  The length of time that each subject 
spent in the hospital during the study period was recorded.  
The data are given in Table 2. 
 
Table 1.  Variables in the Length of Hospital Stay Study 
Variable Description Values 
ID Patient study identifier integer 
Hospital Hospital identifier 1, 2 
Hrs Observed length of 

hospital stay in hours 
0 – 48 

Discharge Patient was discharged 1 = yes 
0 = no 

 
Table 2.  Data for the Length of Hospital Stay Study 
ID Hospital Hrs Discharge ID Hospital Hrs Discharge
1 1 21 1 13 2 27 1 
2 1 10 1 14 2 10 1 
3 1 32 1 15 2 48 0 
4 1 48 0 16 2 48 0 
5 1 8 1 17 2 48 0 
6 1 44 1 18 2 48 0 
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ID Hospital Hrs Discharge ID Hospital Hrs Discharge
7 1 29 1 19 2 48 0 
8 1 5 1 20 2 35 1 
9 1 13 1 21 2 48 0 
10 1 26 1 22 2 48 0 
11 1 33 1 23 2 44 1 
12 2 48 0 24 2 48 0 
 
An alternative summary of the data is given in Figure 1. 

 
Figure 1.  Length of hospital stays for the two-day pilot 

study. 
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Analysis Goal: Test for differences in length of stay 
between the two hospitals. 
 

Outcome Variables 
Note that outcome in this study consists of two random 
variables: 

1. The observed length of stay (in hours) as a 
continuous variable. 

2. A dichotomous variable that indicates whether the 
patient left the hospital within two days. 

 
Basic statistical methods could be applied to each of the 
two random variables separately in order to test for 
differences between the hospitals. 
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1.1.2 Analysis 1: Length of Stay 
One strategy might be to focus on the continuous length of 
stay data.  These data are summarized below. 

 
Figure 2.  Box plot comparison of length of stay by 

hospital. 
 
Table 3.  Summary statistics for hospital stay study. 
 Hospital 1 Hospital 2 
N 11 13 
Mean 24.5 42.2 
Median 26.0 48.0 
Standard Deviation 14.5 11.6 
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What characteristics of the length of stay data 
are important in choosing an appropriate 
statistical test? 
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What statistical tests could be used to compare 
a continuous variable across two groups? 
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Results 
The Wilcoxon rank-sum test was used to compare the 
length of stay between the two hospitals.  A two-sided p-
value of 0.0029 was obtained.  Therefore, at the 5% level 
of significance, the length of stay differs between the two 
hospitals.  Length of stay at Hospital 2 is significantly 
greater than that at Hospital 1. 

 

Pitfall 
One possible strategy is to omit patients, from the analysis, 
who did not leave the hospital during the study period (see 
Figure 3).  However, these patients provide valuable 
information, and their omission could severely bias the 
study results.  All subjects should be included in the 
analysis. 

• The fact that their length of stay is known to be 
greater than two days should be utilized. 

• We are already familiar with one test that can be 
applied to the full data set. 

• We will learn about other methods for analyzing such 
data. 
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Figure 3.  Length of hospital stays for patients who were 

discharged during the two-day study. 
 

1.1.3 Analysis 2: Discharged within Two Days 
A second strategy might be to focus on the simple Yes/No 
variable indicating whether the patient was discharged 
during the study period.  Since everyone was followed for 
exactly two days, this dichotomous variable can be used to 
estimate the probability of being discharged within two 
days.  Consequently, a two-sample test for binomial 
proportions can be performed to compare the hospitals. 
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Table 4.  Number of subjects discharged within two days 
for each hospital. 
Hospital Time of Discharged Totals < 48 Hours ≥ 48 Hours 
1 10 1 11 
2 4 9 13 
 

Results 
Fisher’s exact test was used to compare the hospitals with 
respect to the probability of being discharged within two 
days.  A two-sided p-value of 0.0045 was obtained.  
Therefore, at the 5% level of significance, the probabilities 
differ between the two hospitals.  Patients in Hospital 1 are 
more likely to be discharged within two days. 
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1.2  Basic Concepts 

1.2.1 Survival Applications 
The statistical techniques covered in this course are 
commonly referred to as “survival analysis” because many 
originated from studies of time to death data.  Survival 
analysis, however, generally refers to statistical methods 
for the analysis of any time to some event outcome. 
 
Potential time-to-event data: 
 

Medical Field 
• Death 
• Relapse 
• Occurrence of 

symptoms 
• Disease onset 

 

Sociology 
• Divorce 
• Career change 
• Smoking cessation 
• First marijuana use 

Reliability 
• Product failure 
• Machine repair 

Business/Economics 
• Bankruptcy 
• Unemployment 

assistance 
• Divestiture of stocks 
• Labor strike duration 
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Examples of public health applications: 
 
• Therapeutic trials – Randomize patients to different 

treatments for bladder cancer.  Follow patients to 
determine which treatment group has the longest 
disease-free survival. 

• Intervention trials – One group of smokers participates in 
a support group; the other does not.  Measure time to 
smoking cessation. 

• Epidemiology – Enroll a cohort of uranium miners to 
study the effects of radon exposure on lung cancer risk.  
The event of interest is age at lung cancer diagnosis.  
What other risk factors should be considered in the 
analysis? 

1.2.2 Censoring 
Follow-up data result from subjects being observed or 
followed for a period of time.  Subjects for whom disease is 
not observed at the end of their follow-up period are said to 
be censored.  The follow-up time is defined to be the 
length of time from study entry until disease occurrence or 
censoring. 
 
Reasons for censoring: 

• Follow-up loss due to migration, lack of cooperation, 
withdrawal of consent, etc. 

• Death from another cause. 
• No longer at risk; e.g. hysterectomy. 
• Termination of study prior to disease occurrence. 
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Different types of censoring: 
 
• Right Censoring – events would necessarily take 

place after the follow-up period. 
• Left Censoring - events that take place at some 

unknown time prior to the follow-up period. 
• Interval Censoring – events that are known to occur 

only within a certain time interval. 
 
• Type I Censoring – events are observed only if they 

occur prior to some pre-specified time. 
• Type II Censoring – the study is terminated after a 

pre-specified number of events are observed.  
 
The design of the hospital stay example was 
straightforward.  All subjects were enrolled at the same 
point in time for an observation period of two days.  In 
general, the entry times and follow-up periods can vary 
from subject-to-subject, as illustrated in Figure 4. 
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Figure 4.  Subject follow-up versus study time. 

 
Note that, 

• D and DF denote subjects who were diseased and 
disease-free, respectively, at the end of their follow-up 
period. 

• Subject 1 was enrolled at the start of the study and 
developed disease at year 4.  Total follow-up time is 4 
years. 

• Subject 2 was enrolled 1 year into the study and 
withdrew, disease-free at year 3.  Total follow-up time 
is 2 years. 
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• Subject 3 was enrolled 3 years into the study and was 
disease free at the end of the 8-year study.  Total 
follow-up time is 5 years. 

• Subject 4 was enrolled 5 years into the study and 
developed disease at year 6.  Total follow-up time is 1 
year. 

• Subjects 2 and 3 are treated as censored 
observations since they did not develop disease 
during the time that they were enrolled in the study. 

 
Table 5.  Summary of Follow-up Data 
ID Start 

Year 
Stop 
Year 

Total 
Years 

Status Censored

1 0 4 4 Diseased No 
2 1 3 2 Withdrew Yes 
3 3 8 5 Disease-

Free 
Yes 

4 5 6 1 Diseased No 
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Alternatively, the data could be presented as total length of 
follow-up, as in Figure 5. 
 

 
Figure 5.  Subject participation in terms of the actual 
follow-up time. 
 
The strategies discussed in Section 1.1 are not applicable 
to the more general problem of censoring.   
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1.2.3 Notation 
T = random variable denoting the follow-up time, i.e. time to 
the event of interest or censoring. 
δ = indicator for the event of interest (1 = event is 
observed, 0 = censoring) 
 
Follow-up time for a sample of N individuals may be 
denoted as ( ) ( ) ( ){ }1 1 2 2, , , , , ,N Nt t tδ δ δ… . 

 

1.3 Summary 
Survival data presents a new class of problems: 

• Data may be censored 
• Outcome is time to some event or censoring 
• Outcome variable is not normally distributed 

 
We need to learn new statistical methods to deal with 
survival data.  The methods will provide the means to:  

• Summarize and graphically display the data 
• Quantify uncertainty in estimating survival 
• Test hypotheses 
• Model the effects of covariates on survival 
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2.1 Estimation of Survival Probabilities 

2.1.1 Lymphoblastic Leukemia Clinical Trial 
Example 
A clinical trial was conducted to study remission 
maintenance in children with acute lymphoblastic leukemia.  
Forty-two patients, who had achieved complete remission, 
were randomized to receive maintenance therapy with 6-
mercaptopurine or placebo. 
 
Table 1.  Variables in the Leukemia Trial 
Variable Description Values 
id Patient study identifier integer 
group Treatment group 6-MP 

Placebo 
weeks Weeks until relapse or censoring 1-35 
relapse Relapse indicator variable 1 = yes 

0 = no 
 
The observed number of weeks until relapse or censoring 
(*) for the patients in the trial are given below. 
 
6-MP (21 patients):  6, 6, 6, 6*, 7, 9*, 10, 10*, 11*, 13, 16, 

17*, 19*, 20*, 22, 23, 25*, 32*, 32*, 34*, 35* 
 
Placebo (21 patients):  1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 

11, 12, 12, 15, 17, 22, 23 
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Analysis Objective:  Provide a statistical summary of the 
time to relapse data. 
 

Leukemia Follow-up Data 
A plot of the follow-up times is given in Figure 1.  The plot 
provides a graphical display of the raw data.  However, it 
does not summarize any particular feature of the data. 
 
Note that the data in this trial exemplify the more general 
type of time-to-event data: 

1. Patients in 6-MP group are censored 
2. Outcome is time to relapse or censoring 
3. Observation periods differ between patients 

 

 
Figure 1.  Follow-up times for the Leukemia Trial. 
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Analysis Strategy:  We would like to compute summary 
statistics for the data.  Classical approaches: 
 

• Mean (Standard Deviation) time to relapse  
 
 
 
 
 
 
 
 
• Median time to relapse 
 
 
 
 
 
 
 
 
• Proportion of patients who relapse 
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2.1.2 Survival Function 
Recall that the random variable T denotes the time to the 
event of interest or censoring.  Traditionally, T is referred to 
as the survival time and observed events as failures. 
 

Definition 
The survival function S(t) = Pr[T > t] is the probability of 
surviving beyond time t.  Note that the survival function S(t) 
is a probability and therefore assumes values in the interval 
[0, 1]. 
 
Examples: 
 

1. If the event of interest is death, then S(t) represents 
the probability of living beyond time t. 

2. If the event is relapse among leukemia patients, then 
S(t) is the probability of being in remission beyond 
time t. 

3. A theoretical survival function is plotted in Figure 2.  
The survival function gives the cumulative probability 
of survival as a function of time.  The following 
information can be obtained from the survival curve in 
the figure: 

 
• For t = 0, S(0) = 1; all of the subjects (100%) 

survive beyond the initial follow-up point.  By 
definition, the survival function must be equal to 1 
at the start of follow-up. 
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• For t = 3.465, S(3.465) = 0.500; half of the subjects 
survive beyond this point in the study. 

• For t = 5, S(5) = 0.368; 36.8% of the subjects 
survive beyond this point. 

 

 
Figure 2.  Plot of a theoretical survival function S(t). 
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2.2 The Kaplan-Meier (Product Limit) 
Estimator 

2.2.1 Overview 
The methods of Kaplan-Meier provide an estimate of the 
survival function S(t) using time-to-event data from a 
sample of subjects.  The Kaplan-Meier estimator has the 
following properties: 

• Nonparametric method for estimating survival. 
• Yields an estimate of survival at any point in time 

during the follow-up period. 
• Also referred to as the Product-Limit estimator. 
• Allows for censoring and varying lengths of follow-up. 
 

Leukemia Trial Example 
We will use the times to relapse or censoring (*) in the 6-
MP treatment group to illustrate the Kaplan-Meier 
estimator: 

6, 6, 6, 6*, 7, 9*, 10, 10*, 11*, 13, 16, 17*, 19*, 20*, 22, 
23, 25*, 32*, 32*, 34*, 35* 
 

Step 1:  Construct a table with a row for the starting time of 
follow-up and each subsequent time point at which an 
event (relapse) occurs. 
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Table 2.  Kaplan-Meier Estimate of the Cumulative Survival 
Function in the Leukemia Trial 

Week (t) Number at 
Risk (nt) 

Number of 
Events (et)

pt st 

0 21 0 1.000 1.000 
6 21 3 0.857 0.857 
7 17 1 0.941 0.806 
10 15 1   
13 12 1   
16 11 1   
22 7 1   
23 6 1   

 
Step 2:  Calculate the proportion pt of subjects at risk at 
time t who do not experience an event 

t t
t

t

n ep
n
−

= . 

This is referred to as the conditional probability of survival 
(remaining disease-free) at time t.  For example, 

0

6

7

21 0 1.00
21

21 3 0.857
21

17 1 0.941
17

p

p

p

−
= =

−
= =

−
= =

. 

 
Step 3:  Calculate the proportion of original subjects that 
are survivors at time t 

 23



i

i

t t
t t

s p
≤

=∏ . 

In our example, 

( )( )
( )( )( )

0 0

6 0 6

7 0 6 7

1.000
1.000 0.857 0.857

1.000 0.857 0.941 0.806

s p
s p p

s p p p

= =

= = =

= = =

. 

• This is called the Kaplan-Meier estimate of the 
cumulative survival function. 

• st is the estimated probability of surviving beyond any 
time-point in the interval [ ),t t ′ , where t ′ is the next 
time point at which an event is observed. 

2.2.2 Motivation 
The Kaplan-Meier estimator provides an estimate of the 
probability of surviving beyond any given point in time 
during the follow-up period.  Consider the 6-MP group in 
the Leukemia Trial.  To remain in remission past time t, a 
patient has to have been in remission at every prior time 
point in the study. 
 
Week 0 
All patients are in remission at the start of the study.  Thus, 
the corresponding survival probability is 1. 
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Week 6 
The first set of relapses occurred at 6 weeks of follow-up.  
The patients who disease-free and at risk to relapse are 
referred to as the risk set. 

• At week 6 there are ________ patients in the risk set. 
• ________ patients in the risk set relapse. 
• The probability of survival at week 6 is the number of 

patients who did not relapse divided by the number of 
patients in the risk set. 

 

6
risk set at week 6 - relapses at week 6

risk set at week 6
21 3 18 0.857

21 21

p =

−
= = =

 

 
Week 7 
The second set of relapses occurred 7 weeks. 

• At week 7 there are ________ patients in the risk set. 
• ________ patients in the risk set relapse. 
• The probability of survival at week 7 is the number of 

patients who did not relapse divided by the number of 
patients in the risk set. 

 

7
risk set at week 7 - relapses at week 7

risk set at week 7
17 1 16 0.941

17 17

p =

−
= = =
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Notice that the 17 patients in the risk set at week 7 had 
necessarily survived past week 6.  In fact, 7p  is a 
conditional probability.  It is the probability of surviving 
beyond week 7, given that the patient survived beyond 
week 6.  The survival function which we want to estimate is 
an unconditional probability; namely, the probability of 
surviving beyond week 7.  The unconditional probability of 
interest can be written as 
 

7 0 6s p p p7=  

 
This conditioning argument can be extended to estimate 
survival beyond any time point t.  In general, tp  is the 
conditional probability of surviving beyond time t, and the 
unconditional probability can then be written as 
 

i

i

t t
t t

s p
≤

=∏  

 
which is also referred to as the cumulative probability of 
survival.  To illustrate, the probability of surviving beyond 
week 10 is 

10 0 6 7 10s p p p p=  

and the probability of surviving beyond week 13 is 

13 0 6 7 10 13s p p p p p= . 
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Q:  Do we need to include conditional probabilities at time 
points for which a relapse did not occur, for instance, the 
estimated conditional probability at week 11? 
 
A:  The estimated probability of remission is equal to 1 at 
time points for which a relapse did not occur.  Hence, only 
probabilities at time points for which an event occurred 
need to be explicitly included in the calculation.  The 
cumulative probabilities of remission are summarized in 
Table 3. 
 
Table 3.  Estimated survival (remission) for the 6-MP group 
in the Leukemia Trial. 
Time to 
Relapse Censored Relapse Risk 

Set 
Conditional 
Probability 

Cumulative 
Probability 

0 - - 21 21/21=1.000 1.000 
6 1 3 21 18/21=0.857 0.857 
7 - 1 17 16/17=0.941 0.806 
10 1 1 15 14/15=0.933 0.752 
13 - 1 12 11/12=0.917 0.690 
16 - 1 11 10/11=0.909 0.627 
22 - 1 7 6/7=0.857 0.537 
23 - 1 6 5/6=0.833 0.447 
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2.2.3 Kaplan-Meier Survival Plots 
The estimated cumulative probability can be plotted against 
time to provide a graphical display of the probability of 
remission in the two treatment groups.  The resulting 
survival curves start at 1 and changes values at each 
distinct relapse time.  
 

 
Figure 3.  Kaplan-Meier plot of the cumulative probability 
of remission in the two treatment groups of the Leukemia 

Trial. 
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The plot indicates that patients in the 6-MP treatment group 
are likely to stay in remission longer than those in the 
placebo group.  Indeed, after 23 weeks no patient would be 
expected to be in remission in the placebo group; whereas, 
45% would be expected in the treatment group.  Note that 
the survival curves in this plot provide no information about 
the uncertainty in our survival estimates.  Thus, we cannot 
yet determine if there is a statistically significant difference 
between the two groups. 

2.2.4 Notes  

• The Kaplan-Meier method provides a non-parametric 
estimate of the survival function S(t).  No assumptions 
are made about the functional form of the distribution 
for survival times. 

• Assumptions: 1) continuous survival times, and 2) the 
censoring mechanism is independent of the event of 
interest. 

• The estimates from this method are commonly 
denoted ( )ˆ

KMS t . 
• If censoring occurs at the greatest observed survival 

time, then the estimated survival function will not 
reach zero.  Care should be taken when interpreting 
the tail of the survival curve since the corresponding 
number of subjects in the risk set may be small. 

2.2.5 Variable Follow-up Periods 
Breast Cancer Example 

Suppose that the data below were collected in a 
prospective cohort study designed to estimate the risk of 
breast cancer as a function of age.  Included in the table 
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are the ages at which subjects were enrolled as well as the 
ages at censoring or disease occurrence. 
 
ID Age at 

Enrollment 
Age at Diagnosis 

or Censoring 
Years Breast Cancer

1 27 32 5 No 
2 30 35 5 No 
3 30 35 5 Yes 
4 32 37 5 No 
5 34 40 6 No 
6 36 41 5 Yes 
7 34 41 7 Yes 
8 42 45 3 No 
9 43 47 4 No 
10 31 50 19 Yes 
 
Use the methods of Kaplan-Meier to estimate and plot 
disease-free survival as a function of age. 
 
Table 4.  Kaplan-Meier Estimate of the disease-free 
survival in the Breast Cancer Example. 

Age (t) Number at 
Risk (nt) 

Number of 
Events (et)

pt st 

27 1 0 1.000 1.000 
35     
41     
50     
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Figure 4.  Kaplan-Meier plot of the disease-free survival in 

the Breast Cancer Example. 
 

2.2.6 Precision of the Survival Estimates 
The Kaplan-Meier estimator provides only point estimates 
of the survival function.  It gives a statistical summary of 
the survival distribution and, like any other statistic, is 
subject to random variation.  Methods for quantifying the 
variation in the survival estimates are presented in this 
section. 
 
We will consider two confidence interval formulas for S(t): 
the more commonly used formula of Greenwood and the 
formula of Kalbfleisch and Prentice. 
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Greenwood Formula 
The Greenwood formula for the variance of ( )ˆ

KMS t  is 

 
( )

( ) ( ) ( ) ( )

0

2

2
1

var 0

ˆvar var i i i

i i i i

G

t t t
G i G i KM i

t t t t

t

n e e
t t S t

n n n e−

=

⎛ ⎞−
= × + ×⎜ ⎟⎜ ⎟ −⎝ ⎠

 

 
The variances for the 6-MP group in the Leukemia Trial are 
calculated in Table 5.  The variance formula is not a 
function of the censoring times.  Thus, the table does not 
need to include the censored time points. 
 
Table 5.  Greenwood variance for the 6-MP group in the 
Leukemia Trial. 

t tn  te  t t

t

n e
n
−

( )ˆ
KMS t ( )

t

t t t

e
n n e− ( )varG t  

6 21 3 0.857 0.857 0.00794 0.00583 
7 17 1 0.941 0.807 0.00368 0.00756 
10 15 1 0.933 0.753 0.00476 0.00928 
13 12 1 0.917 0.690 0.00758 0.0114 
16 11 1 0.909 0.628 0.00909 0.0130 
22 7 1 0.857 0.538 0.0238 0.0164 
23 6 1 0.833 0.448 0.0333 0.0181 
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In large samples, ( )ˆ
KMS t  is approximately normally 

distributed with mean S(t) and variance given by 
Greenwood’s formula.  Hence, an approximate 95% 
confidence interval for S(t) is 
 

( ) ( )ˆ 1.96 varKM G iS t t±  

 
for .  Confidence intervals for the 6-MP group are 
given in 

1it t t +≤ < i

Table 6.  Unfortunately, Greenwood’s formula can 
produce confidence limits outside of the range [0, 1].  
Despite this limitation, Greenwood’s formula is widely used 
in practice. 
 
Table 6.  Greenwood 95% confidence intervals for the 6-
MP group in the Leukemia Trial. 

[ )1,i it t +  ( )ˆ
KMS t  ( )varG it  95% CI 

[6, 7) 0.857 0.00583 (0.707, 1.01) 
[7, 10) 0.807 0.00756 (0.637, 0.977) 
[10, 13) 0.753 0.00928 (0.564, 0.942) 
[13, 16) 0.690 0.0114 (0.481, 0.899) 
[16, 22) 0.628 0.0130 (0.404, 0.852) 
[22, 23) 0.538 0.0164 (0.287, 0.789) 
[23, ∞) 0.448 0.0181 (0.184, 0.712) 
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Figure 5.  Kaplan-Meier survival curve for the 6-MP group 

with 95% confidence limits from Greenwood’s formula. 
 

Kalbfleisch and Prentice Formula 
The Kalbfleisch and Prentice formula for the variance of 

( )( )( )ˆlog log KMS t−  is  

 

( ) ( )
( ) ( )( ) 22

var
var

ˆ ˆln
G i

KP i

KM i KM i

t
t

S t S t
=

⎡ ⎤× ⎣ ⎦

. 

 
The variances for the 6-MP group in the Leukemia Trial are 
calculated in Table 7. 
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Table 7.  Kalbfleisch and Prentice variance for the 6-MP 
group in the Leukemia Trial. 

t ( )ˆ
KMS t  ( )varG t  ( )varKP t  

6 0.857 0.00583 0.333 
7 0.807 0.00756 0.252 
10 0.753 0.00928 0.203 
13 0.690 0.0114 0.174 
16 0.628 0.0130 0.152 
22 0.538 0.0164 0.148 
23 0.448 0.0181 0.140 
 
An approximate 95% confidence interval for the Kalbfleisch 
and Prentice approach is given by 
 

( ) ( )( ) ( ) ( )( )( )exp 1.96 var exp 1.96 varˆ ˆ,KP i KP it t
KM KMS t S t −  

 
for .  Confidence intervals for the 6-MP group are 
given in 

1it t t +≤ < i

Table 8.  Confidence limits based on this method 
will always fall within the range [0, 1].  For this reason, the 
Kalbfleisch and Prentice formula is sometimes preferred 
over the Greenwood method. 
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Table 8.  Kalbfleisch and Prentice 95% confidence 
intervals for the 6-MP group in the Leukemia Trial. 

[ )1,i it t +  ( )ˆ
KMS t  ( )varKP it  95% CI 

[6, 7) 0.857 0.333 (0.620, 0.954) 
[7, 10) 0.807 0.252 (0.563, 0.923) 
[10, 13) 0.753 0.203 (0.503, 0.889) 
[13, 16) 0.690 0.174 (0.431, 0.849) 
[16, 22) 0.628 0.152 (0.368, 0.805) 
[22, 23) 0.538 0.148 (0.268, 0.747) 
[23, ∝) 0.448 0.140 (0.188, 0.680) 
 
 

 
Figure 6.  Kaplan-Meier survival curve for the 6-MP group 

with 95% confidence limits from the Kalbfleisch and 
Prentice formula. 
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2.2.7 Median Survival Time 
The median survival time T50 is defined as the first time 
point beyond which 50% of the subjects are expected to 
survive.  One can easily read the median off of the Kaplan-
Meier curves.  In general, these curves can be used to 
compute the pth percentile Tp.  However, the survival curve 
must drop below 100p  in order to estimate the 
corresponding percentile. 
 

 
Figure 7.  Kaplan-Meier estimate of the median survival 
time for the 6-MP group in the Leukemia Trial. 
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For the Leukemia Trial, the estimated median disease-free 
survival is 23 weeks for the 6-MP group.  The confidence 
interval for the median is defined as the time points where 
the confidence intervals for the survival curve drop below 
0.50.  In this case the lower bound of the 95% confidence 
interval for the median is 13 weeks; the upper bound is not 
defined since the upper bound of the confidence interval for 
the survival curve does not drop below 0.50. 
Likewise, certain percentiles, such as the 25th percentile 
T25 for the 6-MP group cannot be estimated because the 
survival curve does not drop below 0.44. 

2.2.8 Mean Survival Time 
The mean survival time is estimated as 

( )(1 1
1

ˆˆ
k

KM i i i
i

S t t tμ )− −
=

= −∑  
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where k is the number of unique time points at which 
events were observed.  The mean survival for the 6-MP 
group in the Leukemia Trial is calculated in the table below. 
 

 38



t ( )ˆ
KMS t  1i it t −−  ( )( )1 1

ˆ
KM i i iS t t t− −−  

0 1.000 - - 
6 0.857 6 6 
7 0.807 1 0.857 
10 0.753 3 2.421 
13 0.690 3 2.259 
16 0.628 3 2.07 
22 0.538 6 3.768 
23 0.448 1 0.538 
Total - - 17.91 
 
The mean disease-free survival in the 6-MP group is 17.9 
weeks.  Note that when the largest observed time is 
censored, this estimator will underestimate the true mean. 

2.3 Comments 

2.3.1 Cumulative Probability of Failure 
It may be helpful to plot the cumulative probability of failure 
when reporting results.  The cumulative probability of 
failure can be estimated as ( )ˆ1 KMS t− .  In other words, it 
can be estimated by subtracting the Kaplan-Meier 
estimates from 1.  Figure 8 plots the estimated cumulative 
probability of relapse in the Leukemia Trial. 
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Figure 8.  Kaplan-Meier plot of the cumulative probability 

of relapse for the 6-MP group in the Leukemia Trial. 
 

2.3.2 Interpreting the Survival Curve 
The estimated survival curves display patterns in the time-
to-event data.  Conclusions based on the fine detail of a 
curve (e.g. the size of a specific step or the length of a flat 
region) should be made with caution. 
 

• Large steps in the survival curve do not necessarily 
imply a sudden increase in the risk of failure.  For 
instance, one should not assume from Figure 8 that 
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the large steps around weeks 22 and 23 imply a 
sudden increase in the probability of relapse.  Recall 
that there are a small number of subjects at risk 
during those time periods.  Hence, there is more 
uncertainty in the corresponding estimates. 

 
• Keep in mind that the Kaplan-Meier method only gives 

estimates of the survival function after the occurrence 
of the first failure.  Consequently, the survival curve is 
reported to be equal to 1 until the first failure time.  
This does not imply that there is no risk of failure 
before that time. 

 
• Flat regions of the curve do not necessarily imply that 

the risk of failure is negligible.  Thus, one should not 
infer from the plot that there is minimal risk of relapse 
before week 6 and after week 23. 

 
• Both the estimated survival curve and confidence 

intervals should be utilized when drawing conclusions 
about the survival process. 
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3.1 Hazard Function 

3.1.1 Definition 

Definition:  The hazard function or hazard rate λ(t) is the 
instantaneous rate of failure at time t for those at risk at 
time t.  It is defined as 
 

( ) [ ]λ
→

≤ < + ≥
=

0

Pr |
lim
h

t T t h T t
t

h
. 

 
The term [ ]≤ < + ≥Pr |t T t h T t

+ h

 is the conditional 
probability that the event occurs during the interval 

 given that it has not occurred before time t.  
Dividing this probability by h, the length of the interval, 
gives us a rate.  The limit of this rate as h approaches zero 
is the instantaneous event rate at time t. 

≤ <t T t

 
Examples: 

1. If the event of interest is death, then λ(t) is the 
mortality rate as a function of time. 

2. If the event is relapse among leukemia patients, then 
λ(t) is the relapse rate as a function of time. 

3. Theoretical hazard functions are displayed in Figure 1. 
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Figure 1.  Plots of theoretical hazard functions with 

corresponding survival functions. 
 
Can you think of an example where the hazard function 
changes from periods of increase to decrease over time? 
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Notes 
 

1. The hazard function λ(t) is a rate, not a probability, 
and assumes values in the interval [0, ∞).  The hazard 
rate is the rate of change in the cumulative probability 
of failure at time t relative to the corresponding 
survival probability.  It can be thought of as the “force 
of mortality” at time t. 

 
2. There is a one-to-one relationship between the hazard 

function and the survival function.  The survival 
function is completely determined by the hazard 
function and vice versa (Figure 1). 

 
3. Any non-negative function can serve as a hazard 

function.  Over time, hazard functions may be 
increasing, decreasing, constant, or any combination 
thereof. 
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3.1.2 Estimation 
Techniques for estimating the hazard function tend to be 
more involved than, say, the Kaplan-Meier estimator of the 
survival function.  Sophisticated mathematical techniques 
are typically employed to produce a smooth estimate of the 
hazard function.  Figure 2 displays smooth estimates of the 
hazard functions for the Leukemia Trial.  Cubic splines 
were used for the data smoothing. 

 

Figure 2.  Smooth estimates of the hazard and survival 
functions for the Leukemia Trial. 

 
The smoothed survival curves are displayed along with the 
Kaplan-Meier curves in Figure 3.  Both are based on the 
cumulative probabilities discussed in Section 2 and give 
non-parametric estimates of the survival function. 
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Figure 3.  Kaplan-Meier and smoothed estimates of the 

survival curves for the Leukemia Trial. 
 
Table 1.  Comparison of the Kaplan-Meier and smoothed 
estimates of the survival function. 
Kaplan-Meier Estimate Smoothed Estimate 
Step function Smooth curve 

Plots exact failure times Displays survival as a continuous 
process 

Uniquely determined Subjective amount of smoothing 
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3.2 Log-Rank (Mantel-Haenzel) Test 

3.2.1 Overview 
Up to this point, the focused has been on descriptive 
methods for survival data.  We now turn our attention to 
inferential methods; specifically, statistical tests for the 
comparison of survival between two or more groups. 

Results from the Leukemia Trial  
The purpose of this trial was to test the effectiveness of 6-
mercaptopurine (6-MP) in delaying the time to relapse for 
lymphoblastic leukemia patients currently in remission. 
 
The log-rank test was carried out to test the null hypothesis 
that the hazard rates between the two groups are equal, 
versus the two-sided alternative they differ; namely, 
 

( ) ( )
( ) ( )

0 6

6

:

:
MP Placebo

A MP Placebo

H t

H t

t

t

λ λ

λ λ
−

−

=

≠
. 

 
A value of 16.8 was obtained for the 2

1χ  test statistic.  The 
resulting p-value was 4.17e-5.  Thus, at the 5% level of 
significance, it is concluded that the hazard rates differ 
between the two groups.  In particular, the relapse rate is 
significantly lower in the 6-mercaptopurine group.  The 
drug effectively delays the time to relapse in this patient 
population. 
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Questions: 
1. What are the properties of the log-rank test? 
2. When is the test appropriate? 
3. How should the results be interpreted? 

 

3.2.2 Methodology 
Consider the entire collection of ordered time points at 
which a relapse was observed in the Leukemia Trial. 
 

t e1t n1t e2t n2t
1 0 21 2 21 
2 0 21 2 19 
3 0 21 1 17 
4 0 21 2 16 
5 0 21 2 14 
6 3 21 0 12 
7 1 17 0 12 
8 0 16 4 12 
10 1 15 0 8 
# # # # # 

23 1 6 1 1 
 
At time t there are n1t subjects at risk in the 6-MP group, of 
which e1t relapsed.  n2t and e2t are similarly defined for the 
Placebo group.  The events at time t can be summarized in 
a 2 x 2 table. 
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 Relapse Disease-free Risk Set 
6-MP 1te  1 1t tn e−  1tn  
Placebo 2te  2 2t tn e−  2tn  
Totals te  t tn e−  tn  

 
If we condition on knowing the table margins and assume a 
common rate of relapse, then e1t is a hypergeometric 
random variable with mean and variance given by 

[ ]

[ ] ( )
( )

1 1

1 2
1 2var

1

t
t t

t

t t t t t
t

t t

eE e n
n

n n e n e
e

n n

=

−
=

−

. 

The standard test for an association between the row and 
column factors for independent 2 x 2 tables is the Mantel-
Haenszel statistic.  This statistic is constructed by 
subtracting the expected number of events in Group 1 from 
the observed events, and then standardizing this difference 
by the square root of the variance: 

[ ]( )

[ ]
( )

1 1

1

0,1
var

t t
t

MH
t

t

e E e
X N

e

−
= ≈
∑
∑

. 

The square of this statistic , which has an approximate 
chi-square distribution with one degree of freedom, is 
typically reported in practice. 

2
MHX

• 2
MHX  is known as the log-rank statistic.  It can be 

generalized to the comparison of more than two 
groups of subjects. 
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• P-value formulas for one and two-sided alternative 
hypotheses are as follows: 

HA p-value 
( ) ( )1 2t tλ λ<  [ ]Pr MHp Z X= <  
( ) ( )1 2t tλ λ>  [ ]Pr MHp Z X= >  

( ) ( )t t1 2λ λ≠  
2 2
1

2Pr

Pr
MH

MH

p Z X

Xχ

= >⎡ ⎤⎣ ⎦
⎡ ⎤= >⎣ ⎦

 

 
Leukemia Example 
The log-rank test for the leukemia data is based on 17 
unique failure times, each of which can be summarized in a 
2 x 2 table.  The first seven tables are given below. 
 

Week 1  Relapse Disease-free Risk Set 
 6-MP 0 21 21 
 Placebo 2 19 21 
  2 40 42 
  E = 1.000 var = 0.488  
     
Week 2  Relapse Disease-free Risk Set 
 6-MP 0 21 21 
 Placebo 2 17 19 
  2 38 40 
  E = 1.050 var = 0.486  
     
     
Week 3  Relapse Disease-free Risk Set 
 6-MP 0 21 21 
 Placebo 1 16 17 
  1 37 38 
  E = 0.553 var = 0.247  
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Week 4  Relapse Disease-free Risk Set 
 6-MP 0 21 21 
 Placebo 2 14 16 
  2 35 37 
  E = 1.135 var = 0.477  
     
Week 5  Relapse Disease-free Risk Set 
 6-MP 0 21 21 
 Placebo 2 12 14 
  2 33 35 
  E = 1.200 var = 0.466  
     
Week 6  Relapse Disease-free Risk Set 
 6-MP 3 18 21 
 Placebo 0 12 12 
  3 30 33 
  E = 1.909 var = 0.651  
     
Week 7  Relapse Disease-free Risk Set 
 6-MP 1 16 17 
 Placebo 0 12 12 
  1 28 29 
  E = 0.586 var = 0.243  

 



The calculations necessary for computing the log-rank statistic are summarized in 
the following worksheet. 
 

nt E[e1t] t e1t e2t et n1t n2t e1t – E[e1t] var[e1t] 
1 0 2 2 21 21 42 1.000 -1.000 0.488 
2 0 2 2 21 19 40 1.050 -1.050 0.486 
3 0 1 1 21 17 38 0.553 -0.553 0.247 
4 0 2 2 21 16 37 1.135 -1.135 0.477 
5 0 2 2 21 14 35 1.200 -1.200 0.466 
6 3 0 3 21 12 33 1.909 1.091 0.651 
7 1 0 1 17 12 29 0.586 0.414 0.243 
8 0 4 4 16 12 28 2.286 -2.286 0.871 
10 1 0 1 15 8 23 0.652 0.348 0.227 
11 0 2 2 13 8 21 1.238 -1.238 0.448 
12 0 2 2 12 6 18 1.333 -1.333 0.418 
13 1 0 1 12 4 16 0.750 0.250 0.188 
15 0 1 1 11 4 15 0.733 -0.733 0.196 
16 1 0 1 11 3 14 0.786 0.214 0.168 
17 0 1 1 10 3 13 0.769 -0.769 0.178 
22 1 1 2 7 2 9 1.556 -0.556 0.302 
23 1 1 2 6 1 7 1.714 -0.714 0.204 
Total 9 21 30     -10.251 6.257 
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Summing the terms over all 17 failure times gives 

( ) ( ) ( )

( )

2
2

2

0 1.000 0 1.050 1 1.714
0.488 0.486 0.204

10.251
16.79

6.257

MHX
− + − + + −⎡ ⎤⎣ ⎦=

+ + +

−
= =

…
… . 

Thus, the 2-sided p-value is 
2
1Pr 16.79 4.17 5p eχ⎡ ⎤= > = −⎣ ⎦  

which agrees with the p-value given in the original 
statement of the analysis results. 
 

Notes 
 

1. The log-rank test is a non-parametric test.  As in the 
Kaplan-Meier estimator, no assumptions are made 
about the functional form of the distribution for survival 
times. 

 
2. Each of the 2 x 2 tables can be viewed as a 

comparison of the hazard rate at the corresponding 
point in time.  Since each of the [ ]1 1t te E e−  
differences receives equal weight in the test statistic, it 
can be shown that the log-rank test is most sensitive 
when the hazard rates are proportional, namely 
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( )
( )

1

2

t
c

t
λ
λ

=  

 
for some constant c. 
 

3. If the hazard rates cross or if they differ only over a 
subset of the follow-up times, then the log-rank test 
may have low power to detect a difference between 
the groups. 

 
4. A non-significant result from the log-rank test does not 

imply that the hazard rates are equal; only that the 
test does not provide evidence to the contrary. 
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3.2.3 Weighted Log-Rank Test 
Recall that the log-rank test weights the differences in the 
hazard curves equally over time.  One might be interested 
in testing for earlier or later differences in the hazard 
functions.  To this end, a generalization of the log-rank test 
was developed.  The weighted log-rank test statistic is 
 

[ ]( )

[ ]
( )

1 1

2
1

0,1
var

t t t
t

t t
t

w e E e
X N

w e

−
= ≈
∑
∑

 

 
where wt are weights defined at each failure time.  Some 
commonly used weights are given in Table 2. 
 
Table 2.  Weights for the weighted log-rank statistic. 
Weights Test Name Trend 

1tw =  Log-rank Constant 
t tw n=  Gehan Decreasing 

( )ˆ
t KMw S t≈  Peto-Prentice Decreasing 

( )ˆ
t KMw S t

ρ
⎡ ⎤= ⎣ ⎦  Harrington & 

Fleming G-rho 

ρ > 0: Decreasing 
ρ = 0: Constant 
ρ < 0: Increasing 

 

where ( )ˆ
KMS t  is the Kaplan-Meier estimate of the survival 

function computed over the entire set of subjects.  A 
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comparison of the relative weights for select weighted log-
rank statistics is given in Figure 4. 
 

 
Figure 4.  Relative weights for select weighted log-rank 

statistics applied to the failure times in the Leukemia Trial. 
 
We will use the Harrington & Fleming (H-F) class of test 
statistics because of their flexibility.  The ρ parameter 
should be chosen a priori based on the time period in the 
study for which differences are of most interest. 
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Leukemia Example:  Various Harrington & Fleming test 
results for the Leukemia Trial are given in the table below. 
 
Harrington & Fleming Test Statistic (X) p-value 
ρ = 1 -3.802 1.43e-4 
ρ = 0 -4.098 4.17e-5 
ρ = -1 -4.087 4.38e-5 

 

Notes 
 

1. The log-rank test is the most powerful for detecting 
group differences when the hazard rates are 
proportional. 

 
2. In the case of crossing hazard functions, the log-rank 

test statistic will tend toward zero. 
 
3. The Harrington-Fleming tests can be used to detect 

either earlier or later differences in the hazard 
functions.  This is useful in the case of crossing 
hazards or if the hazards differ only at the beginning 
or end of the study. 

 
4. The Harrington-Fleming test is equal to the log-rank 

test for ρ = 0 and is equivalent to the Peto-Prentice 
test for ρ = 1. 
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5. A disadvantage of the Gehan test is that the weights 
t t  are a function of censoring.  In the presence of 

heavy censoring this test can be very misleading and 
should not be used. 

w n=

 

3.2.4 Comparison of More than Two Samples 
Carcinogenesis Experiment 

A group of 29 laboratory mice were randomly assigned to 
receive one of three dose levels of a suspected tumor-
causing agent.  They were then followed until tumor 
development or censoring (*).  The follow-up times are 
given below. 
 
Group Dose Follow-up (Days) 
1 2.0 41*, 41*, 47, 47*, 47*, 58, 58, 58, 100*, 117
2 1.5 43*, 44*, 45*, 67, 68*, 136, 136, 150, 150, 

150 
3 0.0 73*, 74*, 75*, 76, 76, 76*, 99, 166, 246* 
 
Analysis Objective:  Extend the log-rank statistic to allow 
for the comparison of more than two groups. 
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Figure 5.  Kaplan-Meier plot of the survival curve for the 

Carcinogenesis Experiment.  
 

Suppose that we have G groups of subjects and wish to 
test the null hypothesis that 
 

( ) ( ) ( )
( ) ( )

0 1:

:  for som  
g G

A g g

H t t

H t t ge ,

t

g

λ λ λ

λ λ ′

= = = =

′≠

… …
 

 
where the alternative hypothesis that at least two of the 
groups have different hazard rates. 
Similar to the previous discussion of the log-rank test for 
two groups, the events at time t can be summarized in a G 
x 2 table. 
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 Event Non-event Risk Set 
Group 1 1te  1 1t tn e−  1tn  
#  # # #  
Group g gte  gt gtn e−  gtn  
#  # # #  
Group G Gte  Gt Gtn e−  Gtn  
Totals te  t tn e−  tn  

 
If we condition on knowing the table margins and assume 
that the null hypothesis holds, then the  have a multiple 
hypergeometric distribution with mean 

gte

 

t
gt gt

t

eE e n
n

⎡ ⎤ =⎣ ⎦  

 
Recall that the weighted log-rank test is constructed by 
summing the differences between the observed and 
expected number of failures.  In group g, the sum of the 
differences is 
 

( )g t gt g
t

U w e E e t⎡ ⎤= − ⎣ ⎦∑ . 

 
The presence of more than two groups makes for a more 
involved variance formula.  The test statistic is computed 
as 
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2 1

1GX 2χ−
−′= ≈U V U  

 
where 
 

1

1G

U

U −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

U #  

 
and V is a (G - 1) x (G - 1) covariance matrix for the 
observed failure times in the first G - 1 groups. 
 

Results from the Carcinogenesis Experiment 
The log-rank statistic was used to test the null hypothesis 
that the hazard rates are equal across the three groups, 
versus the alternative that at least two differ, namely 
 

( ) ( ) ( )
( ) ( )

0 1 2 3:

:  for som  A g g

H t t t

H t t g

λ λ λ

λ λ ′

= =

e ,g ′≠
. 

 
A value of 8.0 was obtained for the 2

2χ  test statistic.  The 
resulting p-value is 0.0179.  Thus, at the 5% level of 
significance, the hazard rates are not equal across all three 
groups. 
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Notes 
 

1. The log-rank test statistic can be used for the 
comparison of hazard rates across two or more 
groups of subjects. 

 
2. The alternative hypothesis is that at least two of the 

groups differ.  One cannot determine where the 
specific group differences occur with the overall test of 
equality for the hazard functions. 

 
3. The formulation of the statistic given in this section 

yields an inherently two-sided test.  It cannot be used 
to test for any particular ordering of the groups. 

 
4. As in the 2-sample case, weighting functions, such as 

the one proposed by Harrington-Fleming, can be 
incorporated into the statistic to emphasize earlier or 
later differences in the hazard functions. 

 

3.2.5 Pairwise Comparisons 
A significant result from a log-rank test applied to multiple 
groups indicates that at least two of the groups differ.  A 
natural question to ask then is where the group differences 
occur.  To address this question, one can perform a series 
2-sample tests comparing all G(G - 1) / 2 pairs of groups.  
In order to maintain an overall α level of significance, an 
adjusted significance level α′ must be used for each 
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pairwise comparison.  Two conservative methods for 
computing α′ are 
 

1. Bonferroni Method:  
( )1 2G G
αα′ =

( )

−
 

2. Probability Method:  ( )( )1 11 1 G Gα α′ = − −

( )

2−  

 
The second method is slightly less conservative (α′ is 
closer to α) than the Bonferroni method. 
  
Table 3.  Adjusted significance level for use in multiple 
pairwise comparisons. 

Exposure 
Levels 
G 

Pairwise 
Comparisons

1 2G G −  

Overall 
Significance

α 

Individual Test 
Significance α′ 

Bonferroni Probability
3 3 0.05 0.01667 0.01695 
4 6 0.05 0.00833 0.00851 
5 10 0.05 0.00500 0.00512 
 
When there are a large number of groups, these two 
adjustments for multiple comparisons are of limited utility. 
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Carcinogenesis Experiment 
The p-value from the log-rank test of overall equality was 
0.0179.  We need to determine where the groups differ.  
There are G = 3 groups with G(G – 1) / 2 = 3 possible 
pairwise comparisons.  The p-values from the pairwise 
comparisons are given below. 
 

Comparisons p-value 
1 vs. 2 0.00857 
1 vs. 3 0.0801 
2 vs. 3 0.531 

 
If an overall 5% level of significance is desired, then the 
two methods yield the following adjustments: 
 

1. 
( )

0.05 0.0167
1 2 3G G

αα′ = = =
−

 

( ) ( )( )1 1 21 1 1 0.952. 1 3 0G Gα α −′ = − − = − = .0169  

 
Only the p-value for the pairwise comparison of groups 1 
and 2 is less than the adjusted significance level, α′ = 
0.0169.  Therefore, we can conclude that groups 1 and 2 
are significantly different.  There is no significant difference 
between groups 1 and 3 or groups 2 and 3. 
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3.2.6 Tests for Trend across Groups 
In the carcinogenesis experiment the subjects were 
grouped by the administered dose levels (2.0, 1.5, and 
0.0).  Thus, the investigators might be interested in testing 
for a trend in the hazard functions, say 
 

( ) ( ) ( )
( ) ( ) ( )

0 1 2 3

1 2 3

:
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H t t

H t t

t

t

λ λ λ

λ λ λ

= =

> >
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Recall that, in the log-rank statistic, 
 

( )g t gt g
t

U w e E e t⎡ ⎤= − ⎣ ⎦∑  

 
is the sum of the observed minus expected number of 
events for the gth group.  Our log-rank statistics have been 
based on the sum total of these differences.  Thus, in order 
to test for trend, we might include an additional term zg that 
weights each Ug by a group-specific variable.  The resulting 
sum would be , which can be written in matrix 

notation as z  where 

g g
g

z U∑
U′

 

1 1

g g

z U
z

z U

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦

U# # . 

 
⎣
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The trend test statistic is given by 
 

( )0,1trend
zX N
′

z z
= ≈

U
′V

, 

 
where V is a G x G covariance matrix for the number of 
failures in each group.  One and two-sided p-values may 
be computed according to the formulas in Table 4. 
 
Table 4.  p-value formulas for the log-rank trend statistic. 
Alternative Hypothesis Group 

Weights 
p-value 

( ) ( )1:A GH t tλ< <…
[ ]Pr trendp Z X=

 Increasing 
λ

>  
Decreasing [ ]Pr trendp Z X<  =

( ) ( )1:A GH t tλ> >…
[ ]Pr trendp Z X=

 Increasing 
λ

<  
Decreasing [ ]Pr trendp Z X= >  

( ) ( )
( ) ( )1

A
Gt

1: G t
H

t
tλ λ< <

λ λ> >…
…

 
Increasing 
or 
Decreasing

2Pr trendp Z= > X⎡ ⎤⎣ ⎦

 
Carcinogenesis Experiment 
A natural choice for group weights in the Carcinogenesis 
Experiment are the administered dose levels: 
 

2.0
1.5
0.0

z
⎡ ⎤
⎢ ⎥= . ⎢ ⎥
⎢ ⎥⎣ ⎦
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Use of equal weights in the log-rank statistic results in 
 

3.209 1.319 0.641 0.677
0.803 0.641 2.663 2.021
2.405 0.677 2.021 2.699

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢= − = − −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

U V
⎤
⎥
⎥
⎥⎦

, 

 
so that 
 

[ ]
3.209

2.0 1.5 0.0 0.803
2.405

(2.0)(3.209) (1.5)( 0.803) (0.0)( 2.405)
5.212

z
⎡ ⎤
⎢ ⎥′ = −⎢ ⎥
⎢ ⎥−⎣ ⎦

= + − + −
=

U

 

 
and 
 

[ ]

[ ]

1.319 0.641 0.677 2.0
2.0 1.5 0.0 0.641 2.663 2.021 1.5

0.677 2.021 2.699 0.0

2.0
1.676 2.711 4.387 1.5

0.0
7.418

z z
− −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥′ = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= − ⎢ ⎥
⎢ ⎥⎣ ⎦

=

V
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Therefore, the test statistic is equal to 
 

5.212 1.91
7.418trend

zX
z z
′

= = =
′
U
V

 

 
which gives a p-value of 
 

[ ]Pr 1.91 0.0278p Z= > =  

 
Therefore, at the 5% level of significance, the hazard 
functions are decreasing relative to the administered dose 
levels. 
 

Notes 
 

1. Any set of weights could be assigned to the groups.  
Using the dose levels (2.0, 1.5, and 0.0) tests for a 
difference in hazards between groups 2 and 3 (1.5 – 
0.0 = 1.5) that is 3 times as great as the difference 
between groups 1 and 2 (2.0 – 1.5 = 0.5). 

 
2. If the integer ranks 1, 2, and 3 were assigned to the 

groups, then one would be testing for a constant 
incremental difference in the hazards. 
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3.2.7 Stratified Log-Rank Test 
Bone Marrow Transplants for Non-Hodgkin’s and 
Hodgkin’s Lymphoma 

A group of 43 patients with either non-Hodgkin’s or 
Hodgkin’s lymphoma were studied in order to asses 
disease-free survival after bone marrow transplant.  The 
patients received either an allogeneic transplant from an 
HLA-matched sibling donor or an autologous transplant 
where their own marrow was cleansed and reinfused after 
a high dose of chemotherapy. 
 
 

Figure 6.  Kaplan-Meier plots of the survival functions in 
the Lymphoma Study. 

 
Analysis Objective:  Compare the disease-free survival rate 
between allogeneic and autologous transplant recipients, 
adjusting for the patient’s disease type. 
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Stratification Variables 
Oftentimes, there are several variables that affect the 
survival of subjects in the study population.  In order to 
assess the effect of a specific variable, we need to 
consider the potential impact of other important risk factors.  
For example, we might have reason to believe that 
disease-free survival differs between non-Hodgkin’s and 
Hodgkin’s patients. 
 

Confounding 
A confounder is a covariate that is causally related to the 
outcome and is associated with the variable of interest.  
The potential effects of a confounder are illustrated in 
Figure 7.  The figure shows hazard functions for two 
groups of subjects.  When the subjects are divided into 
strata based on the levels of another variable, we see a 
consistent difference between the two groups.  However, if 
the stratification variable is ignored and the groups pooled, 
the results may be unpredictable: 
 

• There may be no association between the grouping 
and stratification variable.  Consequently, in a given 
strata, one would expect a similar proportion of 
subjects from each group.  In this case the 
stratification variable is not a confounder, and the data 
can be pooled to study the group differences. 

• There is an association between the grouping and 
stratification variable.  Groups contribute a different 
proportion of subjects within a given strata.  When this 
is the case, the stratification variable is a confounder, 
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and pooling across strata to analyze group differences 
will lead to unpredictable results. 

• In the presence of confounding, a pooled analysis of 
the data can lead to A) underestimation of the group 
differences, B) reordering of the hazard functions, or 
C) over-estimation of the group differences. 

 

 
Figure 7.  Comparison of hazard functions in the presence 

of confounding. 
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Q:  Why not perform separate tests within each strata; e.g. 
perform two log-rank tests, one for strata 1 and another for 
strata 2? 
 
A:  If there is a persistent difference across the stratum, 
then an analysis of the complete data set would be more 
powerful than individual subset analyses of the data. 

 

Methodology 
 
Let m = 1,...,M index the strata.  The null and alternative 
hypotheses are 
 

( )
0 1:  for all 

: 0 for so  
m m G

A m g m g
m

H m

H gme ,g

λ λ

λ λ ′

= =

′− ≠∑
…

 

 
The test statistic is formed by computing the difference 
between observed and expected failure times within each 
strata, 

 

( )m g t m gt m gt
t

U w e E e⎡ ⎤= − ⎣ ⎦∑ . 

 
The stratum-specific differences are summed together to 
yield 
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g m
m

U U= g∑ , 

 
from which the log rank statistic is computed in the usual 
fashion; i.e. 
 

2 1
1GX 2χ−
−′= ≈U V U  

 
where m

m

=∑V V  is the covariance matrix. 

 

Results from the Lymphoma Study 
The log-rank statistic was used to test the null hypothesis 
of equal hazard rates across allogeneic and autologous 
transplant recipients, versus a 2-sided alternative.  The 
statistic was stratified by type of disease (non-Hodgkin’s 
and Hodgkin’s lymphoma).  A value of 0.10 was obtained 
for the 2

1χ  test statistic, giving a p-value of 0.729.  Thus, at 
the 5% level of significance, the stratified log-rank test does 
not indicate a difference between the two groups. 
 
However, log-rank tests applied to the strata individually 
suggested otherwise.  P-values of 0.198 and 0.0117 were 
obtained from log-rank tests of the non-Hodgkin’s and 
Hodgkin’s patients, respectively.  Why is the p-value from 
the stratified test so large in comparison? 
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Figure 8.  Estimated hazard functions for the lymphoma 
study. 

 
Disease type is not a confounder, it is an effect modifier.  
The differences between the two hazard functions cancel 
each other in the stratified test because of their reversed 
ordering.  Stratification is not the appropriate means to 
adjust for disease type. 
 

Notes 
 

1. The incorporation of a stratification variable in the test 
statistic affects only the computation of the expected 
number of failures and the variance.  As before, the 
test statistic has a chi-square distribution with G – 1 
degrees of freedom. 
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2. Weighting functions, such as the one proposed by 
Harrington-Fleming, can be incorporated to 
emphasize earlier or later differences in the hazard 
functions. 

 
3. The alternative hypothesis is that there is a consistent 

difference across strata between at least two of the 
groups.  Pairwise comparisons can be performed to 
identify where the group differences occur. 

 
4. A test of trend in the hazard rates across groups can 

also be performed. 
 

3.3 Sample Size 
During the design and planning stages of a study, 
investigators are often faced with the task of justifying the 
number of subjects to be enrolled.  Two key issues that 
must be considered in the determination of sample size 
are: 
 

1. There are practical limits on the number of subjects 
that can be enrolled. 

2. An adequate number of subjects should be enrolled to 
ensure sufficient powered. 

 
Recall that power (1 - β) is defined as the probability of 
correctly rejecting the null hypothesis, and that the 
significance level (α) is the probability of incorrectly 
rejecting the null hypothesis. 
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The first step in estimating sample size is to specify the null 
and alternative hypotheses of interest, as well as the 
statistic to be used for the test.  The sample size estimation 
is based on these specifications. 

3.3.1 Freedman’s Method 
We will consider the issue of sample size estimation for 
tests of the hypotheses 
 

( ) ( )
( ) ( )

0 1 2

1 2

:

:A

H t

H t

t

t

λ λ

λ λ

=

≠
 

 
using the log-rank statistic.  Freedman’s sample size 
approach follows from an assumption that the analysis will 
occur at a fixed time t* after the last patient has been 
enrolled.  The sample size formula is 
 

( ) ( )1
1 2

2 1

1 * 1
dn

S t c S t

n cn

=
− + − *⎡ ⎤⎣ ⎦

=

 

 
where c is the number of subjects in group 2 relative to 
group 1, as specified by the investigators, and 
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( )
( )
( )

2
2

1 / 2 1

1

2

1
1

ln *
ln *

d z z

S t
S t

α β
θ
θ

θ

− −
+⎛ ⎞= + ⎜ ⎟−⎝ ⎠

=

. 

 
In the case of a one-sided alternative hypothesis, z1-α/2 
would be replaced by z1-α.  The group-specific survival 
probabilities S1(t*) and S2(t*) must be supplied. 
 

Adjuvant Chemotherapy Example 
Investigators are interested in evaluating the effect of a 
chemotherapeutic agent as adjuvant post-surgery 
treatment compared to surgery alone.  Based on the 
literature and personal experience, they suggest that 

• The fiver year survival probability for surgically treated 
patients is 60%. 

• A survival increment of 25% is clinically relevant. 
• Two-sided tests are planned and will be carried out at 

the 5% level of significance. 
• A power of 80% is desired. 
• Twice as many patients will be enrolled to the surgery-

only group. 

( )
( )

1

2

* 5
5 0.6

5 0.8

t
S

S

=

=

=

0

5

 

2 1

0.05
1 0.80

1/ 2c n n

α
β
=
− =
= =
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The sample size estimates are as follows: 

 
( )
( )

( )

( )

1

2

2
2

1 / 2 1

2
2

ln * ln0.60 3.1431
ln * ln0.85

1
1

1 3.14311.96 0.8416 29.3335
1 3.1431

S t
S t

d z zα β

θ

θ
θ− −

= = =

+⎛ ⎞= + ⎜ ⎟−⎝ ⎠

+⎛ ⎞= + =⎜ ⎟−⎝ ⎠

 

 
and 
 

( ) ( ) [ ]1
1 2

2 1

29.3335 62
1 * 1 * 1 0.6 0.5 1 0.85

0.5(62) 31

dn
S t c S t

n cn

= =
− + − − + −⎡ ⎤⎣ ⎦

= = ≅

≅
. 

 

Notes 
 

1. To allow for the possibility that x percent of the 
subjects might withdraw from the study, the estimated 
sample sizes should be multiplied by 100/(100-x).  For 
example, if 20% of subjects are expected to withdraw, 
then the previous sample size estimates become 
62*100/80 = 78 and 31*100/80 = 39. 
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2. When the enrollment period is relatively long, the use 
of minimum follow-up time for t* severely 
overestimates the number of subjects needed.  In 
these situations, the average follow-up time should be 
used for t*. 

 
3. Freedman’s method tends to overestimate the sample 

size when either of the survival probabilities is close to 
zero or one. 

 
4. There are many techniques for estimating sample 

size.  Indeed, there are complete software packages 
developed specifically for sample size estimation; e.g. 
PASS, Power and Precision, and nQuery. 

 
5. Sample size determination is an inexact science.  In 

order to estimate sample size, one must provide 
values for the parameters under study.  However, if 
those values were known, there would be no need to 
do the study. 

 
6. It may be helpful to give sample size estimates over a 

range of values for the parameters, the power, and 
the significance level. 

 
7. Generally speaking, the more sophisticated the 

analysis, the more complicated the sample size 
estimation.  Sample size techniques are often based 
on simplifying assumptions or a less sophisticated 
statistical test. 
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4.1 Introduction 
One of the advantages of regression modeling is the ability 
to examine the effect of multiple predictor variables on the 
outcome of interest. 

Time to Breast-Feeding Cessation Study 
The National Labor Survey of Youth is a random sample of 
youths, aged 14 to 21, who were interviewed yearly from 
1978 through 1988.  The survey data contain information 
on 927 mothers who had given birth to their first child and 
chose to breast-feed.  There is interest in identifying factors 
that are associated with breast-feeding cessation.  The 
following variables were collected in the study: 
 
Variable Description Values 
weaned Indicator for breast-feeding 

cessation 
1 = yes 
0 = no 

weeks Length of follow-up in weeks continuous 
age Subject age continuous 
alcohol Alcohol use at time of birth 1 = yes 

0 = no 
care3 Use of prenatal care after first 

trimester 
1 = yes 
0 = no 

education Years of education continuous 
poverty Below poverty level 1 = yes 

0 = no 
race Subject race 1 = white 

2 = black 
3 = other 

smoke Smoking at time of birth 1 = yes 
0 = no 
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The data are summarized in Table 1 and Table 2.  Note 
that 35 mothers were still breast-feeding at the end of the 
study.   
 
Table 1.  Descriptive statistics for the categorical variables 
in the Breast-Feeding Study. 
Variable Levels N Percents 
weaned 0 

1 
35 
892 

3.8% 
96.2% 

alcohol 0 
1 

848 
79 

91.5% 
8.5% 

care3 0 
1 

763 
164 

82.3% 
17.7% 

poverty 0 
1 

756 
171 

81.6% 
18.4% 

race 1 
2 
3 

662 
117 
148 

71.4% 
12.6% 
16.0% 

smoke 0 
1 

657 
270 

70.9% 
29.1% 

 
Table 2.  Descriptive statistics for the continuous variables 
in the Breast-Feeding Study. 
Variable Mean SD Min Max 
weeks 16.18 17.92 1 192 
age 21.54 2.67 15 28 
education 12.21 1.93 3 19 
 
Analysis Goal:  Perform a multivariate regression analysis 
of the data.   
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Multivariate regression objectives: 
• Identify the variables associated with breast-feeding 

cessation. 
• Determine if race is a significant predictor after 

controlling for age and socio-economic status (alcohol 
use, education, prenatal care, poverty, and smoking). 

• Assess whether the covariates interact in their effect 
on the breast feeding cessation. 

• Estimate the effect of age, education, race, etc. 
 

4.2 Cox Proportional Hazards Model 
In Section 3 log-rank statistics were used to test for group 
survival (hazard rate) differences.   Likewise, log-rank 
statistics could be used for the breast-feeding data to test 
for differences across the levels of any one of the 
variables; although, categorical variables would have to be 
created from the continuous variables age and years of 
education.  Stratification could be employed in an attempt 
to control for confounding. 
 
Log-rank tests are particularly useful when interest centers 
on individual variables, such as treatment or exposure to a 
potential carcinogen.  However, as is the case here, we are 
often interested in the relationship of the outcome to 
several (continuous and categorical) covariates 
simultaneously.  Moreover, we need to quantify and test 
these relationships.  Thus, a multivariate regression 
approach is needed. 
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You are already familiar with two regression techniques: 1) 
linear regression and 2) logistic regression.  Recall that 
regression methods model the outcome as a function of the 
covariates.  For example, the linear regression model is 
 

β β β= + + + +…0 1 1 p py x x ε  

 
whereas, the logistic regression model is 
 

( )
( ) 0 1 1 2 2ln

1 p px x x
π

β β β β
π

⎡ ⎤
= + + + +⎢ ⎥−⎣ ⎦

x
x

…  

 
or 

( )
( ) { }

{ } { }

π
β β β β

π

β β β β

= + + + +
−

= + +

…

…

0 1 1 2 2

0 1 1 2 2

exp
1

exp exp

p p

+ p p

x x x

x x x

x
x . 

 
The Cox proportional hazards model is the most widely 
used regression technique for censored time-to-event data.  
In general, the multivariate Cox proportional hazards 
regression model is of the form 
 

( ) ( ) { }0 1 1 2 2; exp p pt t x xλ λ β β β= + +x … x+  
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where there are p predictor variables ix .  We will use the 
notational convention that ( )1 2, , , px x x=x … .  λ0(t) is called 
the baseline hazard rate.  It is the hazard rate when all of 
the covariates are equal to zero, since 
 

( ) ( ) { }
( )

0 1 2

0

; exp 0 0 pt t

t

λ λ β β

λ

= = + + +

=

x 0 … 0β
. 

 
The Cox model is non-parametric because it does not 
specify a functional form for the baseline hazard.  λ0(t) is a 
completely arbitrary function except for the constraint that it 
must be ≥ 0.  The model is given the name proportional 
hazards because the ratio of the hazards for two groups 
 

( )
( )

( ) { }
( ) { }

( ) ( ) ( ){ }

0 1 1 2 2

0 1 1 2 2

1 1 1 2 2 2

exp,
, exp

exp

p p

p p

p p p

t x x xt
t t x x x

x x x x x x

λ β β βλ
λ λ β β β

β β β

′ ′ ′+ + +′
=

′′ ′′ ′′ ′′+ + +

′ ′′ ′ ′′ ′ ′′= − + − + + −

x
x

…
…

…

 

 
does not depend on t.  In other words, the hazard ratio is 
constant across time. 
 
Breast-Feeding Study: 
The following Cox regression model was fit to the data from 
the Breast-feeding Study: 
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( ) ( )
1 2 3

4 5

6 7 8

3
; exp

2 3
o

age alcohol care
t t education poverty

race race smoke

β β β
λ λ β β

β β β

+ +⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+ + +⎩ ⎭

x  

 
where the terms for race are indicator variables defined as, 
 

1 1 (white)
1

0
race

race
otherwise

=⎧
= ⎨
⎩

 

1 2 (bl
2

0
race

race
otherwise

ack)=⎧
= ⎨
⎩

 

1 3 (other)
3

0
race

race
otherwise

=⎧
= ⎨
⎩

. 
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SAS Program and Output 
proc import datafile="H:\breast_fed2005.txt" 
 out=temp 
 dbms="TAB" 
 replace; 
 
data breastfed; 
 set temp; 
 race1 = (race = 1); 
 race2 = (race = 2); 
 race3 = (race = 3); 
 
proc phreg data=breastfed; 
 model weeks*weaned(0) = age alcohol care3 education poverty  
  race2 race3 smoke; 
run; 

 
Syntax 

• PROC IMPORT reads the data from the tab-delimited 
file breast_fed.txt into the SAS dataset temp. 

• A new dataset breastfed is created.  It contains the 
original data plus new indicator variables for race. 

• PROC PHREG performs multivariate Cox regression. 
• The time-to-event variable weeks is specified in the 

model statement, followed by the event indicator 
weaned.  The value for censored observations may 
be specified in parentheses.  By default, subjects with 
a value of 1 for their event indicator are assumed to 
be censored. 
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Summary of Results 
 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

age 1̂β  0.0197 0.0165 1.44 0.231 
alcohol 2β̂  0.1583 0.1225 1.67 0.1962 
care3 3β̂  -0.0224 0.0898 0.06 0.8035 
education 4β̂  -0.0516 0.0229 5.09 0.024 
poverty 5β̂  -0.1898 0.0932 4.15 0.0418 
race2 6β̂  0.1736 0.1052 2.72 0.0988 
race3 7β̂  0.2894 0.0972 8.86 0.0029 
smoke 8β̂  0.2395 0.0793 9.13 0.0025 

 
These are the maximum likelihood estimates for the eight 
predictor variables in the model. 

• The estimate for a given beta is interpreted as the 
effect of the associated predictor in the Cox model 
after controlling for the remaining covariates. 

• Note that there are two predictor (indicator) variables 
for the effect of race. 

• Each predictor has an estimate, standard error, Wald 
chi-square statistic, and p-value. 

• As in multivariate linear regression, the individual p-
values are used to determine if the associated 
parameter is significant, given that the remaining 
predictors are in the model. 
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4.3 Inference 

4.3.1 Hazard Ratio Estimation 
The hazard ratio is the hazard rate in one group relative to 
the rate in another.  In the multivariate regression setting, it 
is often of interest to estimate the hazard ratio for subjects 
with covariates  relative to those with covariates . The 
general steps for computing hazard ratios from the results 
of a Cox regression are: 

′x ′′x

1. Write out the ratio of hazards using the model 
specified for the Cox regression, 

( )
( )

( ) { }
( ) { }

0 1 1 2 2

0 1 1 2 2

exp,
, exp

p p

p p

t x xt
HR

t t x x

λ β β βλ
λ λ β β β

x

x

′ ′ ′+ + +′
= =

′′ ′′ ′′+ + +

x
x

…
… ′′

. 

2. Reduce this equation to a form that is the exponential 
of the estimated regression parameters. 

( ) ( ) ( ){ }1 1 1 2 2 2exp p p pHR x x x x x xβ β β′ ′′ ′ ′′ ′ ′′= − + − + + −…  

3. Insert the regression estimates for the parameters in 
order to calculate the hazard ratio. 

 
If the value of a predictor variable is the same in the 
numerator and denominator hazards, then that predictor 
does not factor into the calculation of the hazard ratio.  
For instance, if p px x′ ′′=  then 

( ) 0p p px xβ ′ ′′− =  

and so the term for the pth predictor drops out of the 
equation. 
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In the Breast-feeding example, the hazard is modeled as 
 

( ) ( )
1 2 3 3

; exp
age alcohol care

t t education poverty
β β β

λ λ β β
+ +

4 5

6 7 82 3
o

race race smokeβ β β

⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+ + +⎩ ⎭

x

1̂

 

 
for which the estimates from the Cox regression analysis 
are 

2
ˆ

3
ˆ

4
ˆ

5
ˆ

6
ˆ

7
ˆ

8
ˆ β  β  β  β  β  β  β β  

0.0197 0.1583 -0.0224 -0.0516 -0.1898 0.1736 0.2894 0.2395

 

Breast-Feeding Example 1: Age 
Goal:  Estimate the hazard ratio for individuals aged 25, 
relative to those aged 20. 
 
Q: In the multivariate setting, we have variables other than 
age to consider in computing the hazard ratio.  What 
values should be use for them? 
A: Our goal is to estimate the hazard ratio associated with 
age, while controlling for the effects of the other covariates 
in the model.  This is done by comparing the hazards for 
individuals who differ only with respect to their ages (25 vs. 
20).  The individuals are assumed to share the same 
values for the remaining the covariates (alcohol, pre-na, 
smoking, education). 
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Specifically, the model estimates of the numerator and 
denominator hazards are 

1. ( ) ( )
1 2 3

4 5

6 7 8

ˆ ˆ ˆ25 3
ˆ ˆ ˆ; exp

ˆ ˆ ˆ2 3
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alcohol care
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β β β

λ λ β β
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x  

2. ( ) ( )
1 2 3

4 5

6 7 8

ˆ ˆ ˆ20 3
ˆ ˆ ˆ; exp

ˆ ˆ ˆ2 3
o
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so that 

m ( )
( )

( )
( )

( ){ } { }1

ˆ ˆ, ; 25
ˆ ˆ, ; 20

ˆexp 25 20 exp 0.0197 5

1.104

t t age
HR

t t age
λ λ
λ λ

β

′ =
= =

′′ =

= × − =

=

x
x

× . 

The other terms do not contribute because the values for 
those predictor variables are held constant.  The estimated 
hazard ratio indicates that the rate of breast-feeding 
cessation for 25 year-olds is 1.104 times the rate for 20 
year-olds, after controlling for alcohol use, prenatal care, 
education, poverty, race, and smoking. 

 

Breast-Feeding Example 2: Race 
Goal:  Estimate the hazard ratio for each of black and 
“other” races, relative to whites. 
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The indicator variables that were created for race, so that it 
could be included as a categorical variable in the model, 
are summarized below. 
 
Race race1 race2 race3 
White* 1 0 0 
Black 0 1 0 
Other 0 0 1 

* Reference group; omitted from the regression model. 
 
Blacks versus Whites 
The hazard ratio comparing blacks to whites is 

m ( )
( )

( )
( )

( ){ } { }6

ˆ ˆ, ; 2 1
ˆ ˆ, ; 2 0

ˆexp 1 0 exp 0.1736 1

1.341

t t race
HR

t t race
λ λ
λ λ

β

′ =
= =

′′ =

= × − =

=

x
x

× . 

The rate of breast-feeding cessation for blacks is 1.341 
times the rate for whites, after controlling for age, alcohol 
use, prenatal care, education, poverty, and smoking. 
 
“Other” versus Whites 
The hazard ratio comparing race category “other” to whites 
is 
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m ( )
( )

( )
( )

( ){ } { }7

ˆ ˆ, ; 3 1
ˆ ˆ, ; 3 0

ˆexp 1 0 exp 0.2894 1

1.498

t t race
HR

t t race
λ λ
λ λ

β

′ =
= =

′′ =

= × − =

=

x
x

×  

The rate of breast-feeding cessation for those of race 
“other” is 1.498 times the rate for whites, after controlling 
for age, alcohol use, prenatal care, education, poverty, and 
smoking. 
 

Breast-Feeding Example 3: Age and Race 
Goal:  Estimate the hazard ratio for blacks aged 25, relative 
to those aged 20 and of race “other”. 
 
The hazard ratio estimate is 

m ( )
( )

( ) ( ) ( ){ }
{ }

( ){ }

1 6 7

1 6 7

ˆ ; 25, 2 1
ˆ ; 20, 3 1

ˆ ˆ ˆexp 25 20 1 0 0 1

ˆ ˆ ˆexp 5

exp 0.0197 5 0.1736 0.2894

0.989

t age race
HR

t age race
λ
λ

β β β

β β β

= =
=

= =

= × − + × − + × −

= × + −

= + −

=

 

The rate of breast-feeding cessation for blacks aged 25 is 
0.989 times the rate for those of race “other” aged 20, after 
controlling for alcohol use, prenatal care, education, 
poverty, and smoking. 
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4.3.2 Wald Confidence Intervals 
Estimates of hazard ratios are often accompanied by 
confidence intervals and p-values in order to provide 
measures of statistical significance.  Suppose that a Cox 
regression model of the form 

( ) ( ) { }0 1 1 2 2; exp p pt t x xλ λ β β β= + +x … x+  

is fit to a dataset, and interest lies in making inference 
about hazard ratios 
 

{ }
{ }

1 1 2 2exp

exp
p p

i i

HR c c c

c

β β β

β

= + + +

= ∑
…

 

 
where  are arbitrary constants.  The Wald 100(1 - α)% 
confidence interval for this hazard ratio is 

ic

 

( ){ }
( ){ }

1 2

1 2

exp

exp

i i i i

i i

CI c z se c

HR z se c

α

α

β β

β

−

−

= ±

= ±

∑ ∑
∑

 

 

Breast-Feeding Example 1: Age 
The estimated hazard ratio for subjects aged 25 relative 20 
is 

m { }1̂exp 5 1.104HR β= = . 

Thus, the Wald 95% confidence interval is 
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( ){ }
( ) ( ){ }

( ) ( )( ){ }
( )

1 1

1 1

exp 5 1.96 5

exp 5 1.96 5

exp 5 0.0197 1.96 5 0.0165

1.07,1.14

CI se

se

β β

β β

= ±

= ±

= ±

=

 

where the estimates and standard errors are obtained from 
the regression output. 
 

Breast-Feeding Example 2: Race 
The estimated hazard ratio comparing blacks to those of 
race “other” is 

m { }6 7
ˆ ˆexp 0.89HR β β= − = . 

for which the resulting Wald 95% confidence interval is 

( ){ }
( ){ }

( )

6 7 6 7
ˆ ˆ ˆ ˆexp 1.96

exp 0.1736 0.2894 1.96 0.1287

0.69,1.15

CI seβ β β β= − ± −

= − ±

=

 

Note that the standard error for a linear combination of two 
or more parameters cannot be obtained directly from the 
regression output, i.e. 

( ) ( ) ( )6 7 6 7
ˆ ˆ ˆ ˆse se seβ β β− ≠ − β . 

In general, the standard error is a function of the 
coefficients and estimated covariance matrix for the 
parameters involved in the calculation of the hazard ratio. 
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Breast-Feeding Example 3: Age and Race 
The estimated hazard ratio comparing blacks aged 25 to 
those aged 20 of race “other” is 

m { }1 6 7
ˆ ˆ ˆexp 5 0.99HR β β β= + − = . 

for which the resulting Wald 95% confidence interval is 

( ){ }
( ){ }

( )

1 6 7 1 6 7
ˆ ˆ ˆ ˆ ˆ ˆexp 5 1.96 5

exp 0.0172 1.96 0.1606

0.72,1.35

CI seβ β β β β β= + − ± + −

= − ±

=

 

Although PROC PHREG in SAS does not provide an 
option to generate these confidence intervals, the variance 
necessary to compute them manually can be obtained.  
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SAS Program and Output 
proc phreg data=breastfed; 
 model weeks*weaned(0) = age alcohol care3 education poverty 

race2 race3 smoke / risklimits; 
 Age25v20: test 5*age / print; 
 Race2v3: test race2 - race3 / print; 
 Age25Race2vAge20Race3: test 5*age + race2 - race3 / print; 
run; 

 
Syntax 

• The risklimits option displays confidence intervals for 
the hazard ratios computed for each individual term in 
the model. 

• The test statement can be used to obtain variance 
estimates for any linear combination of the model 
parameters. 

• A label to appear in the SAS output.  It should be 
given at the beginning of the test statement, followed 
by a colon.  The label for the first statement in this 
example is “Age25v20”. 

• Any linear combination of the parameters may be 
specified using numbers and arithmetic operators.  
Numbers must appear before the associated variable 
name. 

• The print option displays the estimate and variance 
for the specified linear combination. 
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 Test Age25v20 Print Details 
 
            L[cov(b)]L'  and Lb-c 
 
Equation 1      0.0067719319      0.0985778750 
 
Ginv(L[cov(b)]L')  and Ginv(L[cov(b)]L')(Lb-c) 
 
Equation 1       147.6683488        14.5568320 
 
      Test Age25v20 Results 
 
       Wald 
 Chi-Square      DF    Pr > ChiSq 
 
     1.4350       1        0.2310 
 
 
Test Race2v3 Print Details 
 
            L[cov(b)]L'  and Lb-c 
 
Equation 1      0.0165649030      -.1157615301 
 
Ginv(L[cov(b)]L')  and Ginv(L[cov(b)]L')(Lb-c) 
 
Equation 1       60.36859966       -6.98836147 
 
 
      Test Race2v3 Results 
 
       Wald 
 Chi-Square      DF    Pr > ChiSq 
 
     0.8090       1        0.3684 
 
 
Test Age25Race2vAge20Race3 Print Details 
 
            L[cov(b)]L'  and Lb-c 
 
Equation 1      0.0258065952      -.0171836551 
 

Linear Estimate 

Variance

Ginv(L[cov(b)]L')  and Ginv(L[cov(b)]L')(Lb-c) 
 
Equation 1       38.74978436       -0.66586293 
 
 
Test Age25Race2vAge20Race3 Results 
 
       Wald 
 Chi-Square      DF    Pr > ChiSq 
     0.0114       1        0.9148 
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4.3.3 Wald Test Statistic 
Hazard ratios that differ from unity indicate a difference 
between the hazard rates for the two groups being 
compared.  Thus, the null hypotheses in testing for a 
significant hazard ratio is 

0 : 1H HR =  

where, in general, 

{ }
{ }

1 1 2 2exp

exp
p p

i i

HR c c c

c

β β β

β

= + + +

= ∑
…

. 

An equivalent way to write the hypothesis is 

0 : 0i iH c β =∑ . 

The Wald test statistic for assessing the significance of 
the hazard ratio is 

 

( ) ( )~ 0,1i i
Wald

i i

c
X N

se c
β
β

= ∑
∑

 

or 

( )

2

2 2
1~i i

Wald
i i

c
X

se c
β

χ
β

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑

. 

 
The p-value formulas for one and two-sided alternative 
hypotheses are: 
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: 1AH HR <  [ ]Pr Waldp Z X= <  
: 1AH HR >  [ ]Pr Waldp Z X= >  

: 1AH HR ≠  
2 2
1

2Pr

Pr
Wald

Wald

p Z X

Xχ

= >⎡ ⎤⎣ ⎦
⎡ ⎤= >⎣ ⎦

 

 
Wald test statistics and Wald confidence intervals give 
consistent results.  In other words, for a given alpha-level, 
the Wald two-sided confidence interval will include unity if 
and only if the two-sided p-value is non-significant.  For this 
reason, in summaries that include both confidence intervals 
and hypothesis testing, Wald methods are used for both. 
 

Breast-Feeding Example 1: Age 
Suppose that we are interested in testing that the 
estimated hazard ratio for subjects aged 25 relative 20 is 
significantly different from unity. 

m { }1̂exp 5 1.104HR β= = . 

The null and alternative hypotheses are 

0 : 1
: 1A

H HR
H HR

=

≠
 

for which the Wald test statistics is 

( ) ( )
1 1

1 1

ˆ ˆ5 0.0197 1.19ˆ ˆ 0.01655WaldX
se se

β β
β β

= = = = . 

The resulting p-value is 2Pr 1.19 0.2130Z > =⎡ ⎤⎣ ⎦ .  
Therefore, at the 5% level of significance, the hazard ratio 
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for 25 year-olds versus 20 year-olds is not significant.  Note 
that for this model, the Wald statistic will be the same 
regardless of the ages being compared.  In other words, 
age is not significantly associated with the rate of breast-
feeding cessation, after controlling for alcohol use, prenatal 
care, education, poverty, race, and smoking. 

4.3.4 Proportional Hazards Assumption 
The proportional hazards assumption of the Cox model 
implies that the hazard rates are constant multiples of the 
baseline hazard λ0(t).  For example, consider the Cox 
regression model and parameter estimates for the Breast-
Feeding Study given below. 
 

( ) ( ) { }; exp 2o black othert t race race3λ λ β β= +x  

 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

race2 ˆ
blackβ  0.0940 0.1024 0.84 0.3586 

race3 ˆ
otherβ  0.2406 0.0924 6.78 0.0092 

 
A plot of hypothetical hazard rates for this model is given in 
Figure 1. 
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Figure 1.  Multiplicative effect on the hazard rate. 

 
The proportional hazards assumption can be further 
understood by considering the natural logarithm of the 
hazard rate 
 

( ) ( )0ln , ln 2 3black othert t race raceλ λ β β= + +x . 

 
Thus, we see that the log of the hazard rate for the 
regression model is an additive function of the covariates 
(Figure 2).  Likewise, the effects of continuous variables, 
such as age, would also be additive on the log-scale. 
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Figure 2.  Additive effect on the log-hazard rate. 

 
The previous are hypothetical plots of the hazard function, 
meant to illustrate the additive effects of covariates on the 
log-scale.  In practice, the baseline hazard is not estimated 
in Cox regression.  Instead, we use a proportional hazards 
assumption to obtain a hazard ratio that is independent of 
the baseline hazard.  Logistic regression is used similarly 
to model the odds ratio without need to estimate the 
probability of the outcome of interest. 
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4.4 Likelihood Estimation 
The method of maximum likelihood is used to estimate the 
parameters in Cox regression.  Maximum likelihood is also 
used to estimate parameters in logistic regression.  The 
maximum likelihood estimates are the values of the model 
parameter that maximize a likelihood function comparable 
to 
 

( ) { }
{ }

( )

1 1 2 2

1 1 1 2 2

exp
;

exp
i

k
i i p pi

i j j p
j r t

x x x
L

pjx x x

β β β

β β β=
∈

+ + +
=

+ + +∏ ∑
t β

…
…

 

 
where  indexes the events, and j  indexes the 
subjects at risk at the time event i occurs.  Thus, the data 
contribute to the estimation of the regression parameters 
only at the failure times.  Computational algorithms are 
employed to find the values of  that maximize this 
function. 

1, ,i = … k

β

Comments 
Besides yielding estimates of the parameters, the method 
of maximum likelihood yields several results that are useful 
in comparing models, testing hypotheses, and constructing 
confidence intervals.  Maximum likelihood provides: 

• The maximized value of the likelihood ( )ˆ;L t β .  Larger 
values of the likelihood indicate a better fit to the data. 

• Estimates of the variances (standard errors) and 
covariances (correlations) for the parameter 
estimates. 
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Furthermore, note that the likelihood function naturally 
allows for 

1. Varying follow-up period, i.e. the start times for the 
subjects can differ since it is only important to keep 
track of who is in the risk set at any given failure time.  
This is comparable to the allowance for varying follow-
up periods in computing the Kaplan-Meier survival 
estimates. 

2. The covariate values for a subject may vary over the 
follow-up period.  Note that at each failure time it , the 
covariate values for the subject that failed and the 
subjects at risk are compared.  Subjects may 
contribute to more than one risk set, and their 
covariate values need not remain constant from one 
risk set to another. 

 

4.5 Summary 
 
1. The proportional hazards model is a relative rate 

model.  The hazard ratio gives the factor by which the 
rate is increase over the comparison group.  A hazard 
ratio > 1 indicates an increased relative rate; a ratio < 
1 indicates a decreased relative rate; a ratio = 1 
indicates no difference in the rates. 

 
2. Given two sets of covariates x′ and x′′, the hazard 

ratio is a multiplicative function of the covariates, 
namely 
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( )
( )

( ) { }
( ) { }

( ) ( ){ }
( ){ } ( ){ }

0 1 1

0 1 1

1 1 1

1 1 1 1

exp,
, exp

exp

exp exp

p p

p p

p p p

p p

t x xt
t t x x

x x x x

x x x

λ β βλ
λ λ β β

β β

β β

′ ′+ +′
=

′′ ′′ ′′+ +

′ ′′ ′ ′′= − + + −

x′ ′′ ′ ′′= − × × −

x
x

…
…

…

…

 

 
Alternatively, the log-hazard ratio is an additive 
function of the covariates 
 

( )
( ) ( ) ( )

( ) ( )1 1 1

,
ln ln , ln ,

,

p p p

t
t t

t

x x x x

λ
λ λ

λ

β β

′
′ ′′= −

′′

′ ′′ ′ ′′= − + + −

x
x x

x

…
. 

 
This implies a constant difference between the log-
hazard rates; similar to the log-odds ratio in the 
logistic regression model. 
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5.1 Introduction 
Up to this point, our analyses have focused on the effect, 
on the hazard, of a set of covariates measured at baseline.  
For example, in the breast-feeding study we considered the 
effects of the baseline characteristics age, alcohol 
consumption, prenatal care, education, race, and smoking.  
Remember, though, that the subjects are being followed 
forward in time.  Thus, there is an opportunity to measure 
covariates as they change during the follow-up period.  
Covariates that change over time are referred to as time-
dependent or time-varying covariates. 

Colorado Plateau Uranium Miners Study 
The Colorado Plateau uranium miners study was one of 
the earliest of the modern epidemiologic studies to 
document increased lung cancer risk with exposure to 
radon.  Listed below are a few details of the study. 

• 3,347 miners were enrolled in the four States of 
Arizona, Colorado, New Mexico, and Utah, who had 
completed at least one month of underground uranium 
mining, volunteered for at least one medical 
examination between 1950 and 1960, and provided 
personal and occupational data of sufficient detail for 
exposure estimation. 

• 258 lung cancer deaths were observed; 2,661 
subjects reported smoking at some point in their lives. 

• Follow-up ended in the 1980s. 
In this section, we will focus on the lung cancer effect of 
smoking among the uranium miners. 
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Table 1.  Description of variables in the Uranium Miners 
Study dataset. 
Variable Description Values 
id Subject identifier numerical 
deathlung Death from lung cancer 1 = yes 

0 = no 
age1 Age at entry to study continuous 
age2 Age at exit from study continuous 
smoke1 Age started smoking continuous 
smoke2 Age last known to smoke continuous 
smoketot Total cigarette smoking (100s of packs) continuous 
sexp5 Cigarette smoking during ages 1-5 continuous 
sexp10 Cigarette during ages 6-10 continuous 
#  #  #  
sexp90 Cigarette smoking during ages 86-90 continuous 

 
Table 2.  Follow-up statistics for the 3,347 subjects. 
Variable Mean SD Min Median Max 
age1 35.4 11.6 15.8 34.0 80.0 
age2 57.4 11.0 19.2 56.5 98.5 
Years of 
follow-up 22.0 7.3 0.1 23.9 32.5 

 
Table 3.  Smoking statistics for the 2,661 smokers. 
Variable Mean SD Min Median Max 
smoke1 15.3 5.4 1.0 16.0 56.0 
smoke2 55.3 12.1 16.0 55.2 89.5 
smoketot 140.3 77.7 0.0 130.9 676.3 
Years of 
smoking 40.0 12.2 5.0 40.1 77.9 
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5.2 Choice of Time-Scale 
In follow-up studies there may be more than one choice of 
time-scale over which to define the baseline hazard in the 
Cox regression model.  Two possible choices for the 
Uranium Miners Study are time-on-study and age.  Recall 
the general form of the Cox model, 

{ }( ) ( )0 1 1 2 2; exp p pt t x x xλ λ β β β= + + +x … . 

The baseline hazard function offers the greatest flexibility in 
controlling for the effects of a time-varying covariate on the 
hazard rate because the baseline hazard is modeled non-
parametrically.  Thus, the recommended choice of time-
scale is the one over which the hazard rate is most 
variable. 
In the Miners study we would expect the force of mortality 
to differ more as a function of age then of time-on-study.  
Hence, age will be used as the time-scale for the baseline 
hazard in the Cox regression analyses. 

Guidelines 
• Time-on-study is more appropriate for studies in which 

enrollment coincides with some intervention; e.g. 
clinical trials. 

• Age is more appropriate for prospective observational 
studies of health populations; e.g. NCI Iowa and North 
Carolina Agricultural Health Study.  When age is used 
as the time-scale, the age intervals during which 
subjects are enrolled in the study must be specified in 
the Cox regression analysis. 
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SAS Program and Output 
data radonmod; 
 set radon; 
 smoker = (smoke1 > 0); 
 
proc phreg data=radonmod; 
 model (age1,age2)*deathlung(0) = smoker smoketot; 
 
run; 

 
                     Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard                                  Hazard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
 
smoker       1       1.36620       0.26502       26.5749        <.0001       3.920 
smoketot     1      -0.00122     0.0007860        2.3955        0.1217       0.999 

 
Syntax 

• Risk intervals may be specified in the model 
statement for the time-scale variable.  The syntax is 
(t1, t2) <*censor(value)>, where t1 and t2 define the 
beginning and end of the risk interval, respectively, 
and censoring/events are assumed to occur at the 
end of the interval. 
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5.3 Time-Dependent Covariates 
A baseline measure may not be sufficient to capture the 
effect of a covariate on the outcome of interest.  Hence, 
covariates may be measured repeatedly during the follow-
up period.  For instance, measures of smoking behavior 
are available at 5-year age intervals in the Miners Study.  
Consider the following data for one of the subjects: 
 

id deathlung age1 age2 smoke1 smoke2 
1979 1 36.1 51.0 21 41 

      
sexp20 sexp25 sexp30 sexp35 sexp40 sexp45 

0 22.3 27.3 27.3 21.4 0 

 
This subject’s smoking status as well as the amount 
smoked is changing during follow-up, as illustrated in 
Figure 1. 
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Figure 1.  Change in smoking status over time. 
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Furthermore, we might be interested in using the 
cumulative packs smoked as a function of time.  Depicted 
in Figure 2 are two possible ways to quantify cumulative 
smoking over time.  The first approach assumes that the 
smoking variable remain constant until the next follow-up 
time point.  The second uses linearly interpolate to 
estimate how the variable might be changing from one 
follow-up time point to another. 
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Figure 2.  Cumulative packs of cigarettes smoked over 

time. 
 
Similarly, time-dependent covariates could be created for 
years of cigarette smoking or time since smoking 
cessation. 
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Note that measurements for time-dependent covariates are 
rarely available at every point in time.  Rather, the 
covariates are measured at a finite number of times during 
the study; e.g. every 5 years. 

5.3.1 Notation 
To account for time-dependent covariates, the Cox 
regression model may be written as 
 

( ) ( ) ( ) ( ) ( ){ }λ λ β β β= + + +…0 1 1 2 2, exp p pt t x t x t xx t  

 
where each covariate could potentially be changing over 
time.  The covariates must be defined for every time point t.  
Baseline covariates are simply defined as ( ) =j jx t x . 

5.3.2 Example 1: Smoking Indicator 

Suppose that our time-dependent covariate ( )x t  is an 
indicator variable for smoking in the Miners Study, defined 
as 
 

( )

( )
( )

( )

0 0 6
6 1

0 86 9

I sexp5 t
I sexp10 t

x t

I sexp90 t

> < <⎧
⎪ > ≤ <⎪= ⎨
⎪
⎪ > ≤ <⎩

# #
1

1

. 

 
and we are interested in fitting the Cox model, 
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( ) ( ) ( ){ }0, expt t xλ λ β=x t . 

 

SAS Program and Output 
proc phreg data=radon; 
 model (age1,age2)*deathlung(0) = smoker; 
 if age2 < 6 then smoker = (sexp5 > 0); 
 else if age2 < 11 then smoker = (sexp10 > 0); 
 else if age2 < 16 then smoker = (sexp15 > 0); 
 else if age2 < 21 then smoker = (sexp20 > 0); 
 else if age2 < 26 then smoker = (sexp25 > 0); 
 else if age2 < 31 then smoker = (sexp30 > 0); 
 else if age2 < 36 then smoker = (sexp35 > 0); 
 else if age2 < 41 then smoker = (sexp40 > 0); 
 else if age2 < 46 then smoker = (sexp45 > 0); 
 else if age2 < 51 then smoker = (sexp50 > 0); 
 else if age2 < 56 then smoker = (sexp55 > 0); 
 else if age2 < 61 then smoker = (sexp60 > 0); 
 else if age2 < 66 then smoker = (sexp65 > 0); 
 else if age2 < 71 then smoker = (sexp70 > 0); 
 else if age2 < 76 then smoker = (sexp75 > 0); 
 else if age2 < 81 then smoker = (sexp80 > 0); 
 else if age2 < 86 then smoker = (sexp85 > 0); 
 else if age2 < 91 then smoker = (sexp90 > 0); 
run; 

 
                     Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard                                  Hazard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
 
smoker       1       0.62198       0.16010       15.0926        0.0001       1.863 
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5.3.3 Example 2: Cumulative Smoking 

Suppose that our time-dependent covariate ( )x t  is 
cumulative smoking in the Miners Study, defined as 
 

( )

0 6
6 1

86 91

sexp5 t
sexp5 sexp10 t

x t

sexp5 sexp90 t

1
< <⎧

⎪ + ≤⎪= ⎨
⎪
⎪

<

+ + ≤⎩

# #
… <

. 

 
and we are interested in fitting the Cox model, 
 

( ) ( ) ( ){ }0, expt t xλ λ β=x t . 

 
Note that this definition for cumulative smoking assumes 
that the value is constant within each of the 5-year age 
intervals, which is consistent with the first plot in Figure 2.  
Alternatively, linear interpolation could be used to allow 
cumulative smoking to increase linearly across the 
intervals. 
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SAS Program and Output 
data radonmod; 
 set radon; 
 csexp10 = sexp5 + sexp10; 
 csexp15 = csexp10 + sexp15; 
 csexp20 = csexp15 + sexp20; 
 csexp25 = csexp20 + sexp25; 
 csexp30 = csexp25 + sexp30; 
 csexp35 = csexp30 + sexp35; 
 csexp40 = csexp35 + sexp40; 
 csexp45 = csexp40 + sexp45; 
 csexp50 = csexp45 + sexp50; 
 csexp55 = csexp50 + sexp55; 
 csexp60 = csexp55 + sexp60; 
 csexp65 = csexp60 + sexp65; 
 csexp70 = csexp65 + sexp70; 
 csexp75 = csexp70 + sexp75; 
 csexp80 = csexp75 + sexp80; 
 csexp85 = csexp80 + sexp85; 
 csexp90 = csexp85 + sexp90; 
 
proc phreg data=radonmod; 
 model (age1,age2)*deathlung(0) = smokecum; 
 if age2 < 6 then smokecum = sexp5; 
 else if age2 < 11 then smokecum = csexp10; 
 else if age2 < 16 then smokecum = csexp15; 
 else if age2 < 21 then smokecum = csexp20; 
 else if age2 < 26 then smokecum = csexp25; 
 else if age2 < 31 then smokecum = csexp30; 
 else if age2 < 36 then smokecum = csexp35; 
 else if age2 < 41 then smokecum = csexp40; 
 else if age2 < 46 then smokecum = csexp45; 
 else if age2 < 51 then smokecum = csexp50; 
 else if age2 < 56 then smokecum = csexp55; 
 else if age2 < 61 then smokecum = csexp60; 
 else if age2 < 66 then smokecum = csexp65; 
 else if age2 < 71 then smokecum = csexp70; 
 else if age2 < 76 then smokecum = csexp75; 
 else if age2 < 81 then smokecum = csexp80; 
 else if age2 < 86 then smokecum = csexp85; 
 else if age2 < 91 then smokecum = csexp90; 
run; 
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                     Analysis of Maximum Likelihood Estimates 
 
                   Parameter      Standard                                  Hazard 
Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
 
smokecum     1       0.00358     0.0006083       34.6295        <.0001       1.004 

 

5.3.4 Multiple Records Format 
In the previous two examples, the time-dependent 
covariates were created with programming statements in 
the body of PROC PHREG.  This approach is most useful 
when there is a fixed set of time points at which the values 
of the covariates change for all subjects; e.g. 5-year age 
intervals. 
When the time points vary from subject-to-subject, another 
approach can be used.  Specifically, a new dataset can be 
created with a separate row for each time interval in which 
the subject has a different set of covariate values. 
Consider, again, the subject with covariate values 
 

id deathlung age1 age2 smoke1 smoke2 
1979 1 36.1 51.0 21 41 

      
sexp20 sexp25 sexp30 sexp35 sexp40 sexp45 

0 22.3 27.3 27.3 21.4 0 

 
During the follow-up period for this subject (ages 36.1 – 
51.0) his smoking status changes ones.  Thus, the dataset 
could be restructured so that there are separate rows to 
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store the covariate values corresponding to the period 
when he was and was not a smoker. 
 

id deathlung age1 age2 smoker smokecum
1979 0 36.1 39.9 1 98.3 
1979 1 39.9 51.0 0 98.3 

 
The process of creating this new dataset can be 
summarized in the following steps: 

1. Determine the time points at which the covariate 
values change for a given subject. 

2. Partition the on-study time into intervals defined by the 
time points in Step 1. 

3. For each time interval, create a new row in the dataset 
that contains the start and stop times for the interval 
and all (baseline and time-dependent) covariates. 

4.  The event indicator variable should be included in 
each row, but only take on a value of one for the 
interval in which the event occurs; otherwise it should 
be coded as a zero. 
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6.1 Introduction 

6.1.1 Linear Regression 
Residuals are most easily understood in the context of 
linear regression, where the response variable  for each 
subjects is modeled as 

iy

0 1 1 2 2i i i py x x xpi iβ β β β= + + + + +… ε , 

Recall that the residuals  are defined as the difference 
between the observed 

ir
iy  and the predicted ˆ iy .  These 

differences can then be used to examine the fit of the linear 
regression model.  Notationally, 

0 1 1 2 2
ˆ ˆ ˆ ˆˆi i i i i i pr piy y y x xβ β β β= − = − − − − −… x . 

The residuals provide estimates of the error terms iε  in the 
model.  Hence, they may be used to check the assumption 
that ( 2~ 0,i N )ε σ ; that the error terms are normally 
distributed with constant variance. 
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6.1.2 Outliers 
Regression diagnostics should be performed to identify 
subjects whose outcome and/or predictor variables are 
different from the majority of the sample.  Such subjects 
are referred to as outliers. 
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Notes 

• The solid line represents the regression fit with the 
outlier in the analysis; the dashed line represents the 
fit without the outlier. 

• The first plot depicts an outlier whose response value 
is not explained well by the predictor in the model.  In 
other words, there is a relatively large difference 
between the observed and predicted response (the 
residual value). 
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• The second, influential outlier, has a substantial 
impact on the estimated effect of the predictor, but 
does not have a large residual value. 

6.1.3 Goodness-of-fit 
In least squares linear regression, the R2 statistic is often 
reported as a measure of the amount of variability in the 
data that is explained by the model.  Recall that the sum-
of-squared errors 

( )2ˆi iSSE y y= −∑  

measures the aggregate deviation of the predicted values 
from the observed.  We would like for SSE to be small.  
The  statistic 2R

2 SST SSER
SST
−

= , 

where 

( 2
iSST y y= −∑ )  and ( )2ˆ iSSR y y= −∑ , 

provides a measure of the overall fit of the model to the 
data.  Specifically, it measures the amount of variability in 
the response variable explained by the predictors. 
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6.2 Residuals 
In linear regression, residuals are simply computed as the 
observed response variables minus the predicted values.  
We can then plot the residuals to check that they are 
normally distributed.  They can also be plotted against 
covariates not included in the model to explore possible 
relationships that are not accounted for.  We would like to 
perform comparable residual analyses in the Cox 
regression setting.  However, here we are modeling the 
hazard rate 
 

( ) ( ) { }0 1 1; exp p pt t xλ λ β β= +x … x+  

 
which is not directly observable.  As a result, the 
construction of residuals is more involved.  In fact, there 
are many different proposed methods for computing 
residuals in the Cox regression setting.  We will discuss 
two: 

1. Martingale Residuals 
2. Deviance Residuals 

6.2.1 Martingale Residuals 
Martingale residual can be explained as the difference 
between the number of events (0 or 1) occurring for the ith 
individual during follow-up and the number expected under 
the model.  These residuals are used primarily to identify 
patterns in the data that are not explained by the model. 
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Lymphoma Example 
In the Kaplan-Meier analysis of the Lymphoma Study we 
found an interaction between the method of bone marrow 
transplant and disease type.  Thus, we might propose the 
following model: 
 

( ) ( ) { }0 1 2 3; exp *t t auto nhl auto nhlλ λ β β β= + +x  

 
where 
 

1 if 2
0 otherwise

graft
auto

=⎧
= ⎨
⎩

  and  . 
1 if 1
0 otherwise

disease
nhl

=⎧
= ⎨
⎩

 
The regression estimates for this model are given in the 
table below. 
 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

auto 1̂β  -1.6762 0.6200 7.3101 0.0069 

nhl 2β̂  -1.8298 0.6753 7.3424 0.0067 

auto*nhl 3β̂  2.3400 0.8517 7.5489 0.0060 

 
We may be interested in adding wait time and Karnofsky 
scores to the model.  Martingale residuals are useful for 
examining the relationship between the disease rate and 
covariates not included in the model. 
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The plots suggest a linear effect for Karnofsky scores and 
a nonlinear effect for wait time.  Notice that the residuals in 
the latter case are predominantly less than zero after about 
70 days; otherwise, the residuals are more evenly 
scattered about zero.  Consequently, we might create the 
indicator variable 
 
Variable Levels N Percents 
wait70 0 = wait < 70 

1 = wait ≥ 70 
36 
7 

84% 
16% 

 
and fit the Cox model 
 

( ) ( ) 1 2 3
0

4 5

*
; exp

70
auto nhl auto nhl

t t
karnofsky wait

β β β
λ λ

β β
+ +⎧ ⎫

= ⎨ ⎬+ +⎩ ⎭
x  
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The resulting parameter estimates are given below. 
 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

auto 1̂β  -1.8600 0.7335 6.4312 0.0112 

nhl 2β̂  -2.7276 0.8273 10.8691 0.0010 

auto*nhl 3β̂  2.4845 0.9849 6.3641 0.0116 

karnofsky 4β̂  -0.0539 0.0123 19.3641 <.0001 

wait70 5β̂  -1.5140 0.7449 4.1305 0.0421 

 

6.2.2 Deviance Residuals 
Deviance residuals are a transformed version of the 
Martingale residuals and defined so as to generate results 
that tend toward the standard normal distribution.  These 
serve as the semi-parametric analog to the residuals 
utilized in linear regression.  The deviance residuals are 
often plotted against the values of the linear predictor in the 
Cox regression model.  Observations that deviate from the 
specified model will result in relatively large residuals.  
Thus, deviance residuals are useful in detecting outliers 
and points in the data that are not adequately described by 
the model. 
 
Lymphoma Study 
Suppose that we are evaluating the following model for 
predicting recurrence in the Lymphoma Study: 
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( ) ( ) 1 2 3
0

4 5

*
; exp

70
auto nhl auto nhl

t t
karnofsky wait

β β β
λ λ

β β
+ +⎧ ⎫

= ⎨ ⎬+ +⎩ ⎭
x . 

 
The deviance residuals that result in fitting this model are 
displayed in the plot below. 
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Approximately 95% of the deviance residuals would be 
expected to fall within the interval (–1.96, 1.96).  In this 
example, 95.3% of the residuals are within this range. 
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Notes 
• If the model provides an adequate fit to the data, the 

Deviance residuals will have an approximate mean of 
0 and variance of 1. 

• Few extreme positive or negative Deviance residuals 
would be expected. 

• About 95% of the residuals fall between -1.96 and 
+1.96. 

• About 99% of values fall between -2.32 and +2.32.  
Values substantially outside of this range should be 
investigated as potential outliers. 

6.2.3 Delta-Beta Plots 
Delta-Beta plots are one method of checking the influence 
of each observation on the estimated model parameters.   
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• The idea is to compare the estimate β̂  for a given 
parameter with all observations in the analysis, to the 
estimates ( )β̂ j  after excluding the jth observation. 

• This is done for every observation in the data set and 
the changes ( )β βΔ = −ˆ ˆ

j j  are reported as the delta-
beta values. 

• Observations that exert undue influence on the 
parameter estimates have large delta-betas. 

• A delta-beta plot may be constructed for each term in 
the regression model. 

 
Lymphoma Example 
Delta-beta plots were constructed by excluding 
observations one-at-a-time and “refitting” the final model to 
obtain the associated changes in the parameters.  This 
was done for each of the 43 subjects in the data set.  The 
changes are plotted below against the observation 
numbers. 
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One of the subjects appears to have a relatively large 
delta-beta in the plot of the Karnofsky scores.  This is 
subject 29, whose covariate values are 
 

days event auto nhl karnofsky wait70 
90 1 0 0 90 1 
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The mean number of follow-up days for subjects with 
Karnofsky scores greater than 50 is over 500 days.  Thus, 
with a Karnofsky score of 90, this subject has an unusually 
short time to disease recurrence. 
 

SAS Code 
data lymphomamod; 
 set lymphoma; 
 auto = (graft = 2); 
 nhl = (disease = 1); 
 auto_nhl = auto * nhl; 
 wait70 = (wait >= 70); 
 
proc phreg data=lymphomamod; 
 model days*event(0) = auto nhl auto_nhl; 
 output out=residuals1 resmart=martingale; 
 
proc phreg data=lymphomamod; 
 model days*event(0) = auto nhl auto_nhl karnofsky wait70; 

 output out=residuals2 resdev=deviance 
  dfbeta=db_auto db_nhl db_auto_nhl db_karnofsky db_wait70; 

run; 

 
Syntax 

• The output statement saves the Martingale residuals 
(resmart) and the Deviance residuals (resdev) in the 
SAS data sets residuals1 and residuals2 with 
variable names martingale and deviance, 
respectively.  The saved residuals may then be 
plotted with appropriate graphing software. 

• Delta-betas are also saved in the residual2 dataset.  
Note that variable names must be given to the delta-
betas for the terms listed to the right of the equal sign 
in the model statement. 
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6.2.4 Handling Outliers 
If a subject appears to be an outlier, there are several 
steps that should be taken. 

1. Verify that the data were collected and entered 
correctly for the subject in question. 

2. Examine the covariate values for the subject.  If the 
covariate pattern falls within the population to which 
the results will be generalized, then the subject is 
often included in the analysis.  On the other hand, if 
there is no interest in generalizing the results to 
individuals with similar covariate patterns, then the 
subject is often excluded. 

3. Assess the influence of this subject on the parameter 
estimates.  If an influential outlier is to be retained in 
the analysis, modifications to the model may be 
needed. 

6.3 Test for Proportional Hazards 
A key assumption in the proposed Cox model is that of 
proportional hazards.  The assumption can be seen from 
the equation for the hazard ratio 
 

( )
( ) ( ) ( ){ }1 1 2

;
exp

; p p p
t

x x x x
t

λ
β β

λ
′

′ ′′ ′ ′′= − + + −
′′

x
x … . 

 
For instance, a unit increase in the first covariate is 
associated with a hazard ratio of 
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( )
( ) ( ){ } { }1

1 1 1 1
1

; 1
exp 1 exp

;
t x

x x
t x

λ
β β

λ
+

= + − =  

 
which is constant across time.  We may want to test this 
assumption. 
 
A formal test of proportionality, with respect to one of the 
covariates, can be performed using the Cox regression 
model.  Consider the following model 
 

( ) ( ) ( ){ }0 1 1; exp p p it x t x x x g tλ λ β β γ= + + +…  

 
where ix  is one of the p covariates to test for non-
proportional hazards, ( )g t  is a specified function of time, 
and γ is the estimated effect of the interaction between the 
covariate and time.  Common choices of g are 
 

( ) ( )logg t t=  

and 
( )g t t= . 

 
Under the proposed model, the hazard ratio for a unit 
increase in ix  is 
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( )
( ) ( ){ }λ

β γ
λ

+
= +

; 1
exp

;
i

i
i

t x
g t

t x
 

 
which is constant across time if 0γ = .  Thus, a formal test 
of proportionality can be carried out by fitting this Cox 
model and testing if the γ parameter is statistically 
significant. 
 
Lymphoma Example 
The Lymphoma Study has several covariates that could be 
tested for proportional hazards.  We will test the 
proportional hazards assumption for the Karnofsky score 
variable.  The following models can be used to illustrate 
two different approaches for testing the proportional 
hazards assumption: 
 

( ) ( )

( ) ( )

1 2 3

0 4 5

1 2 3

0 4 5

1 2

*
; exp 70

* log( )

*
; exp 70

* 2 * 3

auto nhl auto nhl
t t karnofsky wait

karnofsky t

auto nhl auto nhl
t t karnofsky wait

karnofsky t karnofsky t

β β β
λ λ β β

γ

β β β
λ λ β β

γ γ

+ +⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+⎩ ⎭

+ +⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+ +⎩ ⎭

x

x

 

 
where 
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1 72 80
2

0 otherwise
t

t
< ≤⎧

= ⎨
⎩

  and  . 
1 80

3
0 otherwise

t
t

>⎧
= ⎨
⎩

 
The resulting parameter estimates for the Karnofsky-time 
interaction variables are 
 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

*log(t) γ̂  -0.0052 0.0104 0.2467 0.6194 
*t2 1̂γ  -0.0203 0.0463 0.1925 0.6608 
*t3 2γ̂  -0.0848 0.0381 4.9614 0.0259 

 
The interaction with the continuous time variable is non-
significant (p=0.6194).  However, the categorical time-
interaction variables suggest that the hazard rate for 
Karnofsky scores may not be constant across all time.  
This can be seen by calculating the hazard ratio for a unit 
increase in Karnofsky scores within the different time-
intervals defined by the categorical variables t2 and t3. 
 
Time Interval Hazard Ratio 
0 < t ≤ 72 ( )

( )
{ }4

; 1, 2 0, 3
; , 2 0, 3

exp 0.963

t karnofsky t t
t karnofsky t t

0
0

λ
λ

β

+ = =
= =

= =
 

72 < t ≤ 80 ( )
( )
{ }4 1

; 1, 2 1, 3
; , 2 1, 3

exp 0.944

t karnofsky t t
t karnofsky t t

0
0

λ
λ

β γ

+ = =
= =

= + =
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Time Interval Hazard Ratio 
t > 80 ( )

( )
{ }4 2

; 1, 2 0,
; , 2 0, 3

exp 0.885

t karnofsky t t
t karnofsky t t

3 1
1

λ
λ

β γ

+ = =
= =

= + =
 

 
The model estimates indicate that there is no difference 
between the hazard ratios for the first two time intervals (p 
= 0.6608).  However, the hazard ratios do differ 
significantly between the first and third time intervals (p = 
0.0259); thus, providing evidence of non-proportional 
hazards for the Karnofsky scores. 
 

SAS Code 
proc phreg data=lymphomamod; 
 model days*event(0) = auto nhl auto_nhl karnofsky wait70 
  tkarnofsky; 
 tkarnofsky = karnofsky * log(days); 
 
proc phreg data=lymphomamod; 
 model days*event(0) = auto nhl auto_nhl karnofsky wait70 
  knfsky2 knfsky3; 
 knfsky2 = karnofsky * (72 < days <= 80); 
 knfsky3 = karnofsky * (days > 80); 
run; 
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6.4 Model Fit 
Several authors have proposed methods for computing an 
R2 statistic for Cox regression.  One method due to 
Nagelkerke (1991) defines the R2 statistic as 
 

( ) ( )( )2 2 ˆ1 exp ln ln 0R L
n

β L⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

 

 

where ( ˆlnL )β  and ( )ln 0L  denote the likelihoods for the 
Cox regression models with and without the covariates, 
respectively.  The R2 given by this definition has the 
following properties: 

1. It has the same interpretation as the R2 in linear 
regression.  Specifically, it measures the proportion of 
variation explained by the model, or rather, 1 - R2 is 
the proportion of unexplained variation. 

2. For a given model, it achieves the largest value at the 
maximum likelihood estimates. 

3. It is independent of the sample size n. 
4. It is independent of the units used for the response 

and predictor variables. 
 
Lymphoma Example 
For the regression model 

( ) ( ) 1 2 3
0

4 5

*
; exp

70
auto nhl auto nhl

t t
karnofsky wait

β β β
λ λ

β β
+ +⎧ ⎫

= ⎨ ⎬+ +⎩ ⎭
x  
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the likelihood estimates from SAS are 

( )
( )

ˆ2ln 141.197

2ln 0 174.595

L

L

β− =

− =
. 

Based on these estimates and the sample size of n = 43, 
the value of the R2 statistics is 

( ) ( )( )

( ) ( )( )( )
( )

2 2 ˆ1 exp ln ln 0

1 ˆ ˆ1 exp 2ln 2ln

11 exp 141.197 174.595
43

0.540

R L L
n

L L
n

β

β β

⎧ ⎫= − − −⎨ ⎬
⎩ ⎭
⎧ ⎫= − − − −⎨ ⎬
⎩ ⎭
⎧ ⎫= − −⎨ ⎬
⎩ ⎭

=

. 

Thus, 54% of the variation in the time-to-recurrence 
variable is explained by the covariates for disease type, 
bone marrow transplant method, Karnofsky score, and 
waiting time. 
 

SAS Code and Output 
proc phreg data=lymphomamod; 
 model days*event(0) = auto nhl auto_nhl karnofsky wait70; 
run; 

 
         Model Fit Statistics 
 
                 Without           With 
Criterion     Covariates     Covariates 
 
-2 LOG L         174.595        141.197 
AIC              174.595        151.197 
SBC              174.595        157.487 
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7.1 Introduction 
There are often several potential models that may be 
constructed  from the predictor variables in a given dataset.  
In this section three methods for comparing such models 
are introduced; namely, 

1. Likelihood Ratio Test 
2. Wald Test 
3. Akiake Information Criterion (AIC) 

 
Lymphoma Example 
Suppose that we are interested in determining the “best” 
way to characterize the effect of Karnosfsky scores on the 
time to cancer recurrence.  Specifically, we will use Cox 
regression to choose among the following variables: 
 
Variable Description Values 
karnofsky Karnofsky scores 20 – 100 
karn Categorical variable 

for Karnofsky 
scores 

1 = (karnofsky < 35) 
2 = (35 ≤ karnofsky < 65) 
3 = (karnofsky ≥ 65) 

karn1 
karn2 
karn3 

Indicator variables 
for the three 
categories 

I(karn = 1) 
I(karn = 2) 
I(karn = 3) 

 
Four different Cox regression models will be considered.  
The linear predictors for the models are summarized 
below. 
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Model Linear Predictor Effect 

1 1karnofskyβ  Continuous 
(Linear) 

2 2
1 2karnofsky karnofskyβ β+  Continuous 

(Quadratic) 

3 1karnβ  Categorical 
(Integer) 

4 1 22 3karn karnβ β+  Categorical 
(Nominal) 

  

7.2 Likelihood Ratio Test 
The Likelihood Ratio Test (LRT) is the recommended 
method for comparing the fit of two regression models 
when one is “nested” within the other.  A model whose 
predictor variables are a subset of another model is said to 
be “nested”.  For instance, the second model below is 
nested within the first. 

1. ( ) ( ) { }0 1 1; exp p p p kt t x x xλ λ β β β + += + + + +x … … p k  

2. ( ) ( ) { }0 1 1; exp p pt t xλ λ β β= +x … x  +

The first model is referred to as the “full” model and the 
second as the “reduced” model.  The LRT is carried out as 
follows: 

1. Fit the “full” model with p + k predictor variables. 
2. Fit the “reduced” model with p predictors. 
3. Calculate the difference in the log-likelihood functions 

( ) χ= − −2 2
reduced full2 ln ln ~ kX L L . 

4. If the difference, as measured by the p-value 
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χ⎡ ⎤= ≥⎣ ⎦
2 2Pr kp X , 

is significant then conclude that full model provides a 
better fit to the data than the reduced model.  In other 
words, the k predictor variables are significant in the 
model. 

 
Lymphoma Example 
The values of the log-likelihood functions for the four 
models, plus the model no covariates (Model 0), can be 
obtained from PROC PHREG. 
 
Model Parameters Log-Likelihood 
0 null -87.30 
1 1karnofskyβ  -75.81 
2 2

1 2karnofsky karnofskyβ β+ -75.78 
3 1karnβ  -79.31 
4 1 22 3karn karnβ β+  -79.26 

 
Note that Model 1 is nested within Model 2, since the latter 
simply adds a quadratic effect.  In other words, Model 2 
contains all of the terms found in Model 1; i.e. the linear 
effect for Karnofsky scores.  The LRT is equivalent to a test 
of 

β
β

=

≠
0 2

2

: 0
: 0A

H
H

 

and yields a test statistic value of 
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( )( )2

2
1

2 75.81 75.78

0.06 ~

X

χ

= − − − −

=
 

for which .  Therefore, at the 
5% level of significance, the full model does not provide a 
better fit than the reduced model; the quadratic effect is not 
significant. 

2
1Pr 0.06 0.8065p χ⎡ ⎤= ≥ =⎣ ⎦

 
It may not be obvious that Model 3 is nested within Model 
4, but that is the case. 

• When indicator variables are used to model the effect 
of a categorical variable, no assumption is made 
about the function form of the relationship (linear, 
quadratic, etc.) between the categorical levels and the 
outcome. 

• Thus, Model 4 allows for the most general relationship 
between the three categorical Karnofsky score levels 
and time to recurrence. 

• Model 3 is nested because it can be expressed as a 
special case of Model 4, 

( ) { }
( ) ( ){ }
( ) { } { }
( ) { }

0

0

0

0

Model 3 exp

exp 1 2 2 * 3

exp exp 2 2 3

exp 2 2 3

t karn

t karn karn

t karn karn

t karn karn

λ β

λ β

λ β β β

λ β β

=

= + +

= +

′= +

. 

In other words, for any β, values of β1 and β2 can be 
found so that Model 4 equals Model 3; namely, 1β β=  
and 2 2β β= .  However, it is not true that a value of β 
can be found so that Model 3 equals Model 4 for any 
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β1 and β2. Thus, Model 3 is nested within Model 4, but 
the opposite is not true. 

 
The LRT statistic comparing Model 3 to Model 4 is 

( ( ))2 2 79.31 79.26X = − − − −

Prp

2
10.10 ~ χ=

2
1 0.10 0.7518χ⎡ ⎤= ≥ =⎣ ⎦

 

for which .  Therefore, at the 
5% level of significance, a linear effect for the categorical 
Karnofsky variable provides an adequate fit to the data. 
 
Model 0 does not include an effect for Karnofsky scores.  It 
is nested within the other four and may be used to test the 
significance of the Karnofsky variables in each model. 
 

Model Log-
Likelihood 

LRT 
Statistic df p-value 

0 -87.30 0 - - 
1 -75.81 23.0 1 p < 0.0001
2 -75.78 22.2 2 p < 0.0001
3 -79.31 16.0 1 p < 0.0001
4 -79.26 16.1 2 p = 0.0003

 
We see that the Karnofsky score variables are significant in 
all of the models. 

• Each null hypothesis is a global test of the Karnofsky 
variables in the model. 
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Model H0 HA
1 1 0β =  1 0β ≠  
2 1 20, 0β β= =  1 20 or 0β β≠ ≠  
3 1 0β =  1 0β ≠  
4 1 20, 0β β= =  1 20 or 0β β≠ ≠  

Comments 
• The LRT is the most appropriate method for 

comparing nested models. 
• This method requires fitting both the full and reduced 

model. 
• The LRT cannot be used to compare Models 1 and 2 

to Models 3 and 4, since they are not nested.  Neither 
the categorical nor the continuous variable can be 
written as a linear combination of the other. 

7.3 Wald Test 
The Wald test can also be used to compare nested 
models.  Specifically, the test may be used to assess the 
significance of terms in a given model.  We have already 
used the Wald test for the hypotheses 

β
β
=

≠
0 : 0

: 0A

H
H

 

where β  is a parameter in the regression model.  The test 
statistic is 

( )

2

2 2
1

ˆ
~ˆse

X β χ
β

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠
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for which 2
1Pr 2p Xχ⎡= ≥⎣ ⎤⎦ .  So far, we have only used the 

Wald test for a single parameter.  The test has a general 
form that allows for the simultaneous testing of multiple 
parameters. 
 
Lymphoma Example 
The following results were obtained for Models 1 and 2: 
 

Model Term Parameter 
Estimate SE Wald 

Chi-Square p-value 
1 karnofsky -0.0524 0.0110 22.7301 <.0001 
2 karnofsky -0.0386 0.0612 0.3974 0.5284 
 karnofsky2 -0.0001 0.0005 0.0529 0.8181 

 
The comparison of Models 1 and 2 is equivalent to a test of 
the hypotheses 

β
β

=

≠
0 2

2

: 0
: 0A

H
H

. 

The Wald statistic for this test is 

( )

2
2

2 2

2

ˆ 0.0001 0.04ˆ 0.0005se
X β

β

⎛ ⎞ −⎛ ⎞⎜ ⎟= = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

for which .  The quadratic term 
is not significantly different from zero.  Therefore, Model 2 
is not significantly different from Model 1. 

2
1Pr 0.04 0.8415p χ⎡ ⎤= ≥ =⎣ ⎦
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The Wald test could also be used to test the joint 
significance of the linear and quadratic terms in Model 2, 
for which the hypotheses would be 

0 1 2

1

: 0, 0
: 0 or A

H
H 0

β β
β β
= =

≠ ≠
. 

The test statistic and p-value are 
2

2
2

22.1

Pr 22.1 0.0001

X

p χ

=

⎡ ⎤= > <⎣ ⎦
. 

We will rely on SAS to jointly test the significance of 
parameters with the Wald statistic. 

 

SAS Code and Output 
proc phreg data=lymphomamod; 
 model days*event(0) = karnofsky karnofsky2; 
 karnofsky2 = karnofsky**2; 
 Test1: test karnofsky, karnofsky2; 
run; 

 
The PHREG Procedure 
 
    Linear Hypotheses Testing Results 
 
                Wald 
 Label    Chi-Square      DF    Pr > ChiSq 
 
 Test1       22.1021       2        <.0001 
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Comments 
• The Likelihood Ratio and Wald test are alternative 

methods of comparing nested models. 
• The LRT is preferred because the test statistic has 

better distributional properties. 
• The Wald test statistic is often easier to compute 

since a second, reduced model need not be fit.  Plus, 
Wald p-values and confidence intervals give 
equivalent inferential results.  Thus, the Wald test is 
more commonly used in practice 

7.4 Akiake Information Criterion (AIC) 
Neither the Likelihood Ratio test nor the Wald test can be 
used to compare models that are not nested.  There are 
several methods to handle this problem.  We will discuss 
one, the Akaike Information Criterion (AIC). 
 
Akaike (1972) proposed a method of comparison based on 
both the log-likelihood and the number of parameters in the 
model.  The AIC is defined as 

2ln 2AIC L p= − +  

where p is the number of parameters in the model.  Based 
on this criterion the preferred model is the one with the 
lowest AIC. 
 
Lymphoma Example 
Suppose that we want to compare the model with a linear 
effect for Karnofsky scores (Model 1) to the model with a 
categorical effect (Model 4). 
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Model Parameters Log-Likelihood 
1 1karnofskyβ  -75.81 
4 1 22 2karn karnβ β+  -79.26 

 
The AIC for each model is 
 
Model 2lnL− 2p AIC 
1 151.62 2 153.62 
4 158.52 4 162.52 

 
Model 1 has the smaller AIC and would be preferred based 
on this criterion. 
 

Comments 
• The AIC is a method for choosing among competing 

models.  It is does not provide a test for detecting 
statistically significant differences. 

• The Likelihood Ratio or Wald tests should be used to 
compare nested models. 

• The AIC may be used to compare models that are not 
nested.  It is often referred to as a goodness-of-fit 
statistic. 
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8.1 Introduction 
There are three main categories of variables to consider for 
inclusion in a regression model: 

1. Predictors – variables for which risk estimates are 
desired. 

2. Confounders – variables that are confounded with the 
predictors. 

3. Effect Modifiers – variables that interact or modify the 
effect of the predictors. 

 
Goal:  Select the set of covariates that results in the “best” 
model within the scientific context of the problem. 
 
In our approach, we will try to strike a balance between the 
following two objectives: 

1. Traditional – Seek the most parsimonious model that 
“explains” the data. 
• Smaller models are more likely to be numerically 

stable.  The standard errors for the parameter 
estimates tend to increase as additional variables 
are added to the model. 

• The dependence of the model on the data set 
increases with the number of variables.  
Consequently, large models are less generalizable. 

• Parsimonious models are easier to interpret. 
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2. Biological – Include all scientifically relevant variables 
in the model. 
• We want to ensure that confounding and interaction 

are accounted for in the model; e.g. covariates may 
not show confounding individually, but do so when 
analyzed together. 

 
Advise:  Beware of overfitting, especially when there are a 
large number of covariates relative to the number of cases 
and controls.  Also, think about the interpretation of the 
variables in the models that you are fitting. 

Breast-Feeding Study 
Suppose that we would like to select among the variables 
in the Breast-Feeding Study to build a final Cox model for 
breast-feeding cessation.  The variables are summarized 
below. 
 
Variable Description Values 
weaned Indicator for breast-feeding 

cessation 
1 = yes 
0 = no 

weeks Length of follow-up in weeks continuous 
age Subject age continuous 
alcohol Alcohol use at time of birth 1 = yes 

0 = no 
care3 Use of prenatal care after first 

trimester 
1 = yes 
0 = no 

education Years of education continuous 
poverty Below poverty level 1 = yes 

0 = no 
race Subject race 1 = white 

2 = black 
3 = other 
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Variable Description Values 
smoke Smoking at time of birth 1 = yes 

0 = no 

 

8.2 Model Building 
We will take the following steps to build a final regression 
model: 

Step 1.  Descriptive summaries of the data 
Step 2.  Univariate analyses 
Step 3.  Variable selection 
Step 4.  Model Diagnostics 

If problems with the model fit are identified in Step 4, then 
return to the variable selection in Step 3 and repeat until 
the model diagnostics are satisfactory. 

8.2.1 Descriptive Statistics 
Tables, such as those given below for the Breast-Feeding 
Study, should be given to summarize the variables 
available for the analyses, even if they are not all included 
in the final regression model. 
 
Table 1.  Summary of the categorical variables in the 
Breast-Feeding Study. 
Variable Levels N Percents 
weaned 0 

1 
35 
892 

3.8% 
96.2% 

alcohol 0 
1 

848 
79 

91.5% 
8.5% 
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Variable Levels N Percents 
care3 0 

1 
763 
164 

82.3% 
17.7% 

poverty 0 
1 

756 
171 

81.6% 
18.4% 

race 1 
2 
3 

662 
117 
148 

71.4% 
12.6% 
16.0% 

smoke 0 
1 

657 
270 

70.9% 
29.1% 

 
Table 2.  Summary of the continuous variables in the 
Breast-Feeding Study. 
Variable Mean SD Min Max 
weeks 16.18 17.92 1 192 
age 21.54 2.67 15 28 
education 12.21 1.93 3 19 
 
In addition, a write-up of the analyses should include a 
description of the variables, how they were measured, and 
the range of possible values for each.  
 

8.2.2 Univariate Analyses 
The goal in model building is to identify a set of variables 
that offers a satisfactory explanation of the outcome in the 
study population. 

• Our final model should be scientifically valid; that is, 
there should be a biologically plausible explanation for 
the effect of our chosen variables on the outcome.   
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• We begin with a pool of variables that will be 
considered for inclusion in the final model.  Any of the 
variables in this pool could end up in the model. 

• Therefore, it is at the beginning, before any statistical 
tests are performed, that we should narrow our pool to 
only those variables for which an association with the 
outcome makes sense. 

• Another way to frame this problem is to ask, “How will 
the effect of variable X be explained if it is included in 
the model?” 

Once a pool of scientifically relevant variables has been 
identified, it is often helpful to further narrow the pool by 
examining the effect of each variable individually in a 
univariate Cox regression model. 

 

Categorical Covariates 
• Construct Kaplan-Meier plots to graphically display 

the survival functions across levels of the covariate.  
Use Kalbfleish and Prentice method for confidence 
intervals. 

• Report the estimated median survival times and 
confidence intervals 

• Create indicator variables and fit univariate Cox 
models to assess significance and estimate hazard 
ratios. 

 

Continuous Covariates 
• Assess significance with univariate Cox models; 

estimate hazard ratios and confidence intervals. 
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• Test for nonlinearity in the effect of the covariate on 
survival: 

o Divide the covariate into three or more 
categories. 

o Inspect plots of the Martingale residuals versus 
the covariate. 

o Try adding a quadratic or other non-linear terms 
to the Cox regression model. 

 
Present a table with the Cox results, including estimates 
and p-values.  If there is evidence of a nonlinear effect for 
any continuous covariate, report that as well. 
 
Table 3.  Tests of the main effect for each variable; based 
on separate univariate Cox regression models. 
Variable df HR p-value 
age 1 0.99 0.632 
age1 
age2 
age3 

2 1.00 
0.94 
0.95 

0.723 

ns(age) 3 * 0.146 
alcohol 1 1.18 0.178 
care3 1 1.04 0.691 
education 1 0.96 0.009 
ns(education) 2 * 0.025 
poverty 1 0.93 0.357 
race1 
race2 
race3 

2 1.00 
1.12 
1.29 

0.022 

smoke 1 1.25 0.002 
* Estimates are a non-linear function of the continuous variable. 

 

 152



Table 4.  Tests of interaction for select variables; based on 
separate Cox regression models. 
Variable df p-value 
alcohol*smoke 1 0.900 
education*poverty 1 0.041 
education*race 2 0.415 
* Each model included main effects for the terms in the interaction. 

 

Univariate Analysis of Age 
Three models for age were considered in the univariate 
analysis: 
 

Model 1: ( ) ( ) { }λ λ β= 1; expt x t age  

Model 2: ( ) ( ) { }λ λ β β= +1 2; exp 2t x t age age3  

Model 3: ( ) ( )
( ) (

( )
1 1 2 2

3 3

; exp
ns age ns age

t x t
ns age

β β
λ λ

β

+ )⎧ ⎫⎪ ⎪= ⎨ ⎬
+⎪ ⎪⎩ ⎭

 

 
where age1 (referent), age2, and age3 are indicator 
variables for three equally spaced age intervals; namely, 
 

( )
( )
( )

1 19.3

2 19.3 23.7

3 23.7

age I age

age I age

age I age

= ≤

= < ≤

= >
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and  is a non-linear transformation of age.  The 
estimated linear predictors for these three models are 
displayed in the figure below. 

(ins age)
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The three univariate models for age are summarized 
below. 
 

Model 1. A linear effect for age is included in the model.  
This assumes the same hazard ratio for any one-year 
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increase in age.  The linear effect of age on the log-
hazard rate is not significant (p = 0.632). 

 
Model 2. Age is modeled as a nominal categorical 

variable.  The hazard rate is allowed to vary between 
the three predefined age intervals.  However, the 
hazard rate is assumed constant within each interval.  
In other words, the hazard ratio is independent of age 
for individuals within the same interval.  Categorical 
variables are sometimes useful for uncovering non-
linear effects of a continuous variable.  Non-significant 
results are obtained in this example (p = 0.723). 

 
Model 3. A non-linear function of age is included in the 

model using natural smoothing splines.  The approach 
used assumes no particular function form for the 
effect of age; the shape of the effect is instead 
estimated from the data.  The estimates suggest that 
the hazard rate decreases for the youngest and oldest 
subjects.  Overall the non-linear effect is more 
significant than the linear or categorical effects (p = 
0.146). 

8.2.3 Variable Selection 
A few possible variable selection strategies are: 
 

1. All possible regressions  Only possible when there are 
very few covariates.  Given p covariates, there are 2p 
possible models.  A very good method when possible. 
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2. Best subset regressions  Derive best one-covariate 
model, best two-covariate model, best 3-covariate 
model, etc. until it is too much work to continue.  p 
models are fit to find the best one-covariate model; 

2
p⎛ ⎞

⎜ ⎟
⎝ ⎠

 to get the best two-covariate model; 
3
p⎛ ⎞

⎜ ⎟
⎝ ⎠

 to get the 

best three-covariate model; etc.  Can be very time 
consuming.  Which model is “best”? 

 
3. Forward variable selection 

• Variables are added to the model one-at-a-time, 
provided that their p-value is smaller than some 
prespecified cutoff. 

• The variable with the smallest univariate p-value is 
the first to be added. 

• At each step, the remaining variable with the 
smallest p-value is added to the model. 

• This process iterates until all of the p-values for the 
remaining variables are greater than the 
prespecified cutoff. 

 
4. Backward variable selection 

• Variables are removed from the model one-at-a-
time, provided that their p-value is larger than some 
prespecified cutoff. 

• An initial model is fit with all of the variables. 
• At each step, the variable in the model with the 

largest p-value is removed. 
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• This process iterates until all of the p-values for the 
variables in the model are less than the 
prespecified cutoff. 

 
5. Stepwise variable selection 

• Starts like forward selection. 
• At each subsequent step, variables may either 

enter or leave the model. 
• p-value cutoffs for variable entry into the model and 

variable removal from the model must be specified. 
• Common choices of p-value cutoffs are 0.20, 0.15, 

0.10, and 0.05.  A larger value for the cutoff to enter 
or the cutoff to remove will result in more variables 
in the model.  The same cutoff is typically used for 
both. 

 
6. Important Variables method  Upon completion of the 

univariate analyses, consider as a candidate for the 
multivariate model any covariate whose univariate p-
value is sufficiently small (e.g. < 0.25) or which is 
believed to be biologically important.  If the number of 
candidates is small, one might try the “all possible 
regressions” approach or the “best subset” approach.  
If these are not feasible, one might try a stepwise 
selection method. 

 
7. Hybrid method  This method is really just a 

combination of several of the above methods, 
including forcing in a few important covariates and 
doing stepwise selection on the remaining covariates; 
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performing stepwise selection among those identified 
in the “important variables method”; and “all possible 
regressions” on a very small subset of important 
variables. 

 

Breast-Feeding Example 
We will use a hybrid of variable selection techniques to 
build a final model. 
 
Goal:  Estimate the effect of race on time to breast-feeding 
cessation while controlling for other important covariates. 
 
Strategy:  We will start with the model 
 

( ) ( ) { }1 2; exp 2t x t race race3λ λ β β= +  

 
and use stepwise variable selection among the remaining 
variables with the following criteria: 

• Inclusion or exclusion of variables will be based on the 
AIC, as opposed to p-values. 

• race2 and race3 will be included in all models. 
• The interaction between education and poverty will be 

considered.  If the interaction term is included in the 
model then so to must the associated main effects. 
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Step 1 
The first step starts with a model containing only the 
indicator variables for race.  The other variables are added 
individually to inspect their impact on the AIC.  Addition of 
the smoking variable leads to the smallest AIC.  Thus, 
smoking is added to the model in this step. 
 
Model df AIC 
race2 + race3 - 10378.6 

+ ns(age) 3 10379.2 
+ alcohol 1 10378.4 
+ care3 1 10380.6 
+ education 1 10375.9 
+ poverty 1 10379.0 
+ smoke 1 10367.4 
+ education + poverty + 
education*poverty 3 10371.4 
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Step 2 
In the second step we again look at the effect on the AIC of 
adding each remaining variable individually to the model.  
In addition, the AIC is calculated for the removal of terms 
already in the model.  Race is forced into the model, so we 
do not consider the effect of removing this covariate.  
Addition of the education-poverty interaction and main 
effects leads to the smallest AIC. 
 
Model df AIC 
race2 + race3 + smoke - 10367.4 

+ ns(age) 3 10368.1 
+ alcohol 1 10368.4 
+ care3 1 10369.4 
+ education 1 10367.7 
+ poverty 1 10366.2 
- smoke 1 10378.6 
+ education + poverty + 
education*poverty 3 10362.7 
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Step 3 
The AIC is again calculated for the addition or removal of 
variables.  Note that consideration is given to the removal 
of the interaction term, but not the associated main effects.  
Addition of age results in the smallest AIC. 
 
Model df AIC 
race2 + race3 + education + poverty + 
smoke + education*poverty - 10362.7 

+ ns(age) 3 10360.9 
+ alcohol 1 10362.7 
+ care3 1 10364.6 
- smoke 1 10371.4 
- education*poverty 1 10364.4 

 
Step 4 
The addition of alcohol reduces the AIC and is selected for 
inclusion to the model. 
 
 Model df AIC 
race2 + race3 + ns(age) + education + 
poverty + smoke + education*poverty - 10360.9 

- ns(age) 3 10362.7 
+ alcohol 1 10360.7 
+ care3 1 10362.8 
- smoke 1 10369.3 
- education*poverty 1 10364.4 

 

 161



Step 5 
No further changes to the model will reduce the AIC. 
 
Model df AIC 
race2 + race3 + ns(age) + alcohol + 
education + poverty + smoke + 
education*poverty 

- 10360.7 

- ns(age) 3 10362.7 
- alcohol 1 10360.9 
+ care3 1 10362.5 
- smoke 1 10367.6 
- education*poverty 1 10364.5 

 
Therefore, we stop the stepwise selection process and 
propose a final model of 
 

( ) ( )

1 2 3 1

4 2 5 3 6

7 8 9

10

2 3 ( )
( ) ( )

; exp

*

race race ns age
ns age ns age alcohol

t x t
education poverty smoke
education poverty

β β β
β β β

λ λ
β β β
β

+ +⎧ ⎫
⎪ ⎪+ + +⎪ ⎪= ⎨ ⎬+ + +⎪ ⎪
⎪ ⎪+⎩ ⎭

 

 
The parameter estimates for this model are 
 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

race2 1̂β  0.161 0.105 2.332 0.130 

race3 2β̂  0.315 0.097 10.563 0.001 
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Variable Parameter Estimate SE Wald 
Chi-Square p-value 

ns1(age) 3β̂  0.092 0.176 0.274 0.600 

ns2(age) 4β̂  -0.925 0.534 3.000 0.083 

ns3(age) 5β̂  -0.040 0.249 0.025 0.870 

alcohol 6β̂  0.185 0.123 2.253 0.130 

education 7β̂  0.240 0.079 9.175 0.003 

poverty 8β̂  -0.074 0.025 8.791 0.003 

smoke 9β̂  -1.439 0.517 7.767 0.005 
education
*poverty 10β̂  0.109 0.045 5.910 0.015 

 

Confounding 
Confounding is the bias in a risk estimate that can result 
when the predictor-response relationship of interest is 
partially or wholly explained by the effects of an extraneous 
variable. 
Suppose that Cox regression is used to estimate the effect 
of a predictor variable X. 

• A confounder is any variable associated with X as well 
as with the outcome of interest. 

• A variable is a confounder if and only if its inclusion in 
the model changes the estimated effect of X.  The 
result could be to increase or decrease the estimate 
for X. 

• Any confounding variable that has an appreciable 
impact on the effect of X should be considered for 
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inclusion, even if the confounder itself is not 
statistically significant in the model. 

• The confounder should be properly controlled for in 
the regression model.  This involves: 
1. The identification of potential confounders at the 

study design phase. 
2. The measurement of detailed and complete 

information on the confounders during the data 
collection phase. 

3. The inclusion of important confounding variables in 
the regression model during the data analysis 
phase. 

 
One way to monitor for confounding during variable 
selection is to look for important changes in the parameter 
estimates for the predictors of interest. 
 

Step race2 race3 
Estimate SE Estimate SE 

1 0.111 0.102 0.254 0.093 
2 0.153 0.103 0.320 0.094 
3 0.158 0.015 0.307 0.097 
4 0.165 0.106 0.315 0.176 
5 0.161 0.105 0.315 0.097 

 
This approach is more effective when backward variable 
selection is used because changes can be assessed 
relative to the starting model, which contains all covariates. 
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Notes 
 

1. In any variable selection approach, one should also 
consider interaction terms of interest and nonlinear 
terms (e.g. Age2).  If there is a treatment variable of 
interest, interactions between treatment and the other 
variables should be checked. 

 
2. A very subtle problem can arise in model building.  

Suppose that you have a covariate in the model with a 
non-significant p-value.  You decide to drop it from the 
model, but in doing so the coefficients for the 
remaining covariates change substantially.  It is 
possible that the non-significant covariate makes 
some necessary adjustment for another covariate in 
the model.  So, be sure to check changes in the 
coefficients as well as the test statistic when dropping 
(or adding) a covariate. 

 
3. Never use a variable in the disease pathway as a 

covariate.  For example, suppose you have smoking 
status and cough as covariates for time to lung 
cancer.  The disease pathway is 

 
Smoking → Cough → Lung Cancer 

 
In other words, smoking causes cough and cough is 
an early sign of lung disease.  Adjusting for the effects 
of cough attenuates the effect of smoking in the 
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model, leading to an underestimate of smokers’ risk of 
lung cancer. 

 
4. Stepwise procedures can lead to a biologically 

implausible model and can select biologically 
irrelevant variables.  The data analyst must carefully 
review each step of the selection process.  Knowledge 
of the biology is invaluable in this review.  Discussions 
with the investigator about the modeling process are 
important.  The ease and availability of the stepwise 
procedures has reduced some analysts to the role of 
“assisting the computer in model selection, rather than 
the more appropriate reverse relationship.”  The 
analyst, not the computer, is responsible for the final 
model. 

 

8.2.4 Model Diagnostics 
There are other valid model building approaches that could 
lead to different final models.  Note that we are not done.  
The next step is to perform model diagnostics in order to 
answer the questions: 

• Are there outliers in the data set that need to be 
excluded from the analysis (Deviance Residual and 
Delta-Beta Plots)? 

• Does the model fit the data (R2)? 
If subjects are excluded or problems are identified with the 
fit of the model at the diagnostic stage, the variable 
selection should be revisited. 
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9.1 Introduction 
The Stanford Heart Transplant Study is quite famous in the 
statistical literature and has been analyzed by many 
people. We will consider the approach of Crowley and Hu 
(JASA 1977). 

9.1.1 Study Overview 
Between 1967 and 1974 the study enrolled 103 patients 
that had been accepted for heart transplants.  These 
patients then waited for a heart to become available. 

• The availability of a suitable transplant heart 
depended on factors not under the control of the study 
investigators, such as donor-recipient tissue matching, 
and some patients died before a transplant was 
performed. 

• The outcome of interest is time from enrollment to 
death.  Patients are treated as censored observations 
if they 1) improved and no longer needed a transplant, 
2) were lost to follow-up, or 3) were alive at the end of 
the study. 

• All patients were followed until April 1, 1974. 
• Cox regression was used to model the death rate.  

Note that one might expect the death rate to differ 
between patients who had and had not received a 
transplant.  This potential difference in hazards is 
depicted graphically below. 
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where  is a set of covariates, x ( );tμ x  is the rate at 
which transplantation takes place, ( );1 tλ x  is the 
death rate for an untransplanted patient, and 

(2 ;t )λ x  is the death rate for a transplanted patient. 

 

9.1.2 Study Variables 
The variables for the Stanford Study are summarized in the 
following table: 
 
Variable Description Values 
event Death indicator variable 1 = yes 

0 = no 
start Follow-up time (days) at start of risk 

interval 
continuous 

stop Follow-up time (days) at end of risk 
interval 

continuous 

age Age at enrollment in years (minus 48) continuous 
year Year of enrollment (minus November 1, 

1967) 
continuous 

prior Bypass surgery prior to enrollment 1 = yes 
0 = no 

Transplant

( )λ( )μ ;t x 2 ;t x

Death Enrollment 
( )λ1 ;t x
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Variable Description Values 
transplant Received transplant 1 = yes 

0 = no 
id Patient identifier integer 

 
The dataset is structured so that separate rows are 
included for the time periods that patients were pre and 
post-transplant.  For example, a subset of the data for the 
first three patients is 
 

id start stop event transplant 
1 0 50 1 0 
2 0 6 1 0 
3 0 1 0 0 
3 1 16 1 1 
# # # # # 

 
The data show that 

1. The first subject did not receive a transplant and died 
at 50 days of follow-up. 

2. Likewise, the second subject did not receive a 
transplant and died at six days of follow-up. 

3. The third subject received a transplant after 1 day of 
follow-up and, subsequently, died at 16 days.  Thus, 
there are two rows for this subject, the first contains 
data relevant to the pre-transplant follow-up period 
and the second contains data relevant to the post-
transplant period. 
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9.2 Cox Regression Model 
In the analysis, the effect of the covariates should be 
allowed to differ between patients who have and have not 
received a transplant.  If we are interested in the effects of 
age at enrollment, year of enrollment, prior bypass surgery, 
and transplant; the two models below might be considered. 
 
Pre-Transplant Death Rate 

( ) ( ) { }1 0 11 12 13; expt t age year priorλ λ β β β= + +x  

 
Post-Transplant Death Rate 

( ) ( ) { }2 0 21 22 23 4; expt t age year priorλ λ β β β= + +x β+  

 
where 4β  is the multiplicative effect of transplantation on 
the common baseline hazard.  These two models can be 
written as a single model through the use of a time-
dependent covariate.  Let W  denote the time from 
enrollment to transplant, and define the time-dependent 
covariate 
 

( ) 1 if 
0

t W
x t

otherwise
>⎧

= ⎨
⎩

 

 
indicating whether transplantation has occurred.  Thus, the 
two models can be represented by 
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( ) ( )
( )

( ) ( )
( )

1 2 3 4

0 5 6

7

; exp

age year prior x t

t t x t age x t year

x t prior

β β β β

λ λ β β

β

+ + +⎧ ⎫
⎪ ⎪

= + +⎨ ⎬
⎪ ⎪+⎩ ⎭

x . 

 
Here, 4 7, ,β β…  measure the effect of transplantation on the 
risk of death. 

9.3 Results 
There are other covariates measuring tissue matching that 
we won’t consider here.  The following tables summarize a 
considerable number of regression models fit in an attempt 
to find a model that best describes the data.  Every model 
that contains a covariate-transplant interaction term also 
contains both the main effect for the covariate as well as 
the transplant status. 
 
 Main Effect Terms Interaction Terms 

Model age year prior x(t) x(t)age x(t)year x(t)prior 

Term 
1

β  
2

β  
3

β  
4

β  
5

β  
6

β  
7

β  

1 .0307* 
(.0143) 

      

2 .0119 
(.0183) 

  .075 
(.321) 

.0413 
(.0283) 

  

3  -.191* 
(.070) 

     

4  -.265* 
(.105) 

 -0.282 
(0.514) 

 0.136 
(0.141) 

 

5   -.739* 
(.359) 
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 Main Effect Terms Interaction Terms 

Model age year prior x(t) x(t)age x(t)year x(t)prior 

Term 
1

β  
2

β  
3

β  
4

β  
5

β  
6

β  
7

β  

6   -.518 
(.610) 

.187 
(.305) 

  -.337 
(.757) 

7 .027† 
(.014) 

-.178* 
(.070) 

     

8 .0155 
(.0173) 

-.274* 
(.106) 

 -0.588 
(0.543) 

.0339 
(.0279) 

.201† 
(.143) 

 

9 .0139 
(.0176) 

-.166* 
(.071) 

 0.029 
(.325) 

.0303 
(.0279) 

  

10 .0294* 
(.0141) 

-.278* 
(.106) 

 -0.606 
(0.540) 

 .186 
(.142) 

 

11 .0307* 
(.0136) 

 -.771* 
(.360) 

    

12 .0138 
(.0181) 

 -.546 
(.611) 

.118 
(.328) 

.0348 
(.0273) 

 -.292 
(.758) 

13 .0141 
(.0180) 

 -.743* 
(.361) 

.089 
(.318) 

.0348 
(.0273) 

  

14 .0304* 
(.0139) 

 -.576 
(.610) 

-.043 
(.318) 

  -.293 
(.757) 

15  -.162* 
(.070) 

-.597 
(.366) 

    

16  -.254* 
(.108) 

-.236 
(.628) 

-.292 
(0.506) 

 .164 
(.142) 

-.550 
(.776) 

17  -.240* 
(.104) 

-.621† 
(.367) 

-.284 
(.505) 

 .145 
(.138) 

 

18  -.162* 
(.070) 

-.358 
(.615) 

.179 
(.308) 

  -.361 
(.757) 

19 .0270* 
(.0134) 

-.146* 
(.070) 

-.636† 
(.367) 

    

20 .0167 
(.0173) 

-.262* 
(.108) 

-.258 
(.629) 

-.605 
(.535) 

.0304 
(.0270) 

.230 
(.143) 

-.557 
(.777) 
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 Main Effect Terms Interaction Terms 

Model age year prior x(t) x(t)age x(t)year x(t)prior 

Term 
1

β  
2

β  
3

β  
4

β  
5

β  
6

β  
7

β  

21 .0169 
(.0172) 

-.248* 
(.105) 

-.647† 
(.369) 

-.598 
(.534) 

.0305 
(.0271) 

.210 
(.140) 

 

22 .0150 
(.0176) 

-.136† 
(.071) 

-.419 
(.616) 

.077 
(.332) 

.0270 
(.0271) 

 -.298 
(.758) 

23 .0299* 
(.0137) 

-.266* 
(.108) 

-.274 
(.629) 

-.632 
(.532) 

 .218 
(.143) 

-.556 
(.777) 

24 .0152 
(.0175) 

-.136† 
(.071) 

-.621† 
(.368) 

.048 
(.322) 

.0271 
(.0271) 

  

25 .0299* 
(.0137) 

-.252* 
(.105) 

-.663† 
(.368) 

-.622 
(.531) 

 .197 
(.139) 

 

26 .0280* 
(.0137) 

-.146* 
(.071) 

-.428 
(.615) 

-.018 
(.323) 

  -.305 
(.757) 

27    .126 
(.301) 

   

28 .0307* 
(.0145) 

  -.006 
(.312) 

   

29  -.191* 
(.070) 

 .122 
(.303) 

   

30   -.747* 
(.360) 

.156 
(.297) 

   

* p < 0.05 
† 0.05 ≤ p < 0.10 

 

9.3.1 Age at Enrollment 
Age at enrollment was often significant as a main effect 
term but never as an interaction term.  Apparently, the 
older the patient, the greater the risk of death; it was about 
the same regardless of transplant status. 
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9.3.2 Year of Enrollment 
In every model that was tried, year of enrollment was 
significant or close to it.  The sign of its coefficient is always 
negative whereas the sign of its time-dependent interaction 
coefficient is always positive.  it appears that its effect on 
overall survival prior to transplantation is beneficial 
(negative coefficient, smaller hazard) whereas its effect on 
post-transplant survival is not that wonderful.  For example, 
in Model 4: 
 

2

2 6

0.265
0.265 0.136 0.129

β
β β

= −

+ = − + = −
 

 
which suggests that the overall health of patients being 
accepted into the study was improving over calendar time 
but that the survival time of these patients was not 
increasing at the same rate.  This brings up the issue of 
selection bias. 

1. Did the general health of newly enrolled patients 
improve over time? 

2. Did patient selection for transplant change as a 
function of general health over time? 

 

9.3.3 Prior Surgery 
Prior surgery was a significant factor in improving overall 
survival (negative coefficient).  It had no interaction with 
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transplant status.  Note that other interaction terms, such 
as age-prior, should still be considered before arriving at a 
final model. 
 

9.3.4 Model Interpretation 
Consider Model 25 
 

( ) ( ) ( ) ( )0

0.0299 0.252 0.663
; exp

0.622 0.197
age year prior

t t
x t x t year

λ λ
− −⎧ ⎫

= ⎨ ⎬− +⎩ ⎭
x . 

 

Age and Prior Bypass Surgery 
To better interpret this model, suppose we wish to compare 
two subjects entering the study during the same year and 
having the same transplant status at any given time.  
Suppose, however, that they differ on prior surgery and 
age at enrollment.  The hazard ratios are 
 

age prior Hazard Ratio 
x years 0 1.00 
 1 0.51 
x+10 years 0 1.35 
 1 0.69 

 
where x years and no prior surgery is the reference. 
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Year of Enrollment 
Since year interacts with transplant status in the model, the 
estimated hazard ratio for year must be estimated 
separately.  In the following calculations prior surgery and 
age at enrollment are held constant. 
 
Pre-Transplant:  The estimated hazard ratio for a 5 year 
difference in enrollment for patients that had not received a 
transplant is 

( )( )
( )( ) ( ){ }; 5, 0

exp 0.252 5 0.28
; , 0

t year x t
t year x t

λ
λ

+ =
= − =

=
. 

 
Post-Transplant:  The estimated hazard ratio for a 5 year 
difference in enrollment for patients that had received a 
transplant is 

( )( )
( )( ) ( ) ( ){ }; 5, 1

exp 0.252 5 0.197 5 0.76
; , 1

t year x t
t year x t

λ
λ

+ =
= − + =

=
. 

 

9.4 Alternative Effect of Transplantation 
Since risk usually increases right after invasive procedures, 
like transplant surgery, before settling down to a long term 
level, one might prefer to model the hazard like the function 
shown in the figure below. 
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Follow-up Time (t)

f(t
)

W

 
 
Algebraically, this hazard function behavior could be 
modeled in our example with the following regression 
equation: 
  

( ) ( )
( )

( ) ( ){ }
1 2 3 4

0
5 6

; exp
exp

age year prior x t
t t

x t t W

β β β β
λ λ

β β

+ + +⎧ ⎫⎪ ⎪= ⎨ ⎬
+ − −⎪ ⎪⎩ ⎭

x . 
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10.1 Introduction 
The Cox regression model is popular because it does not 
make any distributional assumptions about the survival 
times.  Rather, nonparametric methods are used to 
estimate the baseline hazard function.  This approach has 
the advantage of being robust to different distributions, but 
does not allow for direct estimation of the hazard rate and 
may be less powerful when it is appropriate to make 
assumptions about the distribution of survival times. 

10.1.1 Weibull Distribution 
The Weibull distribution is commonly used to model time-
to-event data.  This distribution takes on non-negative 
values and is defined by two parameters – a scale 
parameter α  and a shape parameter γ .  The functional 
form of the Weibull distribution is 
 

( ) { }1 expf t t tγ γαγ α−= −  

 
for , and constants 0t ≥ α  and γ  which we will estimate 
from the data. 
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There is a one-to-one relationship between the probability 
distribution, hazard, and survival functions.  The survival 
function corresponding to the specified Weibull distribution 
is 
 

( ) { }expS t t γα= − . 

 
A plot of the survival functions for different choices of 
gamma is given below. 
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The corresponding hazard function is 
 

( ) 1t t γλ αγ −=  

 
and is similarly plotted in the following figure. 
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The Weibull is a popular distribution for modeling survival 
time because of the wide range of shapes that it can take 
on, including decreasing ( 1γ <  ), increasing ( 1γ > ), and 
constant ( 1γ = ) hazards. 

10.2 Weibull Regression Model 
The Weibull regression model has the form 
 

( ) { }1
1 1 2 2; exp p pt t x xγλ αγ β β β−= + +x … x+  

 
where 1, , px x…  are covariates, and α , γ , and 1, , pβ β…  are 
parameters to be estimated from the data.  Unlike Cox 
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regression, the baseline hazard ( ) 1
0 t t γλ αγ −=  is estimated 

directly in Weibull regression analyses. 
The Weibull model is a proportional hazards model 
because the hazard ratio comparing individuals with 
different sets of covariates 
 

( )
( )

( ) { }
( ) { }

( ) ( )

1 2 2

1 2 2

2 2

x

x

( ){ }

0 1

0 1

1 1 1 2

exp,
, exp

exp

p p

p p

p p p

t x xt
HR

t t x x

x x x x x

λ β βλ
λ λ β β

β β β

′+′
= =

′′ ′′+

′ ′′ ′ ′′= − + + −

x
x

x

β

β

′ ′+ +

′′ ′′+ +

′ ′′− +

…
…

…

 

 
is a multiplicative function of the covariates that does not 
depend on t.  In other words, the hazard ratio is constant 
as a function of time. 
 
Breast-Feeding Study 
Recall the regression model that was fit to the data from 
the Breast-feeding Study, 
 

( ) ( )
3

8

3
; expo

age are
t t educati erty

race smoke

β β β
λ λ β

β

1 2

4 5

6 72 3

alcohol c
on pov

race
β

β β

+ +⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+⎩ ⎭

x
+ +

 

 
where the following indicator variables were defined to 
model the effect of race: 
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( )
( )
( )

1

2

3

race I whites

race I blacks

race I other

=

=

=

. 

 
Previously, Cox regression was used to fit this model.  
Here we use Weibull regression to obtain the following 
estimates for this model: 
 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

age 1̂β  0.0215 0.0166 1.68 0.1946 

alcohol 2β̂  0.1654 0.1225 1.82 0.1770 

care3 3β̂  -0.0194 0.0897 0.05 0.8288 

education 4β̂  -0.0543 0.0229 5.63 0.0176 

poverty 5β̂  -0.2084 0.0930 5.02 0.0250 

race2 6β̂  0.2048 0.1049 3.81 0.0508 

race3 7β̂  0.3351 0.0969 11.96 0.0005 

smoke 8β̂  0.2710 0.0792 11.70 0.0006 
scale α̂  0.0675 0.0229 - - 
shape γ̂  0.9882 0.0249 - - 

 

Comments 
The scale α  and shape γ  parameters control the behavior 
of the baseline hazard function.  When 1γ = , the Weibull 
distribution reduces to an exponential distribution, whose 
hazard rate is constant over time.  Thus, one could test 
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whether the exponential model provides as good a fit to the 
data by testing the hypotheses 

0 : 1
: 1A

H
H

γ
γ
=

≠
. 

The Wald or likelihood ratio statistic can be used to carry 
out this test; although the later is preferred in practice. 
 

10.3 Inference 

10.3.1 Hazard Ratio Estimation 
Hazard ratios for the Weibull model are computed the 
same way that they are for a Cox model. 
 
Breast-Feeding Study 
The estimated hazard ratio for individuals aged 25, relative 
to those aged 20 is 
 

m ( )
( )

( )
( )

( ){ } ( ){ }1

ˆ ˆ, ; 25
ˆ ˆ, ; 20

ˆexp 25 20 exp 5 0.0215

1.11

t t age
HR

t t age
λ λ
λ λ

β

′ =
= =

′′ =

= − =

=

x
x

 

 
with a 95% confidence interval of 
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( ){ }
( ) ( ){ }

( ) ( )( ){ }
( )

1 1

1 1

ˆ ˆexp 5 1.96 5

ˆ ˆexp 5 1.96 5

exp 5 0.0215 1.96 5 0.0166

0.95,1.31

CI se

se

β β

β β

= ±

= ±

= ±

=

. 

 

10.3.2 Hazard Rate Estimation 
One of the advantages of parametric survival regression is 
the ability to estimate the hazard rate as a function of time 
and the covariates.  Recall that the baseline hazard 
function in the Weibull model is ( ) 1

0 t t γλ αγ −= .  Estimates 
for the parameters are available from the regression 
analysis; e.g. 
 

( ) ( )( )1 0.9882 1ˆ
0

0.0118

0.0675 0.9882ˆ ˆ

0.0667

t t t

t

γλ αγ − −

−

= =

=
. 

 
In general, the hazard rate in the Weibull model is a 
function of the covariates, i.e. 
 

( ) { }1
1 1 2 2; exp p pt t x xγλ αγ β β β−= + +x … x+ . 

 
Thus, the hazard rate could be plotted for any set of 
covariate values.  For example, the estimated hazard 
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function for 20 years old of race “other”, with 8 years of 
education, and a history alcohol and cigarette usage is 

 

( )
( )
( )

{ }

0.0118

0.0118

20 0.0215 0.1654

; 0.0667 exp 8 0.0543 0.3351
0.2710

0.0667 exp 0.7671

t t

t

λ −

−

+⎧ ⎫
⎪ ⎪

= + − +⎨ ⎬
⎪ ⎪+⎩ ⎭

=

x
 

 
This (dashed line) and the baseline hazard (solid line) 
function are displayed in the plot below. 
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10.3.3 Survival Function Estimation 
The survival function for the Weibull regression model is 

 

( ) { } { }1 1 2exp
exp x p px x x

S t t
β β βγα

+ + +
= −

…
. 

 
The survival functions that correspond to the hazard 
functions for the Breast-Feeding example in the previous 
section are 
 

( ) { }0.9882
0 exp 0.0675S t t= −  

and 

( ) { } { }exp 0.76710.9882exp 0.0675S t t= −  

 
These functions are displayed in the figure below. 
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10.4 Software Considerations 
The SAS procedure PROC LIFEREG fits parametric 
regression models to survival data that can be censored.  
Similar routines are available in R and other statistical 
software packages 
 

SAS Program and Output 
proc lifereg data=breastfed; 
 model weeks*weaned(0) = age alcohol care3 education poverty 
       race2 race3 smoke / dist=weibull; 
run; 

 
Syntax 

• Specification of the model statement is similar to that 
in PROC PHREG. 

• Since LIFEREG fits several different types of 
parametric regression models, the distribution can be 
specified with the dist option (default: weibull).  
Specification of “exponential” will fit an exponential 
regression model, which is a special case of the 
Weibull for which the shape parameter is equal to 1. 
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The LIFEREG Procedure 
 
            Model Information 
 
Data Set                    WORK.BREASTFED 
Dependent Variable              Log(weeks) 
Censoring Variable                  weaned 
Censoring Value(s)                       0 
Number of Observations                 927 
Noncensored Values                     892 
Right Censored Values                   35 
Left Censored Values                     0 
Interval Censored Values                 0 
Name of Distribution               Weibull 
Log Likelihood                -1418.106283 
 
 
Algorithm converged. 
 
 
       Type III Analysis of Effects 
 
                         Wald 
Effect       DF    Chi-Square    Pr > ChiSq 
 
age           1        1.6864        0.1941 
alcohol       1        1.8241        0.1768 
care3         1        0.0468        0.8288 
education     1        5.6349        0.0176 
poverty       1        5.0442        0.0247 
race2         1        3.8257        0.0505 
race3         1       12.0155        0.0005 
smoke         1       11.8031        0.0006 
 
 
                    Analysis of Parameter Estimates 
 
                          Standard   95% Confidence     Chi- 
Parameter     DF Estimate    Error       Limits       Square Pr > ChiSq 
 
Intercept      1   2.7275   0.3302   2.0804   3.3746   68.24     <.0001 
age            1  -0.0217   0.0167  -0.0545   0.0111    1.69     0.1941 
alcohol        1  -0.1674   0.1239  -0.4103   0.0755    1.82     0.1768 
care3          1   0.0196   0.0908  -0.1583   0.1976    0.05     0.8288 
education      1   0.0550   0.0232   0.0096   0.1004    5.63     0.0176 
poverty        1   0.2109   0.0939   0.0269   0.3950    5.04     0.0247 
race2          1  -0.2073   0.1060  -0.4150   0.0004    3.83     0.0505 
race3          1  -0.3392   0.0978  -0.5309  -0.1474   12.02     0.0005 
smoke          1  -0.2742   0.0798  -0.4306  -0.1178   11.80     0.0006 
Scale          1   1.0120   0.0257   0.9627   1.0637 
Weibull Shape  1   0.9882   0.0251   0.9401   1.0387 
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Scaled Parameter Estimates 
In order to estimate the model parameters, SAS (and R) 
use a different, but equivalent, formulation of the Weibull 
distribution.  Essentially, a log-linear model of the form 
 

1 1 2 2ln p pt x x x wμ ζ ζ ζ σ= + + + +…  

 
is fit, for which 1 2, , , pζ ζ … ζ  are the estimated effects of the 
covariates on the log-transformed survival times and w  is a 
random variable that has the standard extreme value 
distribution.  The SAS output provides the following: 
 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

Intercept μ̂  2.728 0.330 68.24 <.0001 
age 1̂ζ  -0.022 0.017 1.69 0.1941 
alcohol 2ζ̂  -0.167 0.124 1.82 0.1768 
care3 3̂ζ  0.020 0.091 0.05 0.8288 
education 4ζ̂  0.055 0.023 5.63 0.0176 
poverty 5̂ζ  0.211 0.094 5.04 0.0247 
race2 6ζ̂  -0.207 0.106 3.83 0.0505 
race3 7̂ζ  -0.339 0.098 12.02 0.0005 
smoke 8̂ζ  -0.274 0.080 11.8 0.0006 
Scale σ̂  1.012 0.026 - - 

 
These results must be transformed in order to obtain the 
parameter estimates for our proportional hazards model 
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( ) { }1
1 1 2 2; exp p pt t x xγλ αγ β β β−= + +x … x+  

 
according to the following relationships: 
 

{ }exp
1

j j

α μ σ
γ σ
β ζ σ

= −

=
= −

. 

 
Unfortunately, the methods needed to compute the variances 
for these parameters are beyond the scope of this class. 
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11.1 Residuals 
In linear regression, residuals are simply computed as the 
observed response variables minus the predicted values.  
We can then plot the residuals to check that they are 
normally distributed or plot them against covariates not 
included in the model to explore possible relationships that 
are not accounted for.  Similar residual analyses can be 
performed for parametric survival regression models.  In 
this section, we present diagnostic results for the 
regression analysis of the Breast-Feeding study using the 
Weibull model 
 

( )
1 2 3

1
4 5

6 7 8

3
; exp

2 3

age alcohol care
t t education poverty

race race smoke

γ

β β β
λ αγ β β

β β β

−

+ +⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+ + +⎩ ⎭

x  

 
which is not directly observable.  We will discuss two types 
of residuals: 

1. Standardized Residuals 
2. Deviance Residuals 

11.1.1 Standardized Residuals 
Examination of the model fit can be done with 
standardized residuals based on the linear model 
representation 
 

1 1 2 2ln p pt x x x wμ ζ ζ ζ σ= + + + +… . 
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The standardized residuals are defined by analogy to those 
used in normal theory regression as 
 

( )1 1 2 2
ˆ ˆ ˆln ˆ

ˆ
i i i

i

t x x
r

μ ζ ζ ζ p pix
σ

− + + + +
=

…
. 

 
These could be used to assess the distributional 
assumption for the w term in the regression model.  For 
Weibull regression, w is assumed to have the extreme 
value distribution with survival function 
 

( ) { }{ }exp expWS w w= −  

 
which implies 
 

( )( )ln ln WS w w− = . 

 
Thus, a plot of the log-log transformed survival estimates  

 should fall on a 45-degree line if the 
extreme value distribution assumption is satisfied. 

( )( ˆln ln KMS r− )
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Figure 1.  Residuals for the Weibull regression model fit to 

the Breast-Feeding Study data. 
 
We see from the plot that the Weibull model gives a 
reasonable fit to the data. 
 
One could also use residual plots to examine the effect of 
covariates not included in the model, in much the same 
way that Martingale residuals are used in Cox regression.  
For example, suppose we exclude education from the 
model and examine the relationship between the resulting 
standardized residuals. 
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Based on the plot, we might decide to use a dichotomous 
effect of education in the model instead of a linear effect.  
The question, then, is what cutpoint to use to dichotomize 
education.  The plot suggests a cutpoint around 12 years.  
A more object strategy would be to fit the regression model 
using different choices of cutpoints to find the one that 
maximized the likelihood function. 
A cut point of 14 years (<14, ≥14) results in the largest 
value of the likelihood function; hence, we might group 
subjects based on years of education above or below 14 
with the dichotomous variable 
 
Variable Levels N Percents 
education14 0 = education < 14 

1 = education ≥ 14 
746 
181 

80.5% 
19.5% 
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and fit the Weibull model 
 

( )
1 2 3

1
4 5

6 7 8

3
; exp 14

2 3

age alcohol care
t t education poverty

race race smoke

γ

β β β
λ αγ β β

β β β

−

+ +⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+ + +⎩ ⎭

x . 

 
The resulting log-likelihood values for all possible cutpoint 
values are displayed in the following figure. 
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Interestingly, this model has a larger log-likelihood value 
than the original model with a linear effect of education.  
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Thus, the categorical variable for education provides a 
better fit to the data. 

11.1.2 Deviance Residuals 
Deviance residuals were used to identify outliers in Cox 
regression and will be used similarly here for the Weibull 
model. The deviance residuals from the regression 
analyses of the Breast-Feeding data are given below. 
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 Mean Variance ±1.96 
Weibull -0.31 1.01 97.4% 
Cox -0.30 1.01 91.8% 

 
The residuals for the Weibull and Cox models are similar 
and, in this example, would not indicate that one model 
provides a better fit than the other.  
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11.1.3 Delta-Beta Plots 
Delta-Beta plots are one method of checking the influence 
of each observation on the estimated model parameters. 
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11.2 Test for Proportional Hazards 

11.2.1 Likelihood Ratio Test 
An inferential approach to testing the proportional hazards 
assumption, similar to that of time-dependent covariates in 
Cox regression, can be used in the parametric setting.  
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Suppose that proportional hazards assumptions is to be 
tested for the model 
 

( )
1 2 3

1
4 5

6 7 8

3
; exp 14

2 3

age alcohol care
t t education poverty

race race smoke

γ

β β β
λ αγ β β

β β β

−

+ +⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+ + +⎩ ⎭

x . 

 
For example, say we want to test the proportional hazards 
assumption with respect to education.  The test proceeds 
as follows: 
 

1. Stratify subjects based on the levels of the covariate, 
X, to be test for proportional hazards.  Fit the 
parametric regression model separately to each 
stratum.  Sum the values of the log-likelihood 
functions across the stratum-specific model fits. 

 

Education Model ( )ˆlnL β  

< 14 1

11 12 13
1

1 1 15 16

17 18

3
exp 2

3

age alcohol care
t poverty race

race smoke

γ

β β β
α γ β β

β β

−

+ +⎧ ⎫
⎪ ⎪+ +⎨ ⎬
⎪ ⎪+ +⎩ ⎭

 -2725.7 

≥ 14 2

21 22 23
1

2 2 25 26

27 28

3
exp 2

3

age alcohol care
t poverty race

race smoke

γ

β β β
α γ β β

β β

−

+ +⎧ ⎫
⎪ ⎪+ +⎨ ⎬
⎪ ⎪+ +⎩ ⎭

 -657.6 

  -3383.3 
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2. Fit the parametric regression model to the full dataset, 
allowing the effects of the covariates to differ across 
the levels of X.  The model 
 

1 2 3 4

5 6 7 8

9 101

11 12

13 14

3 14
2 3

* 14 * 14
exp

3 * 14 * 14
2 * 14 3 *

age alcohol care education
poverty race race smoke
age education alcohol education

t
care education poverty education
race education race educ

γ

β β β β
β β β β
β β

αγ
β β
β β

−

+ + +

+ + + +

+ +

+ +

+ +

15

14
* 14

ation
smoke educationβ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪

+⎪ ⎪⎩ ⎭

 

 
fit to the entire Breast-Feeding dataset has a log-
likelihood value of -3389.2. 
 

3. Calculate the difference in the log-likelihoods from the 
two analyses 

( )2 2
reduced full2 ln ln ~LR kX L L χ= − − . 

The stratum-specific analyses allow the distributional 
parameters α  and γ  to differ across the levels of X.  
In other words, the baseline hazard is allowed to vary 
across the strata.  Thus, the resulting composite log-
likelihood value can be treated as coming from a “full” 
model.  The regression model fit to the entire dataset 
is a “reduced” model because α  and γ  are the same 
across all strata; i.e. all subjects have the same 
baseline hazard function.  The degrees of freedom k 
is the difference in the number of parameters between 
the two analyses.   

4. If the difference, as measured by the p-value 
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2 2Pr k LRp Xχ⎡ ⎤= ≥⎣ ⎦ , 

is significant, then conclude that proportional hazards 
does not hold for the covariate X.  In our example, 
 

( )2

2
1

2 3389.2 3383.3
11.8

Pr 11.8 0.0006

LRX

p χ

= − − +

=

⎡ ⎤= ≥ =⎣ ⎦

 

 
and so the proportional hazards assumption does not 
hold for education. 

 

11.2.2 Graphical Check 
The survival function of 
 

( ) { } { }β βγα
+ +

= −
…1 1exp

; exp p px x
S t tx  

 
for the Weibull regression model may be re-written as 
 

( )( ) 1 1ln ln ; ln lnp pS t x x tβ β α γ− = + + +x … . 

 
which is a linear function of the log-transformed survival 
times.  If the proportional hazards assumptions holds, then 
plots of the non-parametric estimates ( )( )ˆln ln KMS t−  
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calculated separately for subjects with covariate patterns 
 and  should be approximately parallel. ′x ′′x

( )

 
This method is most useful when there are a small number 
of categorical variables in the regression model.  Consider 
the model 
 

{ }1
1 2 3; exp 2 3t t race race educationγλ αγ β β β−= + + 14

)

x

ln

. 

 
The proportional hazards assumption could be checked by 
plotting  for each of the six groups defined by 
the covariates in the regression model 

( )( ˆln KMS t−

 
Group Race Education (years) 
1 whites < 14 
2 whites ≥ 14 
3 blacks < 14 
4 blacks ≥ 14 
5 others < 14 
6 others ≥ 14 

 
The results are shown below. 
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11.3 Model Fit 
The method of Nagelkerke (1991) can be used to compute 
the R2 statistic 
 

( ) ( )( )2 2 ˆ1 exp ln ln 0R L
n

L⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

β  

 

where  and ( )ˆlnL β ( )lnL 0  denote the likelihoods for the 
regression models with and without the covariates, 
respectively.  The resulting values for the Weibull and Cox 
regression fits for the proposed regression model are 
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 n ( )lnL 0  ( )ˆlnL β  R2

Weibull 927 -3408.6 -3390.1 3.9% 
Cox 927 -5191.1 -5174.5 3.5% 

 

11.4  Parametric Models 
Our consideration of parametric regression models for 
survival data has been limited to the Weibull model.  There 
are many other parametric models available.  A few other 
popular choices are given in the table below. 
 
Model Hazard Rate 
Exponential ( ) { }1 1; exp p pt x xλ α β= + +x … β  
Weibull ( ) { }1

1 1; exp p pt t x xγλ αγ β β−= +x …+  
Log-logistic 

( ) { }
{ }

1
1 1

1 1

exp
;

1 exp
p p

p p

t x x
t

t x x

γ

γ

αγ β
λ

β

α β β

− + +
=

+ + +
x

…
…

 

Log-normal * 
* Complex function of the covariates 
 
The AIC could be used to select among different 
parametric models. 
 
Model Log-Likelihood p AIC 
Exponential -3390.2 9 6798.5 
Weibull -3390.1 10 6800.3 
Log-logistic -3407.2 10 6834.4 
Log-normal -3383.8 10 6787.6 
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11.5 Model Specification 
The specification of a survival model requires consideration 
of (1) which variables to include and (2) the functional form 
of the relationship between the variables and the survival 
times.  In practice, there is often a lack of evidence to 
support an a priori choice of one survival distribution over 
another. 
Furthermore, when the primary concern is in evaluating the 
effects of covariates, there may be little to be gained in 
choosing a parametric model over a nonparametric model, 
like the Cox model.  Estimated covariate effects tend to be 
similar, as is the case for the estimates from the model 
 

( ) ( )
1 2 3

4 5

6 7 8

3
; exp 14

2 3
o

age alcohol care
t t education poverty

race race smoke

β β β
λ λ β β

β β β

+ +⎧ ⎫
⎪ ⎪= + +⎨ ⎬
⎪ ⎪+ + +⎩ ⎭

x . 

 

Variable Parameter Weibull Cox 
Estimate SE Estimate SE 

age 1̂β  0.0196 0.0156 0.0173 0.0155 

alcohol 2β̂  0.1642 0.1225 0.1668 0.1227 

care3 3β̂  -0.0114 0.0895 -0.0179 0.0896 

education14 4β̂  -0.2765 0.0992 -0.2764 0.0994 

poverty 5β̂  -0.1707 0.0908 -0.1725 0.0913 

race2 6β̂  0.1903 0.1046 0.1792 0.1050 

race3 7β̂  0.3605 0.0954 0.3312 0.0957 
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Variable Parameter Weibull Cox 
Estimate SE Estimate SE 

smoke 8β̂  0.2717 0.0786 0.2513 0.0786 

 
Thus, if one is only interested in hazard ratio estimation for 
this study, there is little difference between the two models.  
However, other factors may make one method more 
attractive than the other.  Below is a comparison of the 
Weibull and Cox models that can be fit with standard SAS 
or R survival regression routines. 
 
 Weibull Cox 
Hazard rate and survival estimation yes no 
Interval censoring yes no 
Multiplicative effect of covariates yes yes 
Proportional hazards yes yes 
Time-dependent covariates no yes 
Varying follow-up intervals no yes 

 
Regression diagnostics should always be performed before 
selecting a final regression model.  R2 values may be used 
to compare fits between a parametric and non-parametric 
model.  Likewise, analyses of residuals and model 
assumptions may provide evidence that one model 
formulation provides a better fit than others that are under 
consideration.  
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A.1 Comments on the Log-Rank Test and 
Alternative Methods 

A.1.1 Proportional hazards assumption 
The log-rank test is most powerful in the presence of 
proportional hazards.  One method for determining if the 
hazards are proportional is to plot smooth estimates of the 
hazard functions.  Another graphical check is to plot 

, the log-log transformed Kaplan-Meier 
estimates (see 

( )( − ˆlog logS t )
Figure 1). 
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Figure 1.  Log-log transformed Kaplan Meier curves for the 

Leukemia Trial. 
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Notes 
 

1. If the hazards are proportional the log-log survival 
curves will be parallel. 

 
2. The advantage of this method over the use of 

smoothed hazard plots is that the Kaplan-Meier 
estimates are deterministic and do not depend on 
subjective choices of smoothing functions. 

 

A.1.2 The effect of outliers 
In forming the weighted log-rank statistic, a 2x2 table is 
formed at each failure time.  Results of those tables are 
summed and used to construct the test statistic.  The 
actual failure times are not used in the calculation of the 
statistic.  This has both advantages and disadvantages.  
The advantage is that the log-rank statistics are robust to 
outliers among the failure times. 
 
Leukemia Example 
Recall the data from the leukemia clinical trial of children 
treated with 6-mercaptopurine versus placebo: 
 
6-MP (21 patients):  6, 6, 6, 6*, 7, 9*, 10, 10*, 11*, 13, 16, 
17*, 19*, 20*, 22, 23, 25*, 32*, 32*, 34*, 35* 
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Placebo (21 patients):  1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 
11, 12, 12, 15, 17, 22, 23 
 
Suppose that the time of the last failure in the Placebo 
group was changed from 23 to 50.  A before and after 
comparison of the survival curves is given in Figure 2.  
Although the curves decrease at different rates at the 
beginning of the study, the outlier leads to curves that 
seem to behave more similar at the end of the study.  What 
impact does this have on the results from the log-rank test? 
 
The test statistic for the original data was 16.8 (p = 4.17e-
5).  With the outlier, the resulting statistic is 14.3 (p = 
1.57e-4).  The outlier has very little effect on the test 
results. 
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Figure 2.  Effects of an outlier on Kaplan-Meier curves 
using the Leukemia Trial data. 
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A.1.3 Limitations of the log-rank tests 
The actual failure times are not used in the calculation of 
the statistics.  The disadvantage is that these times may 
contain valuable information about the survival experience.  
For example, the following three configurations 
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all yield the same log-rank statistic, even thought the 
survival experience in the 6-MP group gets progressively 
worse in the plots.  The test statistics do not reflect the 
changing situations. 
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Furthermore, the log-rank tests do not distinguish between 
the next two configurations because the actual failure times 
are not used. 
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Notes: 
 

1. At each failure time, the log-rank test only compares 
those groups which still contain subjects at risk. 

 
2. Curves cannot be compared beyond the follow-up 

period for the risk set. 
 

A.1.4 An alternative two-sample testing procedure 
One natural way to compare the survival curves would be 
to accumulate the area between them over the length of 
the study period, i.e. 
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( ) ( )( )1 2
ˆ ˆ

t
S t S t dt−∫ . 

 

where ( )ˆ
iS t  is the Kaplan-Meier estimator.  Under H0: S1 = 

S2 the area between the survival curves ought to be equal 
to zero. 
 
Pepe and Fleming proposed a weighted version of the 
above statistic.  Let ( )ˆ

iC t  be the estimated probability that 
censoring does not occur before time t.  ( )ˆ

iC t  is computed 
the sample way that ( )ˆ

iS t

( )t

 is except that failure and 
censoring are interchanged.  For example, the following 
plot displays the  in the leukemia trial. ˆ

iC
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The Pepe-Fleming statistic, called the weighted Kaplan-
Meier statistic, is 
 

( ) ( ) ( ) { }1 2
1 2

ˆ ˆˆ i i i i i
i

n nWKM w t S t S t t t
n −⎡ ⎤= −⎣ ⎦∑ 1−  

 
where 
 

( ) ( ) ( )

( ) ( )
1 2

1 2
1 2

ˆ ˆ
ˆ

ˆ ˆ
i i

i

i i

C t C t
w t n nC t C tn n

=
+

. 

 

Notes 
 

1. WKM is a weighted sum of the area between the 
survival functions, making use of the actual failure 
times. 

 
2. The test statistic / WKMWKM V , where VWKM is the 

variance estimate, has an approximate N(0,1) 
distribution under the null hypothesis. 
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B.1 Stratified Cox Regression Models 

B.1.1 Introduction 
Lymphoma Study 
In Section 6 the proportional hazards assumption was 
tested for the Karnofsky variable in the model 
 

( ) ( ) 1 2 3
0

4 5

*
; exp

70
auto nhl auto nhl

t t
karnofsky wait

β β β
λ λ

β β
+ +⎧ ⎫

= ⎨ ⎬+ +⎩ ⎭
x . 

 
by considering for significant interaction between this 
variables and time.  The following results were obtained: 
 

Interaction Wald 
Chi-Square p-value 

( )* log t  0.2467 0.6194 

(* 72 80I t< ≤ )  0.1925 0.6608 

( )* 8I t > 0  4.9614 0.0259 

 
Hence, there is evidence that the hazard ratio for 
Karnofsky scores may not be proportional across time.  
One solution is to keep the important time-dependent 
covariate in the model; i.e. 
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( ) ( )
( )

1 2 3

0 4 5

*
; exp 70

* 80

auto nhl auto nhl
t t karnofsky wait

karnofsky I t

β β β
λ λ β β

γ

⎧ ⎫+ +
⎪ ⎪

= + +⎨ ⎬
⎪ ⎪+ >⎩ ⎭

x . 

 
There may be a better approach because there are an 
infinite number of Karnofsky-time interaction terms that 
could be used in the model, and we only considered two.  
An alternative approach to dealing with the non-
proportional hazards problem is to allow the baseline 
hazard to vary across levels of the covariate.  This can be 
accomplished with a stratified Cox regression model. 

B.1.2 Stratification Variables 
Suppose that we wish to allow the baseline hazard function 
to vary across M levels of a covariate, such that 
 

( ) ( ) { }0 1 1 2 2; expm mt t x xλ λ β β β= + +x … p px+

M

 

 
where  indexes the strata.  This model assumes 
that the hazards are proportional within each mth stratum: 

1, ,m = …

 

( )
( )

( ) { }
( ) { }

( ) ( ){ }

0 1 1

0 1 1

1 1 1

exp;
; exp

exp

m pm

m m p

p p p

t x xt
t t x x

p

p

x x x

λ β βλ
λ λ β β

β β

′ ′+ +′
=

′′ ′′ ′′+ +

x′ ′′ ′ ′′= − + + −

x
x

…
…

…

. 
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Note that the hazards are not necessarily proportional 
between strata because of the allowance for different 
baseline hazards.  However, the regression parameters iβ  
are the same across strata.  In other words, the covariates 
in the model have the same multiplicative effect regardless 
of the baseline hazard or stratum. 
 
Lymphoma Study 
The Karnofsky scores are summarized in the table below. 
 

Event Karnofsky Scores 
20 30 40 50 60 70 80 90 100 

0 0 0 0 0 0 0 3 9 5 
1 1 2 1 3 5 4 3 6 1 

 
The results of fitting a Cox regression model stratified by 
the 9 possible Karnofsky scores are 
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Covariate Unstratified Stratified 
Coefficient p Coefficient p 

auto -0.6245 0.2919 -1.14189 0.1351 
nhl 0.2431 0.6618 -0.31412 0.6442 
auto*nhl 2.4845 0.0116 2.2256 0.0515 
karnofsky -0.0539 <.0001 - - 
wait70 -1.5140 0.0421 -0.87183 0.264 

 

SAS Code 
proc phreg data=lymphomamod; 
 model days*event(0) = auto nhl auto_nhl wait70; 
 strata karnofsky; 
run; 

 
Syntax 

• The strata statement allows for the specification of 
variables over which to stratify the baseline hazards in 
the Cox model.  Multiple variables can appear in the 
statement. 

 

B.1.3 Likelihood Function 
Recall that the likelihood function in Cox regression has the 
general form 

{ }
{ }

( )

( ) 1 1 2 2

1 1 1 2 2

exp
;

exp
i

k
i i p pi

i j j p pj
j r t

x x x
L

x x x

β β β

β β β=
∈

+ + +
=

+ + +∏ ∑
t β

…
…
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In the stratified Cox model, the  parameters are estimated 
by maximizing 

β

 

( ) (
1

;
M

m
m

L L )
=

=∏t β β  

 
where the  are the likelihoods within each stratum.  
The individual likelihoods are thus constructed from the 
observed events and subjects at risk within the stratum. 

( ;mL t β)

Q: What happens if there are no events within a given 
stratum? 
 

B.1.4 Notes 
 

1. Stratification is attractive because the effect of the 
covariate need not be modeled as a specified function of 
time. 

 
2. Stratification is a way of controlling for the main effects 

of a covariate. 
 

3. A drawback is that one cannot estimate the effect of the 
stratification variable on survival. 

 
4. When stratification is employed, the tests of hypotheses 

for the regression coefficients will have good power only 
if the deviations from the null are the same in all strata. 
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5. The tests of the regression coefficients are appropriate 
when either the number of failures within each stratum is 
large or the number of strata is large. 

 
6. If there are strata in which no events are observed, then 

a loss of power will result.  Consequently, continuous 
variables should be categorized if they are to be used as 
stratification variables in a Cox model. 
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