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1.1 Introduction

1.1.1 Role of Statistics in Biomedical Studies

In this class, our focus will be on statistical methods for the analysis of categorical data.
Examples from epidemiologic studies will be used to illustrate many of the methods.

e Summarize and describe data.

e Use data from samples of subjects to make inference about larger populations.
e Estimate associations between disease outcomes and select risk factors.

¢ Quantify the level of uncertainty in sample estimates.

e Control for the interplay between multiple factors in characterizing the risk of
disease.

e Provide evidence (not proof) to support or refute causality.



1.1.2 Principles of Causality

Sir Bradford Hill outlined seven criteria by which to evaluate the strength of evidence in
favor of causation. Six of his most relevant criteria are given below.

=

. Strength of association — clinical significance vs. statistical significance

Time sequencing of exposure and disease onset — ecologic study vs. prospective
cohort study

N

Biologic plausibility — collaboration with subject-matter experts
Consistency with other investigations — literature review
Dose-response relationship — variation in exposures

Lack of more compelling explanations - consideration of bias, confounding, and
Interaction

o o kW

1.1.3 Epidemiology

The study of the distribution and determinants of disease frequency in human
populations.



Steps for Conducting an Epidemiologic Study
1. Identify the disease and risk factors of interest
2. Specify the questions (hypotheses) to be addressed
3. Design the study
a. Select an appropriate design
e Descriptive: Ecological
e Observational: Case-Control, Cohort, Cross-Sectional
e Experimental: Clinical and Intervention Trials
b. Specify the data to be collected
¢ Inclusion/Exclusion Criteria
e Variables to be measured

c. Determine the appropriate statistical methods for describing and analyzing the
data

e Number of Subjects
4. Carry out the study and collect the data
5. Analyze the data

6. Assess the validity of any observed statistical results with respect to chance, bias,
and confounding

7. Draw conclusions about the subject population



Factors to Consider when Selecting a Statistical Method
e Scientific questions to be addressed
e Study design
e Type of data to be analyzed (nominal, ordinal, discrete, continuous)

1.2 Disease Prevalence

1.2.1 Definition

The number of individuals in a population that are diseased at a given point in time.

Often expressed as a rate or percentage
_ number of diseased individuals
total number at risk '

Denominator includes subjects appearing in the numerator.

Value lies between zero and one.



1.2.2 Example: Undergraduate Binge Drinking at Ul

A cross-sectional study of 1,468 University of lowa students was conducted in order to
assess the nature of alcohol consumption on campus.

Analysis Goals:
¢ Estimate the prevalence of binge drinking at lowa.

e Test for an association between binge drinking and fraternity/sorority (Greek)
membership.

Table 1. Summary of binge drinking study data.

Binge Greek

DrirgJ king Yes No Total
Yes 398 624 1022
No 83 363 446
Total 481 987 1468




Estimated Prevalence

e Prevalence is estimated with the usual binomial proportion:
p =1022/1468 = 69.7%

95% Confidence Interval

¢ |f the sample size is sufficiently large, say np(1-p) > 5, then Normal theory
methods can be used to construct the confidence interval:

(0.696)(0.304)
1468

D+ 2000 @ ~ 0.696+1.96

(67.3%,72.0%)

¢ If the Normal theory method is not appropriate, then an exact confidence interval
must be constructed directly using the binomial distribution.



SAS Program and Output

data uialcohol; data uialcohol;
input Binge $ Greek $ N; input ID Binge $ Greek $;
cards; cards;
Yes Yes 398 1 Yes Yes
Yes No 624 :
No Yes 83 398 Yes Yes

No No 363 399 Yes No

1022 Yes No

proc freq order=data data=uialcohol; 1023 No Ves

weight N;

table Binge / binomial; :
1105 No Yes

run; 1106 No No

1468 No No

proc freq order=data data=uialcohol;
table Binge / binomial;

run;



The FREQ Procedure

Cumulative Cumulative
Binge Frequency Percent Frequency Percent
Yes 1022 69.62 1022 69.62
No 446 30.38 1468 100.00

Binomial Proportion
for Binge = Yes

Proportion 0.6962
ASE 0.0120
95% Lower Conf Limit 0.6727
95% Upper Conf Limit 0.7197

Exact Conf Limits
95% Lower Conf Limit 0.6719
95% Upper Conf Limit 0.7196

Test of HO: Proportion = 0.5

ASE under HO 0.0130
Z 15.0335
One-sided Pr > Z <.0001
Two-sided Pr > |Z] <.0001

Sample Size = 1468



Test for an Association: Binge Drinking and Greek Membership
Recall the factors to consider in choosing a statistical method
e Question to be addressed:
Is there an association between the two variables.
e Study design:

Cross-sectional study of 1,468 subjects randomly selected from the Ul student
population, independent of their drinking or Greek status. Note that the proportion
of students who binge drink or who belong to Greek organizations can be estimated
from these data.

e Type of variables to be analyzed:

Both variables are nominal categorical variables with two levels (Yes/No); i.e.
dichotomous variables.

Two common choices

1. Pearson chi-square test for an association: appropriate if no more than 20% of the
expected cell counts are less then 5 and none is less than 1.

2. Fisher’'s exact test: nonparameteric analog to the Pearson test. Useful when the
sample size is small.



SAS Program and Output

proc freq data=uialcohol;
weight N;

table Binge*Greek / chisq;

run;
The FREQ Procedure
Table of Binge by Greek
Binge Greek
Frequency
Percent

Row Pct
Col Pct No Yes

No 363 83
24.73 5.65
81.39 18.61
36.78 17.26

Yes 624 398
42 .51 27 .11
61.06 38.94
63.22 82.74

Total 987 481
67.23 32.77

Total

446
30.38

1022
69.62

1468
100.00

Statistics for Table of Binge by Greek

Statistic DF Value Prob
Chi-Square 1 58.2732 <.0001
Likelihood Ratio Chi-Square 1 62.0183 <.0001
Continuity Adj. Chi-Square 1 57.3539 <.0001
Mantel-Haenszel Chi-Square 1 58.2335 <.0001
Phi Coefficient 0.1992
Contingency Coefficient 0.1954

Cramer's V 0.1992

Fisher's Exact Test

Cell (1,1) Frequency (F) 363

Left-sided Pr <= F 1.0000

Right-sided Pr >= F 2.949E-15

Table Probability (P) 1.998E-15

Two-sided Pr <= P 4.174E-15

Sample Size = 1468
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Interpretation
e The null and alternative hypotheses are
Ho: no association
Ha: association

e The sample size is large enough to satisfy the assumptions of the Pearson test.
SAS will print a warning if too many of the expected cell counts are less than 5.

e Pearson’s test gives a chi-square statistic of 58.3 with a p-value < 0.0001. At the
5% level of significance, there is a significant association between Binge Drinking
and Greek membership.

¢ Note that, in this case, Fisher’s exact test gives the same conclusion. This is not
necessarily always the case. The advantage of Fisher’s test is that it is appropriate
regardless of the sample size.

Questions
e Are Greeks more or less likely to binge drink?
¢ How would the analysis differ if the study design were case-control or cohort?

11
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2.1 Introduction

2.1.1 Data Management

Data management refers to the creation, storage, and manipulation of data. The
popularity of the SAS Software Environment is due in large part to its extensive collection
of powerful data management procedures. In this class, we will rely primarily on the SAS
DATA step procedure for data processing. This procedure provides a general-purpose
programming language for data management and will be used to perform the following
tasks:

e Entering raw data to create SAS datasets

Importing data into SAS datasets

Creating new SAS datasets by subsetting, merging, modifying, or updating existing
datasets

Constructing new variables from existing datasets
Exporting SAS data and results for use in external software programs

In addition to these tasks, we will also use SAS as our primary data analysis software.
Plotting, however, will be performed in the R software environment (http://www.r-
project.org) due to its superior graphics capabilities. Thus, we will cover the basics of
data management in R.

12
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2.1.2 lowa Radon Study Example

Four-hundred thirteen lung cancer cases and six-hundred fourteen population-based
controls were enrolled in the lowa Radon Lung Cancer case-control study. The
investigators were interested in assessing the effect of radon exposure on lung cancer
risk. Listed below is a subset of the variables collected in the study.

Variable | Description Values
case Lung cancer indicator 1 = case
0 = control
age Age at enrollment (control) or continuous
diagnosis (case)
pyr Cigarette pack-years continuous: 44-85
school | Attained education level 1 = grade school
2 = high school
3 = some college
4 = college degree
5 = beyond college
wim20 | 20-year radon exposure continuous: 1-92

We will consider a few basic techniques for creating and manipulating datasets for the
radon data in SAS.

13



2.1.3 Entering Data
SAS Program

data radon;
input case age pyr school wlm20;
cards;
1 65.478439425 60.699691992 1 4.6608462927
59.159479808 0.5 4 12.691266326
0 75.258042437 0 5 11.14448953
1 66.179329227 29.75 2 7.688580114
1 81.037645448 115.02659138 2 5.1763967405
1 52.405201916 20.109548255 3 5.6601141221
run;
Syntax

e This DATA step defines a new SAS dataset named irlcs.

¢ input defines the variables in the dataset. By default, variables are assumed to be
numerical. To designate a variable as a character variable, insert a “$” after the
name in the input statement.

e The cards statement precedes the data that will comprise the dataset.

14



2.1.4 Importing Data
SAS Program

proc import datafile="L:\Bios203\irlcs.txt" out=irlcs dbms="TAB" replace;

Syntax
e The IMPORT procedure reads data from an external file into a SAS dataset.
e datafile is the external file name.
e out specifies the name of the SAS dataset to be created.

e dbms specifies the type of data to be imported. Here, “TAB” indicates that the data
are stored in a tab-delimited text file. Other file types are available including
“EXCEL2002” for importing data from a Microsoft Excel spreadsheet.

R Program

irlcs <- read.delim("L:/Bios203/irlcs.txt")

Syntax

e ‘read.delim’ reads a tab-delimited text file and creates a data frame from it. See
‘read.table’ for a more general R import function.

15



2.1.5 Exporting Data
SAS Program

proc export outfile="L:\Temp\irlcs.txt" data=irlcs dbms="TAB" replace;

Syntax
e The EXPORT procedure saves a SAS dataset to an external file.
e outfile is the external file name.
e data specifies the name of the SAS dataset.

e dbms specifies the type of data to be exported. The file type options are the same
as those for the IMPORT procedure

16



R Program
write.table(irlcs, "L:/Temp/irlcs.txt", quote=F, sep="\t", row.names=F)

Syntax
e ‘write.table’ saves the specified data frame to an external text file.

e quote is a logical argument indicating whether values of character variables should
be enclosed in quotation makes.

e sep is a character string giving the delimiter; “\t” indicates a tab.

e row.names is a logical argument indicating whether the row names in the data
frame are to be outputted.

17



2.1.6 Modifying Existing Datasets
SAS Program

data newirlcs;

set irlcs;

smk_ever = (pyr > 0);

college = (school = 3) or (school = 4) or (school = 5);
)3

In wlm20 = log(wlm20
run;

Syntax

e A new SAS dataset, newirlcs, is created from an existing one, irlcs, in this DATA
step.

e set allows for the inclusion of data from an existing SAS dataset.
¢ New variables may be defined in the DATA step.

e smk_ever is created from the pyr variable. It will take on a value of 1 if pyr is
positive and O otherwise.

e college is created from the school variable. It will take on a value of 1 if school
equal 3, 4, or 5 and a value of O otherwise.

¢ In_wlm20 is the result of applying the natural log transformation to wimz20.

18



2.2 Descriptive Summaries for Numerical Data

2.2.1 Univariate Statistics

The UNIVARIATE procedure in SAS provides data summarization methods that produce
univariate statistics and information on the distribution of numerical variables. PROC
UNIVARIATE provides:

e Descriptive statistics based on moments, such as the mean, standard deviation,
and standard error

e Median, mode, range, and quantiles

¢ Plots of the data distribution

e Shapiro-Wilk tests of normality

e Paired t-test, sign test, and Wilcoxon signed rank test for use with differenced data

19



SAS Program and Output

proc univariate normal data=newirlcs;
class case;
var wlm20;

run;

Syntax
e The normal option specifies that tests of Normality be performed.

e class specify that the results be generated separately for each level of the given
variable. In this example, summary statistics are calculated separately for the
cases and controls in the radon study.

20



The UNIVARIATE Procedure
Variable: WLM20

CASE = 0 Quantiles (Definition 5)
Moments Quantile Estimate
N 614 Sum Weights 614 100% Max 69.65952
Mean 10.3672855 Sum Observations 6365.51331 99% 52.91604
Std Deviation 8.35364296 Variance 69.7833507 95% 24.10922
Skewness 3.09058311 Kurtosis 14.6680267 90% 18.59181
Uncorrected SS 108770.288 Corrected SS 42777 .194 75% Q3 13.38010
Coeff Variation 80.5769547 Std Error Mean 0.33712559 50% Median 7.87101
25% Q1 5.34678
10% 3.36676
Basic Statistical Measures 5% 2.78499
% 2.31351
Location Variability 0% Min 1.42265
Mean 10.36729 Std Deviation 8.35364
Median 7.87101 Variance 69.78335 Extreme Observations
Mode . Range 68.23687
Interquartile Range 8.03331 | ------ Lowest----- ----- Highest-----
Value Obs Value Obs
Tests for Location: Mu0=0
1.42265 151 57.3208 959
Test -Statistic- @ ----- p vValue------ 1.89906 1022 57.4753 402
2.08609 931 63.5324 649
Student's t t 30.752 Pr > |t <.0001 2.14718 963 64.6272 990
Sign M 307 Pr >= |M| <.0001 2.20491 962 69.6595 987
Signed Rank S 94402.5 Pr >= |§| <.0001
Missing Values
Tests for Normality
----- Percent Of-----
Test --Statistic--- = ----- p vValue------ Missing Missing
Value Count All Obs Obs
Shapiro-Wilk W 0.732898 Pr < W <0.0001
Kolmogorov-Smirnov D 0.159199 Pr > D <0.0100 . 5 0.81 100.00
Cramer-von Mises W-Sg 5.396563 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 31.99803 Pr > A-Sq <0.0050
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Normality Test Result

The Shapiro-Wilk test can be used to assess whether the data are normally distributed.
The null and alternative hypotheses for this test are:

Ho: Data are normally distributed
Ha: Data are not normally distributed

Conclusion: At the 5% level of significance, the WLM20 measurements are not normally
distributed (p < 0.0001).
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2.2.2 Plots
R Program and Output

# Histogram Plots

windows (9,5)

par(mar=c(5,4,4,1), mfrow=c(1,2))

hist (irlcs$WLM20[irlcs$CASE==0], main="Controls", xlab="WLM Radon Exposure")
hist(irlcs$WLM20[irlcs$CASE==1], main="Cases", xlab="WLM Radon Exposure")

# Box Plots
windows (7,6)
par(mar=c(3,4,1,1))

boxplot (WLM20 ~ CASE, data=irlcs, xlab="", ylab="WLM Radon Exposure", axes=F)
axis(1, at=c(1, 2), labels=c("Controls", "Cases"))

axis(2)

box ()

Syntax

e ‘windows’ opens a new graphics window of the specified (or default) size.

e ‘par’ sets or queries graphics parameters for the active window: mar is vector giving
the bottom, left, top, and right margin sizes, respectively; mfrow is a vector setting
the number of rows and columns of plots to display.
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Guidelines for Formatting Plots

Plots provide graphical summaries of data. They should be self-explanatory and
understandable to all other researchers involved in the project.

Use descriptive labels for the axes. If a qualitative variable is plotted, use the
category names as labels rather than any arbitrary numeric values that may be
used to code the variable in the dataset. Labels for quantitative variables should
describe the variable and give the units of measurement; avoid using variable
names from the dataset as labels.

Plots should be interpretable if displayed as a grayscale image. Be careful about
using color in analysis reports and manuscripts, since readers may want to print out
a black-and-white copy.

Include captions with your plots. Descriptive captions often indicate the type of plot,
the data being plotted, the source of the data, and any other features that are being
highlighted by the plot.

Be consistent with capitalization and punctuation. Decide whether to capitalize the
first letter of all words in the caption and whether to end captions with a period do
so for all plots.

Use plot titles sparingly. Captions are the best place to describe the plot; an
additional plot title is generally not needed.

26



2.3 Descriptive Summaries for Tabular Data

2.3.1 Frequency Tables

The FREQ procedure in SAS provides tabular summaries for categorical data. For one-
way tables, PROC FREQ can compute binomial-based test statistics for proportions. For
two-way tables, PROC FREQ computes chi-square test statistics and measures of
association. For n-way tables, PROC FREQ does stratified analysis, including the
calculation of stratum-specific and pooled summary statistics.

27



SAS Program and Output

proc freq data=newirlcs;
tables school;
tables college / binomial;
tables case*school / chisq;
run;

Syntax

e A frequency table will be provided for variables that are individually listed in the
tables statement; contingency tables for variables that are listed together with the *
symbol.

e Estimated proportions, exact and approximate 95% confidence intervals may be
obtained for dichotomous variables using the binomial option.

e The chi-square test for an association may be applied to contingency tables via the
chisq option.

28



The FREQ Procedure

Cumulative Cumulative
SCHOOL Frequency Percent Frequency Percent
1 89 8.67 89 8.67
2 535 52.09 624 60.76
3 288 28.04 912 88.80
4 82 7.98 994 96.79
5 33 3.21 1027 100.00
Cumulative Cumulative
college Frequency Percent Frequency Percent
0 624 60.76 624 60.76
1 403 39.24 1027 100.00

Binomial Proportion
for college = 0

Proportion 0.6076
ASE 0.0152
95% Lower Conf Limit 0.5777
95% Upper Conf Limit 0.6375
Exact Conf Limits

95% Lower Conf Limit 0.5770
95% Upper Conf Limit 0.6376

Test of HO: Proportion = 0.5

ASE under HO 0.0156
z 6.8962
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Sample Size = 1027

29

Table of CASE by SCHOOL

CASE SCHOOL

Frequency

Percent

Row Pct

Col Pct 1 2 3 5

0 47 299 183 60 25
4.58 29.11 17.82 5.84 2.43
7.65 48.70 29.80 9.77 4.07
52.81 55.89 63.54 73.17 75.76
1 42 236 105 22 8

4.09 22.98 10.22 2.14 0.78
10.17 57.14 25.42 5.33 1.94
47.19 44 .11 36.46 26.83 24.24

Total 89 535 288 82 33
8.67 52.09 28.04 7.98 3.21

Statistics for Table of CASE by SCHOOL

Statistic DF Value Prob

Chi-Square 4 16.4845 0.0024

Likelihood Ratio Chi-Square 4 17.0087 0.0019

Mantel-Haenszel Chi-Square 1 15.7067 <.0001

Phi Coefficient 0.1267

Contingency Coefficient 0.1257

Cramer's V 0.1267

Sample Size = 1

027

Total

614
59.79

413
40.21

1027
100.00



Association Test Result

The chi-square test can be used to assess whether there is an association between two
categorical variables. The null and alternative hypotheses for this test are:

Ho: There is no association
Ha: There is an association

Conclusion: At the 5% level of significance, there is an association between case-control
status and education (p = 0.0024).
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2.4 Pairwise Association for Numerical Data

2.4.1 Correlation Analysis

The CORR procedure in SAS is a statistical procedure for numerical random variables
that computes correlation coefficients, including:

e Pearson correlation
e Spearman rank-order correlation
e Pearson, Spearman, and Kendall partial correlation

SAS Program and Output

proc corr pearson spearman data=newirlcs;
var pyr wlm20;
run;

Syntax

e spearman requests the Spearman rank-order correlation coefficients; pearson
requests the Pearson correlation coefficients. Pearson is the default, unless
otherwise specified.

31



The CORR Procedure

2 Variables: PYR WLM20
Simple Statistics
Variable N Mean Std Dev Median Minimum Maximum
PYR 1027 19.82656 25.65853 3.85000 0 138.45175
WLM20 1027 10.64205 8.89201 8.17985 1.42265 91.53930
Pearson Correlation Coefficients, N = 1027 Spearman Correlation Coefficients, N = 1027
Prob > |r| under HO: Rho=0 Prob > |r| under HO: Rho=0
PYR WLM20 PYR WLM20
PYR 1.00000 -0.01254 PYR 1.00000 -0.01560
0.6882 0.6175
WLM20 -0.01254 1.00000 WLM20 -0.01560 1.00000
0.6882 0.6175
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lowa Radon Study Results

The correlation coefficient may be used to assess whether there is an association
between two quantitative variables. The null and alternative hypotheses for this test are:

Ho: The two variables are not correlated
Ha: They are correlated

Conclusion: At the 5% level of significance, pack-years is not correlated with radon
exposure (p = 0.6175).
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2.5 Two-Sample Parametric Test for Numerical Data

2.5.1 Two-Sample T-Test

The TTEST procedure in SAS performs t tests for one sample, two samples, and paired
observations. The one-sample t-test compares the mean of the sample to a given
number. The two-sample t-test compares the mean of the first sample minus the mean of
the second sample to a given number. The paired observations t-test compares the
mean of the differences in the observations to a given number.

SAS Program and Output

proc ttest data=newirlcs;
class case;
var wlm20;

run;

Syntax
e Grouping variables are listed in the class statement.
¢ Analysis variables are listed in the var statement.

e The paired statement may be used in place of the class and var statement to
perform a paired t-test. It has the general form: paired <variable 1>*<variable 2>;

34



The TTEST

Variable
WLM20

WLM20
WLM20

Variable
WLM20

WLM20
WLM20

Variable

WLM20
WLM20

Variable

WLM20

Procedure
Statistics
Lower CL Upper CL Lower CL
CASE N Mean Mean Mean Std Dev St
0 614 9.7052 10.367 11.029 7.9111 8
1 413 10.119 11.051 11.982 9.0178
Diff (1-2) -1.793 -0.683 0.4269 8.5213
Statistics
CASE Std Err Minimum Maximum
0 0.3371 1.4227 69.66
1 0.474 2.0461 91.539
Diff (1-2) 0.5658
T-Tests
Method Variances DF t Value Pr > |t]
Pooled Equal 1025 -1.21 0.2274
Satterthwaite Unequal 797 -1.17 0.2405
Equality of Variances
Method Num DF Den DF F Value Pr > F
Folded F 412 613 1.33 0.0014
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.3536
9.633
8.89

Upper CL
Std Dev

8.849
10.339
9.2923



lowa Radon Study Result

The two-sample t-test may be used to asses the difference in means between two
independent groups. The test assumes that the mean difference has a t-distribution.
This assumption is appropriate if 1) the variable is normally distributed, or 2) the sample
sizes are “large” (rule of thumb: n;,n, >30). The associated null and alternative

hypotheses are:

Ho: The group means are equal
Ha: The mean for group 1 is (less than/not equal to/greater than) that for group 2

Conclusion: At the 5% level of significance, there is no evidence of a difference in mean
radon exposures between cases and controls (p = 0.2405).
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2.6 Two-Sample Non-Parametric Test for Numerical Data

2.6.1 Rank-Based Tests

The NPAR1IWAY procedure in SAS performs nonparametric tests for location and scale
differences for a one-way classification of subjects, including:

o the Wilcoxon rank-sum test
o the Kruskal-Wallis test

SAS Program and Output

proc npariway wilcoxon data=newirlcs;
class case;
var wlm20;

run;

Syntax

e The wilcoxon option will request the Wilcoxon rank-sum test (in the case of two
groups) and the Kruskal-Wallis test.

e Grouping variables are listed in the class statement.
e Analysis variables are listed in the var statement.
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The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable WLM20
Classified by Variable CASE

Sum of Expected Std Dev Mean
CASE N Scores Under HO Under HO Score
1 413 217342.0 212282.0 4660.85021 526.251816
0 614 310536.0 315596.0 4660.85021 505.758958

Wilcoxon Two-Sample Test
Statistic 217342.0000

Normal Approximation

z 1.0855
One-Sided Pr > Z 0.1388
Two-Sided Pr > |Z| 0.2777
t Approximation

One-Sided Pr > Z 0.1390
Two-Sided Pr > |Z| 0.2779

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 1.1786
DF 1
Pr > Chi-Square 0.2776

38



lowa Radon Study Results

The Wilcoxon rank-sum test may be used to compare the distribution of a given variable
between two independent groups. This test is a non-parametric analog to the two-
sample t-test. The associated null and alternative hypotheses are:

Ho: The variable is equally distributed in the two groups
Ha: The distribution in group 1 is shifted to the (left/left or right/right) of that in group 2

Conclusion: At the 5% level of significance, there is no evidence that the radon
exposures differ systematically between cases and controls (p = 0.2777).
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3.1 Overview
For now, we will concentrate on categorical measures of exposure.

e Measures of association involve a direct comparison of frequency counts across
different values or categories of a risk factor.

e These measures rely on the selection of an appropriate reference population.
o Exposed vs. non-exposed
o Female vs. male
o Older age group vs. youngest age group
o Current or previous smokers vs. nonsmokers

e We will cover the following categorical measures of association:

1. Relative Risk
2. Odds Ratio
3. Correlation
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3.2 Data Layouts

3.2.1 Total Number of Cases and Non-cases

Multiple Exposure Categories

Our focus in this section will be on the number of observed diseased/non-diseased and
exposed/unexposed subjects in the study. Such data could be derived from any study
design (cohort, case-control, cross-sectional, etc.).

Diseased Exposure Levels Totals
X1 X2 s X

Yes a1 a a Ny

No b, b, b, Nno

Totals m1 m5 m; n

where
e a; and b; are the number of diseased and non-diseased subjects at exposure level i.

e n;and n, are the total number of diseased and non-diseased subjects, respectively.
e m;is the total number of subjects at exposure level i.
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Two Exposure Levels
The situation of two-exposure levels which often arises in practice will be given a slightly
different notation.

Diseased
Exposed Yes NG Totals
Yes a b a+b
No C d c+d
Totals a+c b+d n
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3.3 Relative Risk

3.3.1 Estimation

A ratio comparison of two risk estimates is called a risk ratio or Relative Risk (RR). The

relative risk of disease for the j”" exposure category, relative to the i exposure category,
may be calculated directly as

RR:F>r[D|Ej]:ﬂéaj/mj
Pr[DIE;] = a/m,

where
e 7; and z; are the probability of disease for the i and " exposure categories,

e a; and g are the number of diseased subjects within each exposure category.

e m; and m; are the total number of subjects (diseased plus non-diseased) within each
exposure category.

L : Aa/(a+b
e For 2 x 2 tables the relative risk formula may be written as RR = M

c/(c+d

N
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Notes

e This estimator assumes that all subjects are followed for the duration of the study;
I.e. no loss to follow-up.

e Itis only appropriate if subjects are not enrolled conditional on their disease status.
In other words, subjects must be a sampled independent of their disease status.

3.3.2 Confidence Interval

Approximate Method

The 95% confidence interval is based on a normal theory approximation for relative risk
on the natural-log scale (Katz et al. 1978)

1 1 1 1

INRR + 2z J—— + = — .
%9°Va a+b ¢ c+d

Exponentiation of this result yields the desired confidence interval for the relative risk on
the original scale

1 1 1 1
RRxeXp{izo'%\/g_aer+E_c+d}'
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Example
Consider the following data from a cohort study

Exposed Yes Diseased NG Totals
Yes 40 80 120
No 60 320 380
Totals 100 400 500

The relative risk of disease for subjects who are exposed versus those unexposed is

_40120 _, .,
60/380

The 95% confidence interval for the relative risk estimate of 2.11 is

2.11x exp{i1.96\/]/40 ~1/120+1/60 —1/380}

(2.11x0.709,2.11x1.410)
(1.50,2.97)
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Conclusions

e Exposed individuals are 2.11 times as likely to develop disease as those who are
unexposed. The risk of disease for exposed individuals is 2.11 times the risk for the

unexposed.

o We are 95% confident that the interval (1.50, 2.97) contains the true risk of disease
for exposed versus unexposed individuals.*

e Exposure has a statistically significant positive effect on the risk of disease.

¢ Why would we not be able to make this statement if the study had used a case-
control design?

* The explicit interpretation is that if the study was repeatedly carried out on the same
population, 95% of the resulting confidence intervals would contain the true parameter

(the relative risk).
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SAS Code and Output

data rrexample; proc freq order=data data=rrexample;
input Case $ Exposed $ N; weight N;
cards; tables Exposed*Case / relrisk;
Yes Yes 40 run;
Yes No 60
No Yes 80
No No 320

Syntax

o SAS expects the exposure reference cell to be given in the second column of the
table. To ensure that this happens, the following steps were taken:

1. The exposed subjects are entered first in the data set.
2. The order=data option was specified in PROC FREQ.

3. A table with exposure as the row variable and case status as the column variable
Is requested via the tables Exposure*Case statement.

e The relrisk option generates relative-risk estimates for the specified frequency
tables.
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The FREQ Procedure

Table of Exposed by Case
Exposed Case
Frequency
Percent

Row Pct
Col Pct Yes No Total

Yes 40 80 120

8.00 16.00 24.00
33.33 66.67
40.00 20.00

No 60 320 380
12.00 64.00 76.00
15.79 84.21
60.00 80.00

Total 100 400 500
20.00 80.00 100.00

Statistics for Table of Exposed by Case

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (0dds Ratio) 2.6667 1.6681 4.2629
Cohort (Col1l Risk) 2.1111 1.4975 2.9762
Cohort (Col2 Risk) 0.7917 0.6925 0.9050

Sample Size = 500
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3.4 Odds Ratio

In a case-control study, where subjects are enrolled conditional on their disease status,
we cannot estimate exposure-specific rates, risks, or relative risks without additional
information. Unfortunately, the relative risk is often the population parameter of interest.

3.4.1 Estimation

Recall the general notation used in the table

Diseased
Exposed Yes NG Totals
Yes a b a+b
No C d c+d
Totals a+c b+d n

The odds of exposure among the diseased is

Pr[§|D] A a/(a+c)
PrlEID| c/(a+c)

Ol
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whereas, the odds among the non-diseased is

PrlEID], b/(b+d)
Pr{EID| d/(b+d)

oo

The ratio of these two odds is

A @/c _ad
b/d  bc’

OR =
Notes
e The ratio of these two odds is known as the Odds Ratio (OR).

e The numerator is the odds of exposure among diseased subjects; the denominator
Is the odds of exposure among non-diseased subjects.

e The odds ratio is symmetric with respect to disease and exposure status.
Specifically, the formula for the disease odds ratio is the same as that for the
exposure odds ratio (given above). Hence, the odds ratio is often interpreted as the
odds of disease for the exposed, relative to the unexposed subject.

e The odds ratio can be estimated regardless of the study design.
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3.4.2 Confidence Intervals

Approximate Method
The 95% confidence interval for the odds ratio (Woolf 1955) is

ORxexp{ﬂo_ng?%;d&}

Example
From the example data used to compute the relative risk

Diseased

Exposed Yes NG Totals
Yes 40 80 120
No 60 320 380
Totals 100 400 500

the odds ratio is found to be OR = ad = (40)(320) =2.67.
bc  (80)(60)
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The 95% confidence interval for the odds ratio of 2.67 is

+—+
40 80 60 320
(2.67x0.626,2.67 x1.599)
(1.67,4.27)

2.67xexp{il.96\/ 1 + 1.1 1 }

Conclusions

e The odds of disease for exposed individuals is 2.67 times the odds for the
unexposed. The disease odds ratio for exposed individuals, relative to those who
are unexposed, is 2.67.

o We are 95% confident that the interval (1.67, 4.27) contains the true odds of
disease for exposed versus unexposed individuals.

e There is a statistically significant positive association between exposure and
disease.
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3.4.3 Relationship between the Relative Risk and Odds Ratio

Note that the relative risk is defined as
"R Pr[Disease|Exposed]  Pr[D|E]
- Pr[Disease|Unexposed] Pr[DIE]’

This can be rewritten as

Pr[DIE]  Pr[DE]/Pr[E]

Pr[DIE] Pr[DE]|/Pr[E]

Pr[DE]Pr|DE | Pr[E|Pr|DE

Pr[DE |Pr| DE | Pr[E] Pr| DE
Pr[DIE] 1-Pr[D|E]

:ORT :OR = —=
Pr[DIE] 1-Pr|DIE |

RR =

If the overall probability of disease is low in the exposed and unexposed populations, so
that Pr[D|E] and Pr| D|E | are near zero, then

N Pr[EID]/Pr[EID] _
PrlEID|/Pr[ED| —
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The qualification that the overall disease risk is low is referred to as the rare disease
assumption. Under the rare disease assumption, the odds ratio is an approximation to
the relative risk of disease.

Comments on the Odds Ratio

The odds ratio is a useful measure of association in its own right. In the special
situation where the disease of interest is rare, the odds ratio is also an
approximation to the relative risk.

The odds ratio is equally valid for data from case-control, cohort, or cross-sectional
studies. In all of these designs, the calculated odds ratios are estimating the same
population parameter.

It can be interpreted either as the odds of disease for exposed versus unexposed
individuals, or the odds of exposure for diseased versus non-diseased individuals.

When computing the odds ratio from tabular data, pay attention to the order of the
categories in the table.

Odds ratios can be produced in SAS using the same PROC FREQ statement used
to obtain relative risk estimates (see SAS code and output starting on page 47).
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3.5 Pearson Correlation
Recall that, in the case of normally distributed data, the correlation coefficient is defined

as

_ cov(X,Y)
o \/var(X)var(Y)

and has the following properties:

Its value ranges from -1 to 1.
It measures the extent of the linear association between variables X and Y.

Values of 1 and -1 indicate a positive and negative linear association, respectively,
with all points lying on a straight line.

A value of 0 indicates no linear association.

r? is the amount of variability in X and Y explained by the linear association between
the two.

The Pearson correlation coefficient is an estimate of the population correlation and is
computed as

) Z(Xi _Y)(Yi _)7)
Jizm X)X -y) |
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If both variables are dichotomous, say, X is the exposure status (0O = unexposed; 1 =
exposed) and Y is the disease status (0 = non-case; 1 = case), then the Pearson formula

simplifies to
. (ad —bc)
V mlm2n1n2
Notes

This measure of association is appropriate for any study design.

A value of 1 indicates that all diseased subjects are exposed and all non-disease
subjects are unexposed; a perfect positive association

A value of -1 indicates that all disease subjects are unexposed and all non-
diseased subjects are exposed; a perfect negative association

A value of 0 is equivalent to an odds ratio of 1; no association.

Can be obtained in SAS PROC FREQ by including the measures option in the
tables statement.

Example
The Pearson correlation coefficient for the relative risk example is

B (40 x 320 -80x 60)
380 x120 x 400 x 100

r =0.1873.
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4.1 Overview

Statistical inference provides a means for using sampling data to draw conclusions about
a larger population. It involves the estimation of population parameters, the
guantification of uncertainty, and the testing of hypotheses. In this section, we will
extend our discussion of measures of association to include inferential methods for

e Testing for an association between exposure and disease.

4.2 Relative Risk

Example
Recall the cohort data used previously to illustrate the relative risk and odds ratio.

Exposed Yes Diseased NG Totals
Yes 40 80 120
No 60 320 380
Totals 100 400 500
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The estimates were

a/(a+b) 40/120
c/(c+d) 60/380
_ad _(40)(320)

OR e (80)(60) =2.67.

RR =

4.2.1 Hypothesis Testing

For now, let us focus on the comparison of disease risk across two exposure levels. We
will eventually address the general problem of making comparisons across 2 or more
levels of an exposure variable. Suppose that we are interested in testing the hypotheses

H,:RR =1
H,:RR=1

This is something that we already know how to do. Remember that the relative risk is
computed as the ratio of two probabilities

_ Pr[Disease|Exposed] 1,
~ Pr[Disease|Unexposed] 7;
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Thus, the hypotheses can be rewritten as a comparison of the probabilities between two
iIndependent groups.

Hy:m =7,
H, 7 #m,
Two potential options are
e Pearson chi-square test for an association, or

e Fisher's exact test.

Pearson Chi-Square Test

The Pearson test can be used to test for an association between the levels of two
categorical variables. Since it is based on normal theory methods, it is only appropriate
if the sample size is large enough. Our specific interest is in using the test to compare
the probability of disease between an exposed and unexposed group of subjects.

Comments on the Pearson test when the two variables are dichotomous (a 2x2 table):
e The sample size is deemed large enough if none of the expected cell counts e; <5,
where e; =mn; /n.

e The Person chi-square test is equivalent to the two-sample test for binomial
proportions.

e The null hypothesis is one of no association between the two variables; the
alternative is that there is an association.
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e The test statistic is

for which the 2-sided p-value is
p= Pr[;gf > XZ].

Example
The Pearson chi-square test statistic evaluates to
, 500(40x320-80x60
X2 =
380x120x400x100

2
) =17.54

which gives a p-value of
p =Pr| z >17.54|=0.00003.

Therefore, the relative risk is significantly different from one (p < 0.0001). In particularly,
the relative risk estimate of 2.11 is significantly greater than one. There is a statistically
significant positive association between exposure and disease.
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Fisher's Exact Test

Fisher’s test is a non-parametric analog to the Pearson chi-square test. The test is
always appropriate and is particularly useful if the sample size is not large enough to use
the Pearson test. The hypotheses and conclusions are the same as before. We will rely
on SAS to carry out the test.

SAS Program and Output

data rrexample;
input Case $ Exposed $ N;
cards;
Yes Yes 40
Yes No 60
No Yes 80
No No 320

)
proc freq order=data data=rrexample;
weight N;

tables Exposed*Case / relrisk chisq nopercent nocol expected;
run;

Syntax

e nopercent and nocol suppress the printing of the overall and column percentages,
respectively, in the outputted table.

e expected adds the expected cell counts to the table.
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The FREQ Procedure

Table of Exposed by Case

Exposed Case
Frequency
Expected
Row Pct Yes No Total
Yes 40 80 120
24 96
33.33 66.67
No 60 320 380
76 304
15.79 84.21
Total 100 400 500

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (0Odds Ratio) 2.6667 1.6681 4.2629
Cohort (Col1 Risk) 2.1111 1.4975 2.9762
Cohort (Col2 Risk) 0.7917 0.6925 0.9050

Sample Size = 500
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Statistics for Table of Exposed by Case

Statistic DF Value Prob
Chi-Square 1 17.5439 <.0001
Likelihood Ratio Chi-Square 1 16.1557 <.0001
Continuity Adj. Chi-Square 1 16.4645 <.0001
Mantel-Haenszel Chi-Square 1 17.5088 <.0001
Phi Coefficient 0.1873
Contingency Coefficient 0.1841
Cramer's V 0.1873

Fisher's Exact Test

Cell (1,1) Frequency (F) 40
Left-sided Pr <= F 1.0000
Right-sided Pr >= F 4.659E-05
Table Probability (P) 3.008E-05
Two-sided Pr <= P 6.928E-05



4.3 Odds Ratio

4.3.1 Hypothesis Testing

The hypotheses of interest are

H, :OR =1
H, OR 1

which can be addressed with the same tests used for the relative risk; namely, the
Pearson chi-square and Fisher’s exact tests.
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4.3.2 Relationship between Confidence Intervals and Hypothesis Testing

Our hypotheses

H,:RR =1 H,:OR =1
and
H,:RR =1 H,:OR =1

can be tested using either confidence intervals or test statistics. Say we are interested in
conducting tests at the 5% level of significance.

The two options are for hypothesis testing are:

1. Confidence Interval Approach: If the 95% confidence interval does not contain 1,
then the null hypothesis is rejected in favor of the alternative.

2. Test Statistic Approach: If the p-value computed from the test statistic is less than
0.05, then the null hypothesis is rejected in favor of the alternative.

It would be nice if the two approaches always led to the same conclusion; that is, if they
were equivalent methods for testing the hypotheses.
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Counter-Example

Consider the SAS output, given on the following page, from the analysis of a hypothetical
dataset.

Notes

e Based on the 95% confidence interval of (0.9126, 22.1893) for the odds ratio, we
would fail to conclude that H, : OR = 1.

e Based on the 95% confidence interval of (0.8364, 13.2842) for the relative risk, we
would fail to conclude that H, : RR = 1.

e Of course, the conclusion based on the confidence interval for the odds ratio may
differ from that for the relative risk. This is relevant for studies in which either
measure of association is appropriate (e.g. cohort studies).

e Based on the Pearson chi-square statistic, we would reject the null hypothesis and
conclude that there is an association between exposure and disease (p = 0.0497).

e Based on Fisher's exact test, we would fail to conclude that there is an association
(p = 0.0653).

The confidence intervals and test statistics do not necessarily give equivalent results.
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The FREQ Procedure

Table of Exposed by Case

Exposed Case

Frequency|Yes No Total
Yes 14 28 42
No 2 18 20
Total 16 46 62

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (0Odds Ratio) 4.5000 0.9126 22.1893
Cohort (Col1 Risk) 3.3333 0.8364 13.2842
Cohort (Col2 Risk) 0.7407 0.5717 0.9597

Sample Size = 62
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Statistics for Table of Exposed by Case

Statistic DF Value Prob
Chi-Square 1 3.8525 0.0497
Likelihood Ratio Chi-Square 1 4.3363 0.0373
Continuity Adj. Chi-Square 1 2.7303 0.0985
Mantel-Haenszel Chi-Square 1 3.7904 0.0515
Phi Coefficient 0.2493
Contingency Coefficient 0.2419

Cramer's V 0.2493

Fisher's Exact Test

Cell (1,1) Frequency (F) 14

Left-sided Pr <= F 0.9922

Right-sided Pr >= F 0.0446

Table Probability (P) 0.0367

Two-sided Pr <= P 0.0653



4.4 Multi-Level Exposures

Our main focus has been on statistical tests for an association between a dichotomous
exposure (exposed versus unexposed) and disease. We now turn to methods for
assessing the effect of a categorical exposure with 2 or more levels. The notation in this
more general situation is

Diseased Exposure Levels Totals
X1 Xo X|

Yes a1 ao a Ny

No b, b, b n2

Totals m1 mo m; n

That is, interest lies in the association between a dichotomous disease variable and a
categorical exposure variable with | levels. The null hypotheses to be addressed are

Hy :RR, =RR; =...=RR, =1
and

Hy:OR, =OR; =...=0R, =1
where the first exposure category x; is taken as the reference group. As we will see, the
choice of a statistical test will depend on our specified alternative hypothesis.
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SHHS Example

The following data present subjects from the Scottish Heart Health cohort Study
(Tunstall-Pedoe et al., 1997) classified by cholesterol and coronary heart disease (CHD)

status.

Cholesterol Status
CHD 1 ow) [ 2 3 4 |5 (high) | 0@
Yes 15 20 26 41 48 150
No 798 794 791 785 777 3945
Totals 813 814 817 826 825 4095

Analysis Goal: Test for an association between cholesterol and risk of coronary heart
disease.

4.4.1 General Test for an Association
Suppose that we would like to address the following hypotheses:
Hy :RR, =RR; =...=RR, =1
H,  RR; #1, for some |

In other words, the null hypothesis is one of equal risk across all exposure levels, versus
the alternative that the risk differs between at least two of the levels.
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The hypotheses can be written equivalently as
Ha 7y # 7, for some i and |

where 7 is the probability of disease at exposure i. This is precisely the situation for
which the Pearson chi-square test of homogeneity is appropriate.

Pearson Chi-Square Test
The Pearson chi-square test statistic is calculated as

2
2 (observed-expected)”
X = Z Z expected Ar-1)(c-1)

rows columns

which, in our case, is
2

Z(n” e.jelj) - Z|2—1

2
X 2
i=1 j=1 :

where the expected number of subjects is computed as

e.. :%.

] n
The 2-sided p-value is

p:Pr[;az_lz XZ]
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Notes

e The test is appropriate if no more than 20% of the expected cell counts are less
than 5, and no expected count is less than 1. SAS will print a warning if this is the
case. Fisher’'s exact test can be used if this criterion is not satisfied; however, SAS
may not be able to carry out the exact test for large sample sizes.

¢ Note that we may reject the null hypothesis in favor of the alternative if any of the
relative risks is significantly different from one. There is no assumed ordering of the
relative risks or the exposure levels. Hence, this test is appropriate for nominal,
ordinal, or discrete exposure variables.

e May be used for the analogous test of equality across odds ratios.

SHHS Example

The first step is to calculate the expected cell counts. For instance, the expected
count in the first cell (CHD = No; Cholesterol Status = 1) is

o MmN _ (813)(150) 2978
1 4095

The complete set of calculations for the Pearson chi-square test statistic are given in
the following worksheet.
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2 2
L Nij Ci (n—&) | (n;—e) / €
1 1 15 29.78 218.45 7.34
1 2 20 29.82 96.37 3.23
1 3 26 29.93 15.42 0.52
1 4 41 30.26 115.42 3.81
1 5 48 30.22 316.14 10.46
2 1 798 783.22 218.45 0.28
2 2 794 784.18 96.37 0.12
2 3 791 787.07 15.42 0.02
2 4 785 795.74 115.42 0.15
2 5 Yau 794.78 316.14 0.40
Test Statistic (X°) 26.32

The resulting p-value is Pr| 72 > 26.32|=0.00003. Therefore, there is a significant

association between cholesterol and CHD risk. The risk of disease is not equal across
the cholesterol categories.

An obvious follow-up question to ask is where do the cholesterol categories differ with
respect to the risk of CHD, and what is the direction of the association.
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SAS Program and Output

data shhs;
input Case $ Exposure N;
cards;
Yes 1 15
No 1 798
Yes 2 20
No 2 794
Yes 3 26
No 3 791
Yes 4 41
No 4 785
Yes 5 48
No 5 777

J

proc freq order=data data=shhs;

weight N;

tables Case*Exposure / chisq exact;
run;

Syntax

e For 2x2 tables, Fisher’s exact test is automatically performed when the chisq
option is given. For tables with more than two columns or rows, Fisher’s exact test
must be requested explicitly via the exact option.

72



The FREQ Procedure

Table of Case by Exposure

Case Exposure

Frequency

Percent

Row Pct

Col Pct 4 5 Total

Yes 15 20 26 41 48 150
0.37 0.49 0.63 1.00 1.17 3.66
10.00 13.33 17.33 27.33 32.00
1.85 2.46 3.18 4.96 5.82

No 798 794 791 785 777 3945
19.49 19.39 19.32 19.17 18.97 96.34
20.23 20.13 20.05 19.90 19.70
98.15 97.54 96.82 95.04 94.18

Total 813 814 817 826 825 4095
19.85 19.88 19.95 20.17 20.15 100.00

Statistics for Table of Case by Exposure

Fisher's Exact Test

Statistic DF Value Prob Table Probability (P) 1.523E-10
Pr <= P 2.813E-05

Chi-Square 4 26.3232 <.0001

Likelihood Ratio Chi-Square 4 26.4405 <.0001 Sample Size = 4095

Mantel-Haenszel Chi-Square 1 25.3900 <.0001

Phi Coefficient 0.0802

Contingency Coefficient 0.0799

Cramer's V 0.0802
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Pairwise Comparisons

In our example we rejected the null hypothesis and concluded that the risk of CHD was
not equal across all cholesterol levels. This global test of equality does not identify
specific difference in the relative risks. One method for doing so is to look at all pairwise
comparisons of the exposure levels.

e If there are | levels for the exposure variable, there will be | (1 —1)/2 pairwise
comparisons to be made.
e |f we use an «' level of significance for each of the pairwise comparisons, the

overall significance level will be o =1—(1- a')'("l)/z. A significance level of o = 0.05

is typically used in hypothesis testing. Thus, «' should be adjusted to ensure that
the desired overall level of significance is maintained.

e Two conservative methods for determining the significance level to be used in the
individual pairwise comparisons are

_a
1(1-1)/2
2. Probability Method: o’ =1-(1— )"

The Bonferroni method is used more often; however, the probability method is
slightly less conservative (see Table 1).

1. Bonferroni Method: o' =
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e Pairs of exposure categories can be compared individually using the Pearson chi-
square or Fisher’'s exact test, as usual.

Table 1. Adjusted significance level for use in statistical tests of multiple pairwise

comparisons.
Exposure Pairwise Overall Individual Test
Levels Comparisons | Significance Significance o'
I 1(1-1)/2 a Bonferroni | Probability
3 3 0.05 0.01667 | 0.01695
4 6 0.05 0.00833 | 0.00851
5 10 0.05 0.00500 | 0.00512

SHHS Example

In the test of global equality, we rejected the null hypothesis that the relative risks were
all equal to one (p < 0.0001). To determine where the cholesterol categories differ with
respect to CHD, we can perform pairwise comparisons of the exposure levels. For each
pair of exposure levels, the relative risk is computed and its significance tested using the
Pearson chi-square test.
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Cholesterol Status | RR p-value
2vs. 1 1.33 0.3949
3vs. 1 1.72 0.0847
4vs.1 2.69 0.0005
5vs. 1 3.15 | <0.0001
3vs. 2 1.30 0.3763
4vs. 2 2.02 0.0073
5vs. 2 2.37 0.0006
4vs. 3 1.56 0.0680
5vs. 3 1.83 0.0100
5vs. 4 1.17 0.4421

The Bonferroni method suggests a significance level of 0.005 for the individual pairwise
comparisons. Comparisons for which the p-value is less than the Bonferroni value are
deemed to be significant. Specifically, the relative risks are significant for the cholesterol
levels 4 vs. 1 (p = 0.0005), 5vs. 1 (p <0.0001), and 5vs. 2 (p =0.0006). The
associated relative risks indicate a positive association between elevated cholesterol and
disease risk.
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SAS Program and Output

proc freq order=data data=shhs;

where Exposure in (1,2);

weight N;

tables Exposure*Case / nopercent nocol norow relrisk chisq;
run;

Syntax

e The where statement can be used in any SAS procedure to restrict the analysis to
a subset of the original data. The statement here specifies that the analysis be
limited to the data for which the Exposure variable equals 1 or 2.
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The FREQ Procedure

Table of Exposure by Case
Exposure Case
Frequency |Yes No
1 15 798
2 20 794
Total 35 1592

Estimates of the Relative Risk (Row1/Row2)

Total

813

814

1627

Type of Study Value 95% Confidence Limits
Case-Control (0dds Ratio) 0.7462 0.3793 1.4680
Cohort (Coltl Risk) 0.7509 0.3872 1.4563
Cohort (Col2 Risk) 1.0063 0.9919 1.0209

Sample Size = 1627

Statistics for Table of Exposure by Case

Statistic DF Value Prob
Chi-Square 1 0.7237 0.3949
Likelihood Ratio Chi-Square 1 0.7262 0.3941
Continuity Adj. Chi-Square 1 0.4622 0.4966
Mantel-Haenszel Chi-Square 1 0.7233 0.3951
Phi Coefficient 0.0211
Contingency Coefficient 0.0211

Cramer's V 0.0211

Fisher's Exact Test

Cell (1,1) Frequency (F) 15

Left-sided Pr <= F 0.2486

Right-sided Pr >= F 0.8465

Table Probability (P) 0.0951

Two-sided Pr <= P 0.4949
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4.4.2 Tests for Trend

In the Scottish Heart Health Study, as is often the case, the levels of the exposure
variable are ordered. Rather than testing for a general association between exposure
and disease, interest commonly lies in testing for a consistent trend in the risk of disease
across the exposure levels. Such a trend is also known as a dose-response effect. We
now focus on tests to address the hypotheses

Hy: 1<RR; <RR3<...<RRjor1>RR, >RR3>...>RR|

Specifically, the alternative hypothesis is that disease risk is increasing or decreasing
across the levels of the exposure variable. An examination of the relative risk estimates
can be used to determine the actual direction of the association.
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Cochran-Mantel-Haenszel Test
One popular statistic for performing a test of trend is

,_ny(n-1) (Z ni“‘T L
X o, lel(xj_ﬂ)z[mj] X1

where

| mj
H=200% n
and x; is the user-specified weight, the numeric value, for the ™ exposure category.

e This is referred to as the Cochran-Mantel-Haenszel row mean scores test statistic.
e The choices of weights that we will consider are

1. Integer Weights: Assigns integer values, say, 1,...,| to the exposure levels. This
assumes that the rate of increases/decreases is constant across the levels.

2. Ranks: Column ranks are defined as
X, =(m, +1)/2

-1

XJ o k=1

m, +(mj +1)/2

l.e. the column rank based on the cumulative number of exposed individuals.
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e Other choices that may be of interest are the mean, median, and midpoint values of
the exposure variable within each category.

e The Cochran-Mantel-Haenszel test is more powerful for detecting positive/negative
trends in the data than the Pearson chi-square test for a general association. Tests
for trend also provide stronger evidence of a causal relationship.

SHHS Example

SAS was used to carry out the Cochran-Mantel-Haenszel test using integer weights for
the cholesterol categories. The test statistic value was 25.39 with a p-value <0.0001.
Thus, at the 5% level of significance, it can be concluded that there is a significant dose-
response effect of cholesterol on the risk of CHD. The estimated relative risks from our
multiple comparisons example are

Cholesterol Status
1 2 3 4 5
RR 1.00 1.33 1.72 2.69 3.15

which indicate a positive association between elevated cholesterol and risk of CHD.
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SAS Program and Output

proc freq order=data data=shhs;

weight N;

tables Case*Exposure / cmh scores=table;
run;

Syntax
e The cmh option request that the Cochran-Mantel-Haenszel test be performed.

e scores is used to select the weights to be used in computing the row mean scores
test statistic.

0 scores=table is the default and uses the values of the column variables as the
weights.

o0 scores=rank requests that the ranks be used.
e Disease must be given as the row variable and Exposure as the column variable.
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The FREQ Procedure

Table of Case by Exposure

Case Exposure

Frequency

Percent

Row Pct

Col Pct

Yes 15 20 26 41 48
0.37 0.49 0.63 1.00 1.17
10.00 13.33 17.33 27.33 32.00
1.85 2.46 3.18 4.96 5.82

No 798 794 791 785 777
19.49 19.39 19.32 19.17 18.97
20.23 20.13 20.05 19.90 19.70
98.15 97.54 96.82 95.04 94.18

Total 813 814 817 826 825
19.85 19.88 19.95 20.17 20.15

Summary Statistics for Case by Exposure

Total

150
3.66

3945
96.34

4095
100.00

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 25.3900 <.0001
2 Row Mean Scores Differ 1 25.3900 <.0001
3 General Association 4 26.3168 <.0001

Total Sample Size

4095
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lowa Radon Example
Subjects from the lowa Radon Lung Cancer case-control Study are classified by disease
and radon exposure status in the table below.

Lung Cancer Radon Exposure Totals
0-4.23 | 4.24-8.47 | 8.48-12.70 | 12.71-16.94 | >16.95

Yes 56 147 87 56 67 413

No 104 229 118 75 88 614

Totals 160 376 205 131 155 1027

Median Exposure | 3.16 6.18 10.50 14.58 21.16

If the medians are to be used as weights in the Cochran-Mantel-Haenszel test, we can
use those as the numeric values for the exposure variable in our dataset or compute the

statistic by hand.
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Table 2. Worksheet calculation of the Cochran-Mantel-Haenszel statistic for the lowa
Radon Lung Cancer Study data.

aj m. 2 m.
Exposure | Cases |Controls| Totals X, Xj— gy =% (X, - ) =
0-4.23 56 104 160 3.16 0.4285 0.4923 7.0860

4.24-8.47 147 229 376 6.18 2.1996 2.2626 5.0777
8.48-12.70 87 118 205 10.5 2.2119 2.0959 0.0709

12.71-16.94| 56 75 131 14.58 | 1.9769 1.8598 2.7888
16.95+ 67 88 155 21.16 | 3.4327 3.1936 19.1213
Totals 413 614 1027 10.2510 | 9.9041 34.1448

Chi-square | 2.4132
p-value 0.1203

At the 5% level of significance, we do not have evidence of a dose-response effect of
radon exposure on lung cancer risk (p = 0.1203).
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5.1 Introduction

When designing a study it is important to consider the sample size needed to provide a
reasonable opportunity to address the research questions of interest. We will examine
methods for estimating sample size requirements in the context of

1. Parameter Estimation
2. Hypothesis Testing.

Recall the following definitions related to hypothesis testing:

Significance Level — Probability of rejecting the null hypothesis when it is true; also
referred to as the Type | error rate ().

Power — Probability of rejecting the null hypothesis when it is false; 1 minus the Type Il
error rate (1- 5).
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5.1.1 Notation

We will primarily consider sample size estimation in cases where the outcome of interest
Is dichotomous (i.e. diseased versus non-diseased) and comparisons are between two
groups (i.e. exposed versus unexposed).

Let i =1,2 index the two groups of exposed and unexposed individuals, respectively,
such that

T, Probability of disease (cohort) or exposure (case-control) in Group i

n. Number of subjects in Group i

r=n,/n, | Number of subjects in Group 2 relative to Group 1

5.1.2 Confidence Interval

In general, if a population parameter @ can be estimated with a sample statistic 4 that is

approximately normally distributed, then the associated confidence interval has the
general form

+7z

o
1-a/2 ﬁ y
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The parameters of interest in our sample size discussion are the disease probability,
odds ratio, and relative risk. The table below summarizes the forms of these parameters
for which the normal assumption is typically used in constructing confidence intervals.

Table 1. Common parameters and approximate standard errors

Parameter 0 a/ Jn
Disease Probability Vs 7(1- ﬂ)/\/ﬁ
Difference Ty = 7, \/72'1(1— ) +1 7, (1- ﬂz)/x/ﬁ

Log-Odds Ratio InL”Z/(l_ﬂz)J \/ﬂl( 1 1 /\/ﬁ

1- 72'1) i I, (1— 7z2)

\/1—7[1 +1—7Z'2 /\/ﬁ
a rr,

Log-Relative Risk In(ﬁ]

Where, in the two-group comparison, n, =n is the sample size for Group 1 and n, =rn is
the sample size for Group 2.
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5.2 Parameter Estimation
The sample size required to obtain a 100(1— a)% confidence interval of width W is

n= (221_0(/2 o/W )2.

Note that we could write the confidence interval of interest in terms of W such that

0+

A W
0%z, ., >

Jn

Proportion Example

A particular gene polymorphism has been identified as a cancer risk factor. Public health
officials would like to obtain 95% confidence intervals that are within 5% points of the
estimated prevalence of this particular gene. How many subjects should be sampled for
the estimation?
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Odds Ratio Example

A case-control study is being designed to study the effects of residential radon on the
risk of leukemia cancer. The study will enroll twice as many controls as cases, and the
investigators would like the confidence interval to be within 25% of the estimated odds

ratio. Approximately half of the control subjects are expected to have high radon
exposure.

5.3 Hypothesis Testing
The sample size needed for testing the two-sided hypothesis
Hy : 0 =06,
H,: 00,

with significance level « and power 1- 4, under the assumption that the true value of
the parameteris =46,, is

2
. (Zla/ZGO + ZlﬂO-Aj
‘90 o QA

If this is for a two-group comparison, then n, =n is the sample size for Group 1 and

n, =rn is the sample size for Group 2. For one-sided alternatives, « is substituted
fora/2 in the sample size formula.
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Sample Size Algorithm

1. Express the null and alternative hypotheses of interest in terms of the appropriate
population parameter in Table 1.

2. Compute the probabilities under the alternative hypothesis that the population
parameter 6 =6,. Use these in the standard deviation formula to calculate o, .

3. Compute the probabilities under the null hypothesis that the population parameter
0 = 6,. Use these in the standard deviation formula to calculate o,.

4. Insert 4,, 6,, o,, and o, into the sample size formula.

Proportion Example

A clinical trial is planned to study the efficacy of a new cancer treatment. Efficacy will be
measured as the proportion of patients that respond to the treatment. The investigators
would like to perform a 5% level test of the null hypothesis that the response rate is less
than or equal to 20% versus the alternative that it is greater than 20%. How many
subjects should be enrolled to have 80% power to detect a true response rate of 35%7?
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SAS Program and Output

proc power;
onesamplefreq test=z

alpha=0.05
power=0.80
sides=U
nullproportion=0.20
proportion=0.35
ntotal=.
method=normal;

run;

Syntax

e test indicates whether the test statistic is z, adjz, or exact. method specifies the
computational method: exact = binomial distribution, normal = approximation to the
binomial. The later must be used obtain sample size estimates.

e alpha gives the significance level of the test and power the test power. sides
indicates whether the alternative hypothesis is one-sided with the alternative in the
direction of the effect (1), two-sided (2), one-sided with the effect greater than the
null value (U), or one-sided with the effect less than the null value (L).

e nullproportion sets the proportion for the null hypothesis; proportion sets the
alternative value at which the study is powered.

e ntotal=. requests sample size estimates; alternatively, the sample size can be
given and power estimated with the option power=..
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The POWER Procedure
Z Test for Binomial Proportion

Fixed Scenario Elements

Method Normal approximation
Number of Sides u
Null Proportion 0.2
Alpha 0.05
Binomial Proportion 0.35
Nominal Power 0.8

Computed N Total

Actual N
Power Total
0.801 50
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Odds Ratio Example

For the leukemia case-control study described previously, suppose that a 5% level test is
planed to determine if the odds ratio for radon is significantly different from unity. As
before, it is expected that 50% of control subjects will have high radon exposure. How
many subjects should be enrolled to ensure 80% power to detect a true odds ratio of
1.50?

SAS Program and Output

proc power;
twosamplefreq test=pchi

alpha=0.05
power=0.80
sides=2
oddsratio=1.5
refproportion=0.5
groupweights=(2 1)
ntotal=.;

run;

Syntax
e test can be either pchi, Irchi, or fisher.

e oddsratio is the value at which the test is powered; refproportion is the proportion
in the reference group; groupweights specifies the relative number of subjects in
each group.
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The POWER Procedure
Pearson Chi-square Test for Two Proportions

Fixed Scenario Elements

Distribution Asymptotic normal
Method Normal approximation
Number of Sides 2
Alpha 0.05
Reference (Group 1) Proportion 0.5
0dds Ratio 1.5
Group 1 Weight 2
Group 2 Weight 1
Nominal Power 0.8
Null Odds Ratio 1

Computed N Total

Actual N
Power Total
0.801 876
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5.4 Multivariate Analyses

The statistical methodology for determining sample size when there are multiple
predictor variables is beyond the scope of this class. The two most commonly used
methods are based on:

1. Chi-square tests and the non-centrality parameter associated with the alternative
hypothesis.

2. Simulations

Popular software programs for computing sample size:
e NCSS PASS (www.ncss.com)
e Power and Precision (www.powerandprecision.com)

e nQuery (http://www.statsol.ie)
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6.1 Overview

Thus far, we have limited our discussion to the relationship between only two variables.
However, there are often other variables, or factors, that have an important influence on
the apparent relationship between the exposure and disease of interest.

Whenever an epidemiologic study is designed or analyzed, you need to consider the
iIssues of

e Confounding
e |nteraction

6.1.1 Confounding

Confounding is the bias in the risk estimate that can result when the exposure-disease
relationship under study is partially or wholly explained by the effects of an extraneous
variable.

For example, a relationship between the number of children and prevalent breast
cancers for a sample of mothers may be explained by the ages of the mothers.

¢ Older mothers tend to have more children and also have a greater chance of
developing breast cancer.

e Age is the extraneous variable which explains the relationship between number of
children and breast cancer.

e The effect of number of children is confounded with the effect of age. In this case,
age is called a confounding variable or a confounder.
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Definition
A confounder is an extraneous variable that partially or wholly accounts for the observed
effect of the exposure on disease risk.
e In order for a variable to be a confounder it must
1. be related to the disease,
2. be related to the risk factor, and
3. not be a consequence of the risk factor.

e The effects of the confounder must be “controlled” for in the analysis in order to
correctly measure the relationship between exposure and disease. In the case of
categorical data, “control” means assessing the relationship across different levels,
or strata, of the confounder.

e Controlling for the confounder requires a consideration of both causal and data-
based associations. That is, confounders may arise due to biologic relationships or
simply due to patterns that exist in the sampled data.

e There may be multiple confounders that need to be accounted for in the analysis.
Indeed, potential confounders should be identified during the design of the study so
that the appropriate data is collected.

98



Example 1

Table 1 presents disease and exposure data for a hypothetical group of study subjects.
Based solely on this data, the crude odds ratio is 18.16.

Table 1. Cross-classification of exposure and disease.

Diseased Non-diseased
Exposed 81 29
Unexposed 28 182
Odds Ratio 18.16

Suppose that the presence or absence of a potential confounder (C) was recorded for
each subject. One way to assess the impact of C is to calculate separately the odds
ratios within each level of the confounder. The separate estimates are illustrated in the

following table.

Table 2. Cross-classification of exposure and disease by levels of a confounder.

Confounder Present Confounder Absent
Diseased | Non-diseased | | Diseased | Non-diseased
Exposed 80 20 1 9
Unexposed 8 2 20 180
OR 1.00 1.00
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Thus, when considered within levels of the confounder, the exposure has absolutely no
effect on the disease. The apparent relationship (crude odds ratio of 18.16) is explained
by the confounding variable. Why is this? If we examine the confounder and its
relationship with disease and exposure, we see that there is a strong association with
both. The odds ratio between disease status and the confounder is 36, while the odds
ratio between exposure status and the confounder is 200.

Table 3. Cross-classification of disease and the confounder.

Confounder Present | Confounder Absent
Diseased 88 21
Non-diseased 22 189
Odds Ratio 36

Table 4. Cross-classification of exposure and the confounder

Confounder Present | Confounder Absent
Exposed 100 10
Unexposed 10 200
Odds Ratio 200

Therefore, when we think we are seeing the effect of exposure, we may really be seeing
the effect of the confounder.
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Example 2

Consider the following data for which there appears to be no association between
exposure and disease.

Diseased Non-diseased
Exposed 240 420
Unexposed 200 350
Odds Ratio 1.00

However, it could happen that the risk estimates indicate an association within the levels
of a confounder.

Confounder Present Confounder Absent
Diseased | Non-diseased | | Diseased | Non-diseased
Exposed 120 378 120 42
Unexposed 20 175 180 175
OR 2.78 2.78

Thus, we have the reverse scenario to Example 1. Here there is an association within
the levels of the confounder, but no overall association when the confounder is ignored.

101



Example 3 (SHHS)

In the Scottish Health Heart Study information was collected on whether subjects owned
or rented their place of residence. Residence was thought to be a surrogate measure of
socio-economic status, and investigators were interested in looking at its effect on
disease.

CHD Totals
Residence Yes No
Rented 85 1821 1906
Owner-occupied 77 2400 2477
Relative Risk 1.43 (1.06, 1.94)

Thus, there appears to be an association, but care must be taken to account for potential
confounders, such as smoking.

Smokers Non-smokers
Residence CHD No CHD CHD No CHD
Rented 52 898 33 923
Owner 29 678 48 1722
RR 1.33 1.27
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Notice that the stratum-specific estimates are lower than the crude estimate of 1.43. The
reduced estimates indicate that a portion of the crude estimate is due to smoking.
However, there does appear to be an additional effect of residence after controlling for

smoking.

Notes

e Examples 1 and 2 both illustrate perfect confounding. That is, the risk estimates
are equal across the levels of the confounder, but different from the crude risk

estimate.

¢ [f the stratum-specific risk estimates are all very similar to one-another as well as to
the crude estimate, then confounding is not an important issue.

e Confounding is characterized by stratum-specific risk estimates that are
consistently higher or lower than the crude estimate.

e May need to control for multiple confounding variables (see Table 5).
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Table 5. Odds ratios for myocardial infarction by cigarette smoking habits amongst men
aged 30-54 living in the north-east USA (Kaufman et al., 1983).

Smoking Unadjusted Age-adjusted | Multiply-adjusted*
Never 1 1 1

EX 1.5 1.1 1.2

< 25/ day 2.1 2.1 2.5

25-34 2.5 2.4 2.9

35-44 4.1 3.9 4.4

> 45 4.4 4.0 5.0

* Adjusted for age, geographic region, drug treatment for hypertension, history of
elevated cholesterol, drug treatment for diabetes, family history of myocardial infarction
or stroke, personality score, alcohol consumption, religion, and marital status.

Mantel-Haenszel Methods

We need a method to estimate the disease risk for an exposure variable in the presence
of confounding. The first method we will discuss is that of Mantel-Haenszel. This is
appropriate if the disease, exposure, and confounding variable are categorical or can be
categorized. We start by partitioning our data into strata defined by the g levels of the
confounder(s). For strata i =1,...,q we will extend our previous notation to
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Diseased Non-diseased Totals
Exposed a b ai+ b
Unexposed Ci di Ci + d;
Totals a+ C bi + di N

The Mantel-Haenszel method
e assumes that there is a true odds ratio which is consistent across all strata, and

e provides a pooled estimate of the common odds ratio. In essence, it is a weighted
average of the odds ratios from the individual strata.

Note that it only makes sense to report the Mantel-Haenszel estimate if the exposure-
disease relationship is consistent across the strata.
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Odds Ratio
The Mantel-Haenszel estimate of the odds ratio is

el

with estimated standard error computed on the log-scale as

ZQiSi

SE(InORMH):\/ZZPiRi +ZPiSi+ZQiRi n

(SRf2ZRLS
where

P =(a+d,)/n, Q =(b +¢c;)/n,,
R =ad;/n;, S, =bc;/n;.
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Relative Risk
The Mantel-Haenszel estimate of the relative risk is

with estimated standard error computed on the log-scale as

- X ((a +b)(c +d,)(a +c,)-acn,)/n
SE(lnRRMH)_\/ (Za C+d /n)(zc a-l—b/ ) :

Mantel-Haenszel estimates can be obtained in SAS.
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6.1.2 Test of Homogeneity

It is important to keep in mind that these pooled risk estimates should only be reported if
the risk is consistent (homogeneous) across the levels of the confounder. There are
several test statistics that address the hypothesis of homogeneity. We will discuss the
Breslow-Day statistic which is formulated as

X2 :i(ai _E(ai))2

= var(a)

2
Zq—l'

This is of the same form as the Pearson chi-square test statistic. The difference is in the
calculation of the expected value. In the Pearson test, the expected value was
computed under the null hypothesis of no association between disease and exposure.
Here, our null hypothesis is one of homogeneity; that the odds ratios are equal across
the levels of our confounder,

H, :OR, =...=0OR, =OR
H, :OR, #OR, '

In other words, the null hypothesis of homogeneity implies that the stratum-specific odds
ratios are all equal to a common odds ratio, OR. Thus, the expected value is the number
of subjects we would expect to observe in the stratum-specific tables if there was a
common odds ratio.
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If we define

A=E(a)
then the expected cell counts in stratum i are as follows
Diseased Non-diseased Totals
Exposed A a+b —A ai+ b
Unexposed | a +c,—A | n-a-b-a-c+A | ¢+d
Totals a;+ Cj b + d; n;

We find A =E(a ) by noting that, under the null hypothesis,

ORzA(ni _ai_bi_ai_ci_i_A)
(& +b —A)(a +c,—A)

which can be rewritten as
(OR-1)A? —((OR-1)(a +b, +a +¢c,)+n)A
+(a +b)(a +¢)OR =0 |
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We then solve (left as an exercise for those interested) for A; to get an expression for the
expected value; i.e.

P.+,P?-4(OR-1)(a +b)(a +c,)OR
E(a)=A - / 2(OR -1)

where
P =(OR-1)(a +b +a +c/)+n,.
To evaluate this formula, we need a value for the odds ratio, OR. The most common

choice in practice is the Mantel-Haenszel estimate of the odds ratio, ORyy. The variance
terms in the Breslow-Day test statistic are computed as

var(a, ) = 1 + L + 1 + 1 i
| E(ai) E(bl) E(Ci) E(dl)
B h
. A\ ai+bi_p‘i ai+Ci_Ai
N 1
n-a-b—-a-c+A

Finally, the two-sided p-value is
p=Pr| z2, 2 X5 |.
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If the p-value is significant, then the null hypothesis is rejected, and it is concluded that
the odds ratios are not homogeneous across strata. Specifically, it is not appropriate to
report the Mantel-Haenszel pooled estimate of the odds ratio (a similar test statistic can
be formulated for the relative risk). The test of homogeneity should be performed before
deciding to report the pooled odds ratio.

6.1.3 Hypothesis Testing

The null hypotheses H, :OR,,, =1 can be tested against the alternative H, :OR,,, #1
with the following Mantel-Haenszel statistic

where

)= (3 +b)(c;+d,)(a +c)(b +d;)
| n?(n, -1)

The 2-sided p-value is p =Pr| 77 > X7, |.
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Example 3 (SHHS)

The next few pages display the SAS analysis of the effect of residence on CHD risk,
controlling for smoking status. An interpretation of the results proceeds as follows:

1. The Breslow-Day test does not provide evidence against homogeneity of the risk
ratios (p = 0.8701). Consequently, it is decided that the Mantel-Haenszel pooled
estimate is appropriate to report.

2. The Mantel-Haenszel estimate of the common relative risk is 1.30 with a 95%
confidence interval of (0.96, 1.78).

3. The Mantel-Haenszel test statistic indicates that the adjusted relative risk is not
significantly different from one (p = 0.0940). Therefore, the association between
residence and CHD is not significant after controlling for smoking status.
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SAS Program and Output

data shhs;

input CHD $ Residence $ Smoker $ N;

cards;

Yes Rented
Yes Rented
No Rented
No Rented
Yes Owner
Yes Owner
No Owner
No Owner

Syntax

Yes
No
Yes
No
Yes
No
Yes
No

52
33
898
923
29
48
678
1722

proc freq order=data data=shhs;

weight N;

tables Smoker*Residence*CHD / relrisk cmh;
run;

e Inthe tables Smoker*Residence*CHD statement the confounding variable(s) is
positioned first. Conversely, the measures and test of association will focus on the
association between the last two variables.

e Itis a good idea to request the stratum-specific risk estimates via the relrisk option
in order to check that the desired relative risks are being computed.

e cmh will produce the Mantel-Haenzel odds ratios and relative risks and carry out

the Breslow-Day test of homogeneity.
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The FREQ Procedure

Table 1 of Residence by CHD
Controlling for Smoker=Yes

Residence CHD

Frequency
Percent
Row Pct
Col Pct Yes No Total

Rented 52 898 950
3.14 54.19 57.33
5.47 94.53

64.20 56.98

Owner 29 678 707
1.75 40.92 42.67
4.10 95.90

35.80 43.02

Total 81 1576 1657
4.89 95.11 100.00

Statistics for Table 1 of Residence by CHD
Controlling for Smoker=Yes

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (0Odds Ratio) 1.3538 0.8503 2.1554
Cohort (Col1 Risk) 1.3344 0.8563 2.0797
Cohort (Col2 Risk) 0.9857 0.9646 1.0072

Sample Size = 1657
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The FREQ Procedure

Table 2 of Residence by CHD

Controlling for Smoker=No

Residence CHD
Frequency
Percent
Row Pct
Col Pct Yes No
Rented 33 923
1.21 33.86
3.45 96.55
40.74 34.90
Owner 48 1722
1.76 63.17
2.71 97.29
59.26 65.10
Total 81 2645
2.97 97.03

Statistics for Table 2 of Residence by CHD

Controlling for Smoker=No

Estimates of the Relative Risk (Row1/Row2)

Total

956
35.07

1770
64.93

2726
100.00

Type of Study Value 95% Confidence Limits
Case-Control (0Odds Ratio) 1.2826 0.8175 2.0123
Cohort (Col1 Risk) 1.2729 0.8229 1.9689
Cohort (Col2 Risk) 0.9924 0.9783 1.0067

Sample Size = 2726
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The FREQ Procedure

Summary Statistics for Residence by CHD
Controlling for Smoker

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 2.8049 0.0940
2 Row Mean Scores Differ 1 2.8049 0.0940
3 General Association 1 2.8049 0.0940

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
Case-Control Mantel-Haenszel 1.3176 0.9538 1.8203
(0dds Ratio) Logit 1.3166 0.9527 1.8195
Cohort Mantel-Haenszel 1.3035 0.9550 1.7792
(Colt1 Risk) Logit 1.3028 0.9545 1.7781
Cohort Mantel-Haenszel 0.9898 0.9778 1.0018
(Col2 Risk) Logit 0.9903 0.9786 1.0022

Breslow-Day Test for
Homogeneity of the Odds Ratios

Chi-Square 0.0268
DF 1
Pr > ChiSq 0.8701

Total Sample Size = 4383
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6.1.4 Interaction

Definition
Interaction, also known as effect modification, occurs when the risk of disease for a
select exposure varies across the levels of another variable.

Gene Example

Suppose that we are interested in studying the effects on disease of a specific gene

(expressed/not expressed) and an environmental exposure (exposed/unexposed).
Assume that we obtain the following data.

Gene Expressed Gene Not Expressed
Diseased | Non-diseased | | Diseased | Non-diseased
Exposed 20 5 5 20
Unexposed 5 20 5 20
OR 16.0 1.0

We see that there is a strong gene-environment interaction with respect to disease risk.
In fact, the risk of disease only increases for those subjects who both express the gene
and have the environmental exposure. Having the gene alone does not increase one’s
risk; nor does only having the environmental exposure.
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The risk of disease differs across the levels of the gene variable. Thus, the gene and
exposure variable interact in their effect on disease risk.

Types of Interaction

Consider the interaction diagrams which illustrate three potential effects of interaction
between variables A and B.

a) No Interaction between A and B

b) Unilaterism: exposure to A has no effect in the absence of exposure to B, but a
considerable effect when B is present.

c) Synergism: the effect of A is in the same direction, but stronger in the presence of
B

d) Antagonism: the effect of A works in the opposite direction in the presence of B.
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Testing for Interaction

Suppose that we are interested in testing for interaction between two variables A and B.
If A has 2 levels and B has g levels then the hypotheses can be expressed as

where OR; is the odds ratio between disease and variable A, within the i level of B. In
particular, we are simply performing a test of homogeneity across the levels of variable

B. The Breslow-Day test is appropriate for this situation. If the test of homogeneity is

rejected, then it can be concluded that the two variables interact in their effect on
disease.
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Gene Example

data gene;

input Gene $ Exposed $

Disease $ N;
cards;

Yes
Yes
Yes
Yes
No
No
No
No

Yes
Yes
No
No
Yes
Yes
No
No

Yes
No
Yes
No
Yes
No
Yes
No

20

20

20

20

proc freq data=gene;

weight N;

tables Gene*Exposed*Disease / cmh;
run;

Breslow-Day Test for
Homogeneity of the 0Odds Ratios

Chi-Square 8.2058
DF 1
Pr > ChiSq 0.0042

Total Sample Size = 100
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6.1.5 Confounding versus Interaction

EX. Sltratum OF; nglge Confounding | Interaction
1 1.02 1.86 4.00 Yes Yes
2 1.74 3.00 1.00 Yes Yes
3 0.96 0.45 1.83 Yes Yes
4 1.83 1.83 1.83 No No
5 1.03 1.03 4.00 Yes No
6 3.00 3.00 1.00 Yes No
7 0.83 0.83 1.83 Yes No
8 1.07 9.40 4.00 - Yes
9 3.00 0.33 1.00 - Yes
10 0.36 6.00 1.83 - Yes

Notes

e Our goal was to estimate the effect on disease risk of a select exposure variable,
while controlling for the effects of other extraneous variables.

e An exposure-disease relationship that varies across levels of the extraneous
variables is evidence of interaction. In the presence of interaction, measures of
association are often reported separately for each level of the extraneous variables.
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¢ The Breslow-Day statistic can be used to test for interaction. However, this test
may have low power. Oftentimes, the stratum-specific odds ratios (or relative risks)
are reported, instead of a pooled estimate, based on a subjective assessment of
the observed differences. Two rules-of-thumb:

1. If the individual odds ratios are quite different from one-another, then we will
likely not want to pool the data.

2. If the effects are all in the same direction and the differences among the
individual estimates are moderate, then it is okay to pool.

e The Mantel-Haenszel estimator provides a measure of association between
exposure and disease, controlling for the effects of one or more extraneous
variables. The Mantel-Haenszel statistic can be used to assess the significance of
the association. This statistic is appropriate if

i( (8 +b) (ai+ci)_max(o,ai_ci)]>5

i=1

and

i=1 n,

$ e+ o) - (BRNO+)) g

e Confounding is present in the data if the Mantel-Haenszel odds ratio is substantially
different from the crude estimate of the odds ratio.
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Evans County Heart Study (ECHS) Example

A follow-up study was conducted to look at the association between endogenous
catecholamine levels (CAT) and the subsequent seven-year incidence of coronary heart
disease (CHD) in white males. Suppose that age and ECG status are potential
confounders. The crude and stratified relative risk estimates (95% CI) are given below.

Table 6. Estimates stratified by age (<55/55+) and ECG status (Normal/Abnormal).

<55, Normal <55, Abnormal
CAT CHD No CHD CHD No CHD
High 1 7 3 14
Low 17 257 7 52
RR 2.01 (0.30, 13.34) 1.49 (0.43, 5.14)

55+, Normal 55+, Abnormal
CAT CHD No CHD CHD No CHD
High 9 30 14 44
Low 15 107 5 27
RR 1.88 (0.89, 3.95) 1.54 (0.61, 3.90)
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Table 7. Crude Estimate

CAT CHD No CHD Totals
High 27 95 122
Low 44 443 487
RR 2.45 (1.58, 3.79)

Conclusions

e The Breslow-Day test does not indicate significant heterogeneity across the levels
of the confounders (p = 0.9831).

e Furthermore, the individual associations are all positive and relatively similar. Thus,
it seems appropriate to report the pooled, Mantel-Haenszel estimate.

¢ A Mantel-Haenszel estimate of 1.70, with a 95% confidence interval of (1.02, 2.82),
was obtained for the overall relative risk of CHD for males with high versus low
levels of CAT, after controlling for the effects of age and ECG status. Thereis a
significant positive association between CHD and elevated levels of CAT (p =
0.0416).

¢ Notice that the adjusted relative risk (1.70) is less than the crude estimate (2.45).
Age and ECG status account for a portion of the apparent relationship in the crude
estimate.
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Esophageal Cancer Example

Investigators were interested in studying the effects of alcohol consumption and tobacco
use on the risk of esophageal cancer. The following data were collected in a case-
control study:

Tobacco Alcohol Cases Controls
0-9 0-39 9 252
40-79 34 145
80-119 19 42
120+ 16 8
10-19 0-39 10 74
40-79 17 68
80-119 19 30
120+ 12 8
20-29 0-39 5 37
40-79 15 47
80-119 6 10
120+ 7 5
30+ 0-39 5 23
40-79 9 20
80-119 7 5
120+ 10 3
Totals 200 775
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Analysis Goals:

1. Test for an association between tobacco use and esophageal cancer while
controlling for alcohol consumption.

2. Test for an association between alcohol consumption and esophageal cancer while
controlling for tobacco use.

This is essentially the problem of testing for an association between disease and an
exposure with multiple levels. We had discussed previously the Cochran-Mantel-
Haenszel statistic for testing for a dose-response effect. This statistic is quite general
and can be used to test for a general association or trend between exposure and
disease across the levels of a confounder(s).
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SAS Program

data esophageal;

input Tobacco $ Alcohol $ Cancer $ N;

cards;

0-9 0-39 No
0-9 0-39 Yes
0-9 40-79 No
0-9 40-79 Yes
0-9 80-119 No
0-9 80-119 Yes
0-9 120+ No

0-9 120+  Yes
10-19 0-39 No
10-19 0-39 Yes
10-19 40-79 No
10-19 40-79 Yes
10-19 80-119 No
10-19 80-119 Yes
10-19 120+ No
10-19 120+ Yes
20-29 0-39 No
20-29 0-39 Yes
20-29 40-79 No

Syntax

252
9
145
34
42
19
8
16
74
10
68
17
30
19
8
12
37
5
47

20-29 40-79 Yes 15
20-29 80-119 No 10
20-29 80-119 Yes 6
20-29 120+ No 5
20-29 120+ Yes 7
30+ 0-39 No 23
30+ 0-39 Yes 5
30+ 40-79 No 20
30+ 40-79 Yes 9
30+ 80-119 No 5
30+ 80-119 Yes 7
30+ 120+ No 3
30+ 120+ Yes 10

proc freq data=esophageal;
weight N;
tables Alcohol*Cancer*Tobacco
Tobacco*Cancer*Alcohol
/ cmh nocol norow nopercent;
run;

e The first argument in the tables statement requests an analysis of tobacco and
cancer adjusted for alcohol; the second of alcohol and cancer adjusted for tobacco.
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SAS Output: Tobacco-Cancer adjusted for Alcohol

The FREQ Procedure

Table 1 of Cancer by Tobacco
Controlling for Alcohol=0-39

Cancer Tobacco

Frequency|0-9 10-19 20-29 30+

No 252 74 37 23
Yes 9 10 5 5
Total 261 84 42 28
Table 2 of Cancer by Tobacco

Controlling for Alcohol=40-79

Cancer Tobacco

Frequency |0-9 10-19 20-29 30+

No 145 68 47 20
Yes 34 17 15 9
Total 179 85 62 29

Total

386

29

415

Total

280

75

355

The FREQ Procedure

Table 3 of Cancer by Tobacco
Controlling for Alcohol=80-119

Cancer Tobacco

Frequency|0-9 10-19 20-29 30+

No 42 30 10 5
Yes 19 19 6 7
Total 61 49 16 12
Table 4 of Cancer by Tobacco

Controlling for Alcohol=120+

Cancer Tobacco

Frequency |0-9 10-19 20-29 30+

No 8 8 5 3
Yes 16 12 7 10
Total 24 20 12 13
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87

51
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Total

24

45
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Summary Statistics for Cancer by Tobacco
Controlling for Alcohol

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 12.0793 0.0005
2 Row Mean Scores Differ 1 12.0793 0.0005
3 General Association 3 13.1219 0.0044

Total Sample Size = 977

Notes

e Statistic 1 - H, is that there is a correlation between the row and column scores. A
test for correlation.

e Statistic 2 - H, is that the mean scores for the rows differ. A test for trend.

e Statistic 3 - Ha is that there is a general association between the row and column
variables.

e There is a significant linear effect of tobacco use on the risk of esophageal cancer
(p = 0.0005) after adjusting for alcohol consumption.
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SAS Output: Alcohol-Cancer adjusted for Tobacco

The FREQ Procedure

Table 1 of Cancer by Alcohol
Controlling for Tobacco=0-9

Cancer Alcohol

Frequency|0-39 40-79 80-119 120+

No 252 145 42 8
Yes 9 34 19 16
Total 261 179 61 24
Table 2 of Cancer by Alcohol

Controlling for Tobacco=10-19

Cancer Alcohol

Frequency |0-39 40-79 80-119 120+

No 74 68 30 8
Yes 10 17 19 12
Total 84 85 49 20

Total

447

78

525

Total

180

58

238

The FREQ Procedure

Table 3 of Cancer by Alcohol
Controlling for Tobacco=20-29

Cancer Alcohol

Frequency|0-39 40-79 80-119 |120+

No 37 47 10 5
Yes 5 15 6 7
Total 42 62 16 12
Table 4 of Cancer by Alcohol

Controlling for Tobacco=30+

Cancer Alcohol

Frequency |0-39 40-79 80-119 120+

No 23 20 5 3
Yes 5 9 7 10
Total 28 29 12 13
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Total

99

33

132

Total

51

31
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Summary Statistics for Cancer by Alcohol
Controlling for Tobacco

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 131.7559 <.0001
2 Row Mean Scores Differ 1 131.7559 <.0001
3 General Association 3 133.9499 <.0001

Total Sample Size = 977

Notes

e There is a significant linear effect of alcohol consumption on the risk of esophageal
cancer (p < 0.0001) after controlling for tobacco use.
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6.1.6 Application to Matched Data

Adjustments for confounding may be implemented at the study design stage through
matching. Matching is the process of selecting, for each case, a fixed number of
controls who have the same values for a given set of confounding variables. Age is a
common matching variable.

Advantages of Matching
1. Direct control of the confounders.

2. Ensures that adjustment is possible.
3. May improve the efficiency (more precise risk estimates) of the investigation.

Disadvantages of Matching
1. Data collection is more complex.
2. Data analysis must account for the matching.
3. The effect on disease of the matching variable cannot be estimated.
4. Adjustment can not be removed.

5. There may be overmatching. The matching variable may not be a true confounder,
but related to the disease or exposure of interest.
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D-Dimer Example

A synthetic study of D-dimer (exposure) and myocardial infarction (disease) was carried
out using cases and controls identified from the Scottish Health Heart Study. Controls
were matched to cases by baseline coronary disease status, 5-year age groups, gender,
district of residence, and time of recruitment to the cohort study. A subset of the
matched data is given in the table below.

Confounder Level Totals Exposed
Cases:Controls Cases Controls
1:2
1:3
1:3
1:3
1:4
1:4
1:4
1:4
1:4
10 1:4
11 1:4
12 1:4
13 1:4
14 1:7

OO NOO U WIN|F

R R RFRPPFPPRPOOOOOIRIFL OO
WWNFRPIFPIWINFPRFPRFP WO
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Confounder Level Totals Exposed
Cases:Controls Cases Controls

15 2:7 1 2
16 2:7 1 5
17 2:8 1 7
18 2:8 2 3
19 3:11 1 4
20 3:12 2 8

Twenty different levels of the confounders are listed in the table. Matching was
performed within each of the unique levels. We could alternatively present the data in 20
separate 2x2 tables; for example, the data at levels 19 and 20 can be summarized as

Level 19 Level 20
Cases Controls Cases Controls
Exposed 1 4 2 8
Unexposed 2 7 1 4
OR 0.875 1.00
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Analysis Goal: Estimate the overall odds ratio between exposure and disease, while
controlling for the matching variables (confounders).

In looking at the resulting data, we see that this is the same situation that was covered in
the introduction of the Mantel-Haenszel methods. In other words, we can apply the
same methods to this matched data problem. Furthermore, the Mantel-Haenszel
methods are appropriate for any degree of matching (1:1, 1:n, m:n, or any combination
thereof).
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SAS Program and Output

data matching; 8 No No 2 15 Yes Yes 1
input Set $ Diseased $ Exposed $ N; 8 No Yes 2 16 No No 2
cards; 8 Yes No 1 16 No Yes 5
1 No No 1 8 Yes Yes O 16 Yes No 1
1 No VYes 1 9 No No 1 16 Yes Yes 1
1 Yes No 1 9 No Yes 3 17 No No 1
1 Yes Yes O 9 Yes No 1 17 No Yes 7
2 No No 3 9 Yes Yes O 17 Yes No 1
2 No Yes O 10 No No 3 17 Yes Yes 1
2 Yes No 1 10 No Yes 1 18 No No 5
2 Yes Yes O 10 Yes No O 18 No Yes 3
3 No No 2 10 Yes Yes 1 18 Yes No O
3 No Yes 1 11 No No 3 18 Yes Yes 2
3 Yes No O 11 No Yes 1 19 No No 7
3 Yes Yes 1 11 Yes No O 19 No Yes 4
4 No No O 11 Yes Yes 1 19 Yes No 2
4 No Yes 3 12 No No 2 19 Yes Yes 1
4 Yes No O 12 No Yes 2 20 No No 4
4 Yes Yes 1 12 Yes No O 20 No Yes 8
5 No No 3 12 Yes Yes 1 20 Yes No 1
5 No Yes 1 13 No No 1 20 Yes Yes 2
5 Yes No 1 13 No Yes 3 ;

5 Yes Yes O 13 Yes No O

6 No No 3 13 Yes Yes 1 proc freq order=data

6 No Yes 1 14 No No 4 data=matching;

6 Yes No 1 14 No Yes 3 weight N;

6 Yes Yes O 14 Yes No O tables Set*Exposed*Diseased
7 No No 3 14 Yes Yes 1 / cmh;

7 No Yes 1 15 No No 5 run;

7 Yes No 1 15 No Yes 2

7 Yes Yes O 15 Yes No 1
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The FREQ Procedure

Summary Statistics for Exposed by Diseased
Controlling for Set

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 0.2735 0.6010
2 Row Mean Scores Differ 1 0.2735 0.6010
3 General Association 1 0.2735 0.6010

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
Case-Control Mantel-Haenszel 1.2647 0.5291 3.0228
(0dds Ratio) Logit ** 1.1897 0.5277 2.6821
Cohort Mantel-Haenszel 1.0564 0.8605 1.2968
(Colt1 Risk) Logit 1.0027 0.8426 1.1932
Cohort Mantel-Haenszel 0.8106 0.3739 1.7571
(Col2 Risk) Logit ** 0.9225 0.4985 1.7072

** These logit estimators use a correction of 0.5 in every cell
of those tables that contain a zero. Tables with a zero
row or a zero column are not included in computing the
logit estimators.
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Breslow-Day Test for
Homogeneity of the 0Odds Ratios

Chi-Square 16.1411
DF 17
Pr > ChiSq 0.5139

Total Sample Size = 135

Conclusions

e The Mantel-Haenszel adjusted odds of myocardial infarction for d-dimer positive
individuals is 1.26 times that for d-dimer negative individuals. The 95% confidence
interval is (0.53, 3.02) and the association is not statistically significant (p = 0.6010).

6.1.7 Comments on the Cochran-Mantel-Haenszel Test

In general, the CMH statistic can be used to test for an association between two
categorical variables. By controlling the column and row scores, the test can be
powered to detect specific alternative hypotheses:

e Integer scores (row mean scores test) - more powerful for detecting linear trends
than the general association test.

¢ No scores (general association test) - more powerful for detecting non-linear trends.

Note that when scores are used, associations in the data may be detected even if the
trend is not strictly increasing or decreasing.
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Non-Linear Trend Example
Consider the following data:

Exposure
1 2 3 4
Controls 50 50 30 50
Cases 50 50 70 50
OR 1.0 1.0 2.33 1.0

The resulting CMH test results are given below.

Summary Statistics for disease by exposure

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Prob
1 Nonzero Correlation 1 0.3693
2 Row Mean Scores Differ 1 0.3693
3 General Association 3 0.0071

Total Sample Size = 400
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Linear Trend Example
Consider the data:

Exposure
1 2 3 4
Controls 50 45 40 35
Cases 50 55 60 65
OR 1.0 1.22 1.5 1.86

which yield the following test results:

Summary Statistics for disease by exposure

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 5.1023 0.0239
2 Row Mean Scores Differ 1 5.1023 0.0239
3 General Association 3 5.1023 0.1645

Total Sample Size = 400
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Notes

In the non-linear example, where there was an effect of exposure level 3 but no
trend, the general association test was more powerful; i.e. more likely to detect an
association (smaller p-value: 0.0071 vs. 0.3693).

When the trend in the odds ratios was strictly increasing, the mean scores test was
more powerful (smaller p-value: 0.0239 vs. 0.1645).

If we were to increase the sample sizes and keep the ratio of controls to cases the
same within exposure levels, the p-values could be made arbitrarily small. In other
words, it is possible to get significant results from either test regardless of the type
of association.

Significance in one test does not imply that the other test will be significant. It
depends on the type of association in the data.
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7.1 Overview

Matching subjects at the time of enroliment is one possible method of controlling for
potential confounders. The two types of matching are:

1. Individual - subject-by-subject matching per individual characteristics.

2. Frequency - define a discrete number of categories from the range of values for the
confounders; balance the number of subjects within each category.

7.1.1 Advantages of Matching

¢ Direct control of the confounders.
e Ensures that adjustment is possible.
e May improve the efficiency (more precise risk estimates) of the investigation.
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Cohort Example

This example illustrates the effect that matching can have on the precision of the relative

risk estimate.

Unmatched Study: Consider the first year data from a hypothetical cohort study, where
the exposed and unexposed subjects were independently select at random.

Male Female
Exposed | Unexposed | | Exposed | Unexposed
Diseased 450 5 10 9
Totals 90,000 10,000 10,000 90,000
Rate 0.005 0.0005 0.001 0.0001
RR 10.0 10.0

Note that

e There are an equal number (100,000) of males and females.

¢ 90% of males and 10% of females are exposed.

e The gender-specific risks for the exposed are 10 times greater than that for the

unexposed.
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e The crude estimate is

_ (450+10)/100,000 _
oude (5+9)/100,000

e The relationship between exposure and disease is confounded by gender.

RR 32.9.

e The Mantel-Haenszel estimate of the adjusted relative risk is 10.0 with a 95%
confidence interval of (4.73, 21.16).

Matched Study: Suppose that, in our study, we were to enroll the same number of
exposed male (90,000) and exposed female (10,000) subjects. Then, for each, select an
unexposed subject of the same gender.

Male Female
Exposed | Unexposed | | Exposed | Unexposed
Diseased 450 45 10 1
Totals 90,000 90,000 10,000 10,000
Rate 0.005 0.0005 0.001 0.0001
RR 10.0 10.0
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The rates in the unmatched study were used to generate the matched data, as follows:

1. Select 100,000 exposed.

a. Exposed are 90% male, as
before.

b. Enroll 90,000 exposed males
and 10,000 exposed females.

2. Select 100,000 unexposed
subjects matched on gender.

a. Individual matching will yield
the same gender mix as in the
exposed cohort.

b. Enroll 90,000 unexposed
males and 10,000 unexposed
females.

3. In exposed males:
a. N =90,000.

b. Assume the same disease
rate of 0.005 as before.

c. Expect 450 incident cases
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4. In unexposed males:
a. N =90,000

b. Assume a disease rate of
0.0005

c. Expect 45 cases
5. In exposed females:
a. N =10,000.

b. Assume the previous disease
rate of 0.001.

c. Expect 10 incident cases
6. In unexposed females:
a. N =10,000

b. Assumed disease rate is
0.0001

c. Expect 1 case



Note that

The proportion of exposed individuals is the same for both males and females
(50%).

The gender-specific risk for the exposed is 10 times greater than that for the
unexposed.

The crude estimate is

_ (450+10)/100,000 _,
eude (45+1)/100,000 o

The relationship between exposure and disease is not confounded by gender.

Therefore, it is appropriate to estimate the relative risk using the crude value of
10.0, for which the 95% confidence interval is (7.39, 13.54).

Conclusions

The same number of exposed (100,000) and unexposed (100,000) subjects were
included in the two studies.

Gender was a confounder that was controlled for using Mantel-Haenszel methods
in the first study and matching in the second study.

The matched study yielded a narrower 95% confidence interval of (7.39, 13.54)
versus (4.73, 21.16).

Therefore, matching improved the efficiency of the investigation.
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e A situation could arise where confounding is so extreme in the unmatched study so
as to render the Mantel-Haenszel adjustment ineffective. Consider, for example, a
study where 100,000 exposed and 100,000 unexposed subjects are selected at

random. In the most extreme case of confounding by gender, we could obtain the
following results:

Male Female
Exposed | Unexposed | | Exposed | Unexposed
Diseased 500 0 0 10
Totals 100,000 0 0 100,000
Rate 0.005 - - 0.0001
RR - -

where the crude estimate of the relative risk is

(500 + 0)/100,000
crude - - 50 0
(0+10)/100,000

and the Mantel-Haenszel adjusted relative risk cannot be computed. In other

words, we cannot analytically control for the effects of gender in order to study the
exposure-disease relationship.

148



Case-Control Example

Consider a case-control study carried out using the (450 + 5 + 10 + 9) = 474 incident
cases from the previous example. If we apply the same assumptions as before, the

following data result:

Male Female
Case Control Case Control
Exposed 450 410 10 2
Unexposed ) 45 9 17
Totals 455 455 19 19
OR 0.88 9.44

The rates in the cohort study were used to generate the matched case-control data, as
follows:

1. Number of cases is the same.
2. Individual matching on case-control status gives 455 male controls.

a. 90% of males are exposed; 10% unexposed.
b. Expect 0.90 * 455 = 410 exposed males.
c. Expect 0.10 * 455 = 45 unexposed males.
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3. Matching produces 19 female controls.
a. 10% of females are exposed; 90% unexposed.
b. Expect 0.10 * 19 = 2 exposed females.
c. Expect 0.90 * 19 = 17 unexposed females.

Note that
e The crude estimate of the odds ratio is

460 x 62
orude 412 x14

for which the gender-specific odds ratios are consistently larger.

OR =4.94

e Even though there is no confounding in the population, matching has created a
selection bias.

e The Mantel-Haenszel method can be used to account for the matching and, thus,
remove the selection bias

(450)(45)/910 +(10)(17),/38
(410)(5)/910 +(2)(9),/38

OR,, = =9.80.

150



7.1.2 Why Case-Control Matching Induces Selection Bias
e The purpose of the control group in a case-control study is to provide an estimate of
the distribution of exposure in the source population.

e |f controls are selected to match the cases on a factor that is correlated with the
exposure, then the crude exposure frequency in controls will be distorted in the
direction of similarity to that of the cases.

o0 In a case-control study we are comparing exposure odds.

o Matched controls are identical to cases with respect to the matching factor.

o If the matching factor is perfectly correlated with the exposure, the exposure
distribution of controls would be identical to that of the cases.

o In this case the crude odds ratio would be 1.0.

o This would also occur if there was a perfect negative correlation between the
matching variable and exposure.

7.1.3 Disadvantages to Matching

¢ Additional cost (time and money) of finding a control to match each case.
e The statistical efficiency that matching provides often comes at a substantial cost.

o If a factor has been matched, it is no longer possible to estimate the effect of
that factor from the stratified data alone.

o Matching distorts the relation of the factor to the disease.
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7.1.4

Do not match on a factor that is associated only with exposure and not with the
disease (not a true confounder).

When matched and unmatched controls have equal cost and the potential matching
factor is to be treated purely as a confounder, then avoid matching on the factor
unless the factor is expected to be a strong disease risk factor with at least some
association with exposure.

Matching on a non-confounder will usually harm efficiency.

Comments on the Analysis of Cohort and Case-Control Studies

In a cohort study without loss to follow-up, the relative risk estimate need not be
adjusted to account for the matching, because matching unexposed to exposed
prevents an association between exposure and the matching factors.

If the matching factors are associated with the exposure in the study population, the
odds ratio estimates in a case-control study must be adjusted for matching, even if
the matching factors are not risk factors for the disease.
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7.2 Analysis of 1:1 Matched Case-Control Data

7.2.1 Continuous Exposure

Infant Malformation Example

Each of 11 malformed infants collected from rural French villages were matched to a
control for sex, date of birth, and location. A continuous variable y representing the
distance to the nearest electrical power line was measured for each subject.

A general layout for data from a typical 1:1 matched study is given by the following table:

Distance to Power Line

Y12
Y12

Cases
Controls

Y11
Y21

y1n
y2n

The raw data and differences for this study of the effects of power line exposure are
displayed below:

Case- Distance to Power Line Difference
Control Pair Case Control

1 1150 300 850

2 100 100 0

3 2000 2150 -150
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Case- Distance to Power Line Difference
Control Pair Case Control

4 350 1350 -1000

5 400 800 -400

6 2700 1250 1450

7 1200 450 750

8 1800 400 1400

9 10 900 -890
10 250 1950 -1700
11 350 1050 -700

To test if there is a difference in exposure between cases and controls, we can use
e Paired t-test
o As a rule of thumb, is used if there are at least 20 matched pairs.

o The null hypothesis is that the mean exposure for cases is equal to that for
controls.

¢ Wilcoxon signed-rank test
o0 A non-parametric test which is appropriate regardless of the sample size.

o The null hypothesis is that the distribution of exposures is the same for both
cases and controls.
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SAS Code and Output

data powerlines; 7 1200 450
input pair case control; 8 1800 400
diff = case - control; 9 10 900
cards; 10 250 1950
1 1150 300 11 350 1050
2 100 100 ;

3 2000 2150
4 350 1350 proc univariate data=powerlines;
5 400 800 var diff;
6 2700 1250 run;
Syntax

e diff = case - control; creates a new variable that is the difference in the distances
for the case and the control. This is the variable used in the paired data analyses.

e PROC UNIVARIATE generates summary statistics for the SAS variables listed in
the var statement.
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The UNIVARIATE Procedure

Variable: diff
N

Mean

Std Deviation
Skewness

Uncorrected SS
Coeff Variation

Moments

11
-35.454545
1033.84103
0.10370826

10702100
-2915.9619

Sum Weights

Sum Observations
Variance
Kurtosis
Corrected SS

Std Error Mean

Basic Statistical Measures

Location
Mean -35.455
Median -150.000
Mode

Tests for Location:

Test

Student's t t
Sign M
Signed Rank S

Variability

Std Deviation

Variance

Range

11

-390
1068827.27
-1.053542
10688272.7
311.714799

1034

1068827

Interquartile Range

-Statistic-

-0.11374
-1
-1.5

Mu0=0

----- p Value------
Pr > |t] 0.9117
Pr >= |M| 0.7539
Pr >= |§| 0.9219

3150
1740
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Conclusions

e The p-value for the paired t-test is 0.9117 and 0.9219 for the Wilcoxon signed-rank
test.

e The paired t-test is questionable since the sample size is less than 20. Thus, the
Wilcoxon result would be reported.

o At the 5% level of significance, there is no evidence of a difference in the
distribution of distances to power lines between diseased and non-diseased infants
(p = 0.9219).

7.2.2 Categorical Exposure

Low Birthweight Example

Suppose that a case-control study was conducted to study the effects of maternal
smoking during pregnancy on the risk of low birthweight. A case is defined as a mother
who gave birth to a low-weight (<2500 grams) baby. One-hundred-sixty-seven cases
were enrolled. Each case was matched to a control based on age, length of pregnancy,
and mother’s weight.

e Exposure = Smoking during pregnancy (Yes/No)
e Disease = Low birthweight (<2500 grams)
e Matching factors = Age, length of pregnancy, and mother’s weight.
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The four possible outcomes for each case-control pair in the study are

Case Control N
Smoker Smoker 15
Smoker Nonsmoker 40
Nonsmoker Smoker 22
Nonsmoker Nonsmoker 90
Total 167

Alternatively, we could summarize the data in a 2x2 table, such as

Control Totals
Case Smoker Nonsmoker
Smoker 15 40 55
Nonsmoker 22 90 112
Totals 37 130 167
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In general, the following notation is used:

e For cases,

e For controls,

159

Control Totals

Case Exposed Unexposed

Exposed a b a+b
Unexposed C d c+d
Totals a+c b+d n

e Let n represent the total number of case-control pairs.
ra+b
p, = Pr[Exposed|Case] = ;
p, = Pr[Exposed|Control] = ani.




e These two proportions differ only if b is different from c. Indeed, the difference in
the two proportions is given by

~ . _a+b a+c b-c
n n n

Py — P,
This is a measure of the difference in the exposure risk between cases and
controls.

e We are interested in testing the null and alternative hypotheses of the form
Ho i Py =P,
Hyip# P

Specifically, the null is that the probability of exposure is the same for both cases
and controls. From the previous point, this test only depends on the number of
discordant case-control pairs, b and c.

¢ If the number of discordant pairs b + ¢ 2 20 then McNemar’s test can be used to
test the hypotheses. The test statistic is

(b-c)’
b+c

X2 = ~ 2

with a two-sided p-value of
p=Pr[ z7=X?].
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¢ One can always use the exact binomial distribution to test the hypotheses. Under
the null hypothesis, the number of case-control pairs Y in table cell b or c is
distributed

Y ~ Binomial (1/2,b +c)
for which a two-sided p-value is
p=2Pr|Y <min(b,c)].

In terms of discordant pairs, we are testing that the case-control pair of (Smoker,
Nonsmoker) is equally as likely as (Nonsmoker, Smoker).

161



SAS Code and Output

data birthweight; proc freq order=data data=birthweight;
input case $ control $ N; weight N;
cards; tables case*control / agree;
Smoker Smoker 15
Smoker Nonsmoker 40 proc freq order=data data=birthweight;
Nonsmoker Smoker 22 where case "= control;
Nonsmoker Nonsmoker 90 weight N;
; exact binomial;
tables case;
run;

Syntax

e The specification of the agree option in the first PROC FREQ will produce
McNemar’s test.

e The where statement in the second PROC FREQ restricts the analysis to
discordant pairs only. Subsequently, the exact binomial option uses the binomial
distribution to test that the discordant pairs are equally distributed.
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The FREQ Procedure

Table of case by control

case control

Frequency

Percent

Row Pct

Col Pct Smoker Nonsmoke

Smoker 15 40
8.98 23.95
27.27 72.73
40.54 30.77

Nonsmoke 22 90
13.17 53.89
19.64 80.36
59.46 69.23

Total 37 130
22.16 77 .84

Total

55
32.93

112
67.07

167
100.00
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Statistics for Table of case by control

McNemar's Test

Statistic (S) 5.2258
DF 1
Pr > S 0.0223

Simple Kappa Coefficient

Kappa 0.0832
ASE 0.0770
95% Lower Conf Limit -0.0678
95% Upper Conf Limit 0.2342

Sample Size = 167



The FREQ Procedure

Cumulative Cumulative
case Frequency Percent Frequency Percent
Smoker 40 64.52 40 64.52
Nonsmoke 22 35.48 62 100.00

Binomial Proportion
for case = Smoker

Proportion (P)

ASE

95% Lower Conf Limit
95% Upper Conf Limit

Exact Conf Limits
95% Lower Conf Limit
95% Upper Conf Limit

Test of HO: Proportion

ASE under HO

Z

One-sided Pr > Z
Two-sided Pr > |Z|

Exact Test
One-sided Pr >= P

Two-sided = 2 * One-sided

Sample Size = 62

O O O o

0.5

o onNn o

.6452
.0608
.5261
.7643

.5134
.7626

.0635
.2860
.0111
.0223

.0150
.0300
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Conclusions

e The p-value from McNemar’s test is 0.0223 and 0.0300 from the exact binomial
test. Since there are 62 discordant case-control pairs, it is appropriate to report the
McNemar result. Thus, at the 5% level of significant, the risk of exposure differs
between cases and controls (p = 0.0223).

e |t turns out that the Mantel-Haenszel estimate of the odds ratio for a case-control
study with 1:1 matching, such as this, is

OR,, =—=—=1.82.

940
c 22

Thus, the odds of disease is 1.82 times more likely for exposed than for unexposed.
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8.1 Overview

Standardization is an analytic method for dealing with confounding by evaluating the
theoretical effect of the observed exposure on a standard population with a known
distribution of the confounding variable. The vast majority of standardization occurs
where the confounding variable is age.

California/Maine Example

Suppose that we are interested in comparing the mortality rates between California and
Maine. The total population and number of observed deaths in 1970 are stratified by age
and presented below.

Age California (a) Maine (b) United States (S)
Pop/1000 Deaths Pop/1000 Deaths Pop/1000 Deaths
<15 5,524 8,751 286 535 57,900 103,062
15-24 3,558 4,747 168 192 35,441 45,260
25-34 2,677 4,036 110 152 24,907 39,193
35-44 2,359 6,701 109 313 23,088 72,617
45-54 2,330 15,675 110 759 23,220 169,517
55-64 1,704 26,276 94 1,622 18,590 308,373
65-74 1,105 36,259 69 2,690 12,436 445,531
75+ 696 63,840 46 4,788 7,630 736,758
Totals 19,953 166,285 992 11,051 203,212 | 1,920,311
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The age-specific population distributions are:

A California (a) Maine (b) United States (s)
e a a a s s s
J p® p™ /> p® ® p” /> pl p* p® /> p®
<15 5,524 27.7% 286 28.8% 57,900 28.5%
15-24 3,558 17.8% 168 16.9% 35,441 17.4%
25-34 2,677 13.4% 110 11.1% 24 907 12.3%
35-44 2,359 11.8% 109 11.0% 23,088 11.4%
45-54 2,330 11.7% 110 11.1% 23,220 11.4%
55-64 1,704 8.5% 94 9.5% 18,590 9.1%
65-74 1,105 5.5% 69 7.0% 12,436 6.1%
75+ 696 3.5% 46 4.6% 7,630 3.8%
Totals 19,953 100.0% 992 100.0% 203,212 100.0%
Note that

e The population of Maine tends to be older than California.

e Because mortality is related to age, we would want to adjust for the differences in

age between the two populations.

e The Mantel-Haenszel approach is one method we have already discussed for
dealing with this problem; direct and indirect standardization are other means of

adjusting for confounding.

e Although this mortality example will be used throughout the notes, keep in mind that
these methods are applicable to any outcome of interest and any confounder.
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8.2 Direct Standardization

The direct standardized event rate (DSR) is the number of events that would be
expected in the standard population if the age-specific event rates in the study
population prevailed, divided by the size of the standard population.

e This ensures that the population age distributions are the same, so that age will not
confound the relationship between exposure and disease.

¢ |t guarantees that the rates are being compared in populations with identical age
distributions.

Notation
Stratum-specific population sizes Stratum-specific number of events
p'® Total for the i level of population e Number of events in the i level of
a population a
®) Total for population b (b)
P bop € Number for population b
p'® Total for the standard population al®) .
i Number for the standard population
p® =3 pt®
| e(s) — Zel(s)
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Stratum-specific rates:

a b S
(a)_ei() (b):ei() (s)zei()
{ @i )i ©)

P P; P;

Crude rates:

a b S
o  e® (b):eu (S):eu
' @' O ©)

P P P

California/Maine Example

The observed age-specific mortality rates per 1,000 person-years are

Mortality Rates per 1,000
Age California Maine US
<15 1.6 1.9 1.8
15-24 1.3 1.1 1.3
25-34 1.5 1.4 1.6
35-44 2.8 2.9 3.1
45-54 6.7 6.9 7.3
55-64 15.4 17.3 16.6
65-74 32.8 39.0 35.8
75+ 91.7 104.1 96.6
Crude Rates 8.3 11.4 9.4
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The crude rate ratio comparing Maine to California is
RR_ . =11.4/8.3=1.37.

crude

8.2.1 Poisson Distribution

In constructing confidence intervals for the indirect and direct standardized rates, the
number of events is commonly assumed to follow a Poisson distribution. Probability
distributions allow us to calculate the probability that a random variable takes on a
specific value or range of values. In this case, the random variable of interest is the
number of events observed over a period of time.

Properties of a Poisson Random Variable

e Takes on integer values greater than or equal to zero; often a count of the number
of occurrences of some event.

e The probability that the random variable equals x is given by the formula
e—ﬂ,/lx
X!

Pr(x) =

where A controls the shape of the distribution and is referred to as the rate
parameter. A can be any positive number. We will denote the distribution as

Poisson(A).
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e The expected value and variance are
E[X]=1
Var[X]=4

The following are plots of Poisson distributions for a rate parameter of 5 and 10.

0.06 0.08 0.10
| | |

Probability
Probability

0.04
|

0.02
|

: | N
o

0.00
|

T T T T T T T T
5 10 15 20 5 10 15 20

Poisson(5) Poisson(10)

Cumulative Poisson probabilities are given in Table 1 for a few, select values of A.
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Table 1. Cumulative Poisson Probabilities Pr[X < x]

Rate Parameter (A1)

X 2 3 4 5 10

0 0.1353 0.0498 0.0183 0.0067 0.0000
1 0.4060 0.1991 0.0916 0.0404 0.0005
2 0.6767 0.4232 0.2381 0.1247 0.0028
3 0.8571 0.6472 0.4335 0.2650 0.0103
4 0.9473 0.8153 0.6288 0.4405 0.0293
5 0.9834 0.9161 0.7851 0.6160 0.0671
6 0.9955 0.9665 0.8893 0.7622 0.1301
7 0.9989 0.9881 0.9489 0.8666 0.2202
8 0.9998 0.9962 0.9786 0.9319 0.3328
9 1.0000 0.9989 0.9919 0.9682 0.4579
10 1.0000 0.9997 0.9972 0.9863 0.5830
11 1.0000 0.9999 0.9991 0.9945 0.6968
12 1.0000 1.0000 0.9997 0.9980 0.7916
13 1.0000 1.0000 0.9999 0.9993 0.8645
14 1.0000 1.0000 1.0000 0.9998 0.9165
15 1.0000 1.0000 1.0000 0.9999 0.9513
16 1.0000 1.0000 1.0000 1.0000 0.9730
17 1.0000 1.0000 1.0000 1.0000 0.9857
18 1.0000 1.0000 1.0000 1.0000 0.9928
19 1.0000 1.0000 1.0000 1.0000 0.9965
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8.2.2 Estimation of the Direct Standardized Rate

The direct method proposes to adjust the age distribution for each study population so
that it matches the distribution in the standard population. The formula is

DSR :%Z(p, ]p Zf pl =Y rw

p(

where the r, are the stratum-specific rates in the study population and the wi(s) are the

proportions from the standard population. The DSR is the rate we would expect if the
study subjects were distributed as in the standard population. Literally, we are applying
the observed rates to the standard population to compute the overall expected or
adjusted rate. If we assume that the number of events has a Poisson distribution, then
the 95% confidence interval for the direct standardized rate is

DSR £ Zosrs \/Ze{p' )
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California/Maine Example

If we use the U.S. population as the standard population, then the weights for the direct
standardization are simply the associated proportions within each age strata.

US (Standard Population)
Age pi*’ w® =p{ /p®
<15 57,900 57,900/ 203,212 = 0.285
15-24 35,441 35,441/ 203,212 = 0.174
25-34 24,907 24,907 / 203,212 = 0.123
35-44 23,088 23,088 /203,212 =0.114
45-54 23,220 23,220/ 203,212 =0.114
55-64 18,590 18,590/ 203,212 = 0.091
65-74 12,436 12,436 / 203,212 = 0.061
75+ 7,630 7,630/ 203,212 = 0.038
Totals 203,212 1.000
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The direct, age-standardized mortality rates for California and Maine are

California (a) Maine (b) US
Age ri(a) ri(a)Wi(s) ri(b) ri(b)vvi(s) Wi(S)
<15 1.6 0.451 1.9 0.533 0.285
15-24 1.3 0.233 1.1 0.199 0.174
25-34 1.5 0.185 1.4 0.169 0.123
35-44 2.8 0.323 2.9 0.326 0.114
45-54 6.7 0.769 6.9 0.788 0.114
55-64 15.4 1.411 17.3 1.579 0.091
65-74 32.8 2.008 39.0 2.386 0.061
75+ 91.7 3.444 104.1 3.908 0.038
Totals 8.823 9.889 1.000

The age-adjusted mortality rate for California is

DSR® =8.823

deaths per 1,000 person-years.
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The 95% confidence interval is

2
a 1 a pi(s)
DSR® + 20'97SFJZei( )( (a)]

P
2
8.823il.96; 8,751 57,900 +
203,212 5,524

8.823+1.96(0.0217)
(8.781,8.865)

Finally, the direct age-standardized rate ratio is

RR, . =9.889/8.823=1.12.

direct
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8.2.3 Choice of Standard Population

Note that the weights depend on the standard population. Thus, different choices for the
standard population will lead to different adjusted rates. Some rules-of-thumb:

Select a population that is relevant to the data.

Understand what you are doing in calculating direct standard rates:
o A younger standard population will weight earlier events more heauvily.
o An older population will weight later events more heauvily.

Standardized rates are only meaningful with knowledge of the population that was
used as the standard.

You could select one of the study populations (e.g. California or Maine) as the
standard.
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8.3 Indirect Standardization
Sometimes direct adjustment is not valid:
e Stratum-specific rates in the groups to be standardized are not available.
e Sample sizes are so small that the stratum-specific rates are not reliable.

Indirect standardization does not require stratum-specific rates in the study populations
to be standardized. It does require the

e Stratum-specific distributions in the study population to be standardized.
e Total events in the study population to be standardized.
e Stratum-specific rates for the standard population.

We will use the same notation as before.

8.3.1 Estimation of the Indirect Standardized Rate

Indirect standardization is a three-stage process:

1. The stratum-specific rates in the standard population are applied to the study
population. This is done to compute the expected number of events (E) in the study
population if the standard population rates were applicable:

(¢)
e-3 5 Jp =T,

P
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2. Divide the observed number of events by the expected number to obtain the
standardized event ratio (SER)

SER =S
E

for which a 95% confidence interval is computed as

Je

SER + ZO'%E'

When the event is death this is referred to as the standardized mortality ratio
(SMR). A value less than one indicates a study population with a mortality rate less
than that in the standard population, after adjusting for the confounder. A value
greater than one indicates a study population rate higher than in the standard
population.

3. The indirect standardized rate (ISR) is computed as the product of the
standardized event rate and the crude rate in the standard population:

ISR = SER xr®.

If we assume that the number of events follows a Poisson distribution, then a 95%
confidence interval for the ISR is given by
e

ISRtz ,..r

0.975
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California/Maine Example

We can use the mortality rates in the U.S. population to compute indirect rates for
California and Maine.

California Maine US
Age Population Deaths Population Deaths Rate
pi(a) Ei(a) pi(b) Ei(b) ri(S)
<15 5,524 9,943 286 515 1.8
15-24 3,558 4,625 168 218 1.3
25-34 2,677 4,283 110 176 1.6
35-44 2,359 7,313 109 338 3.1
45-54 2,330 17,009 110 803 7.3
55-64 1,704 28,286 94 1,560 16.6
65-74 1,105 39,559 69 2,470 35.8
75+ 696 67,234 46 4,444 96.6
Totals 178,252 10,524 9.4




Recall that there were 166,285 observed deaths in California

. Thus, the indirect
standardized rate for California is

ISR® = SER xr®
166,285
it ke 0§
178,252

— (0.933)(9.4)
—8.769

deaths per 1,000 person-years. The 95% confidence interval is

ISR + 7 r<5>£

0.975

8.769 i1.96(9.4)[—\’166’285j.

178,252
(8.727,8.811)
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Likewise, the indirect standardized rate for Maine is

ISR® = SER xr®
_ 11051 o,
10,524
= (1.050)(9.4)

=9.870

and, therefore, the indirect age-standardized rate ratio is

RR =9.870/8.769 =1.13.

indirect

182



Biostatistical Methods in Categorical Data (171:203)
Section 9: Follow-up Data

Brian J. Smith, Ph.D.
October 8, 2007



Table of Contents

0.1 DISEASE INCIUBNCE......ui i e e e e e et e et e e e e e eeanas 183
S I 1 Tod [ =T Tot N = | (= 184
0.2.1  DefiNIION ...t e 184
0.2.2  INCIAENCE DBNSILY ... iiieiiiei ittt e e e e e et e e e e aan e e e eaanaeeees 185
0.2.3 Confidence INTEIValS ... e 186
ApproxXimate MEtNOM............. i e e e e e 186
e Tod 1Y =1 [T 188
0.2.4  FOUHOW-UP DALA......u i e e e e e e e e aa e 189
FOIIOW-UP Data EXamMPIE ....... et e e e et e e e e e e eenas 190
0.2.5  INtErVal Data.......cconnieeiee e 193
Cardiac Transplant EXampPle.........oouioiiiiiii e e 193
0.2.6  Stable POPUIALIONS ........uiiiii e e e 195

S B A @0 T 1 01 5 =] | £ 196
9.3 InCident RAte RaALIO..........c.uuiiiiiii e e aaaa 197
0.3. 1 DAt LAYOUL....cuieeiiiii ettt et e e e e eas 197
Multiple EXPOSUIE CatEQOIIES ......uiiiiiiieeeiiiie ettt e et e e e et e e e e e e eaa e e eeaa s e e eeaneeeeenns 197
TWO EXPOSUIE CatBgOIIES......u i iiiiiiie e e et e e e e e e et e e e et e e e eaaaaees 198

S IR T = 1 [ = 1 (o 198



0.3.3  CoNfIAENCE INTEIVAIS .. ..veeeeeeee e e e ettt e e e aeaanees 201

APProxXimate METNOU .......coeuei i e e et e e e e e e eea e eeaeas 202
0.3.4  HYPOthESIS TESHING . .cvuniiiiiiii e e e et e et e e aaa e 204

S B | g od o (=] ot 1= 206
S I I T {1 1140 o 206
9.4.2 Cumulative INCIAENCE.........cvui e e e e e e 206
9.4.3 Kaplan-Meier EStIMatOr .........ooiviiiiiiiii e e 207
SAS Program and OQUEIPUL ........coiiiiiiiiiiiii e e e e e e e e e e et e eeeaaa e 211
Estimated DIiSEaSE RISK ........ccoeuiiiiii e 215
Comments on the Kaplan-Meier EStimator.............coovvviiiiiiiiiieceene e 216
9.4.4 Life Table MEtNOM ..........oiii e 217
SAS Program and OULPUL ........ooiiiiii e e e e e et e e e e eeanes 220

S R T o To =V G 1= 225
S 700 A 1011 (o Yo [ o [ o S 225
Leukemia Study EXAmMPIE ... oo 225
0.5.2  MethOodoIOgY ....coouuiiiiiii e 226
SAS Program and OUIPUL ........cciiiiiiciiiii e e e e e e e et e e e et e e e eaaa e 233



9.1 Disease Incidence

Measures the occurrence of new disease.
Incidence data is often derived from cohort studies, also known as
o Follow-up Studies
o Incidence Studies
o Panel Studies
o Prospective Studies

Incidence is studied by recording the number of incident cases over a period of time
among subjects who are known to be disease-free initially.

Following at-risk subjects over time allows investigators to measure risk factors
before disease occurrence. Such a study design allows for the observation of risk
and disease in the proper time-sequence and is ideally suited for characterizing the
association between the two.

o Particularly true of chronic diseases for which the first occurrence of disease is
often the event of interest.

o May not be the case for acute diseases.
Two measures of disease incidence
1. Incidence Rate
2. Incidence Risk
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9.2 Incidence Rates

9.2.1 Definition
e A measure of the potential for disease onset per unit of time in a given disease-free
population.
e Conceptually, it is an instantaneous measure that applies to a point in time.
e Also referred to as:
o Hazard Rate
o Force of “Mortality”
o Person-Time Incidence Rate
o Expressed as the number of events per time unit (per year, per day, per month).
e Can be expressed on any scale and may exceed one.
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9.2.2 Incidence Density

¢ In general, the instantaneous incidence rate cannot be measured directly.

e However, the average incidence rate over a given period of time or incidence
density can be studied:

where e is the number of events and y is the total follow-up time for the study
population.

¢ Included in the denominator is the time over which the subjects are disease-free
and at-risk for the disease.

e Many of the issues in estimating the incidence density revolve around methods for
calculating the total follow-up time in the denominator of our estimator.
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9.2.3 Confidence Intervals

Confidence intervals are constructed under the assumption that the number of incident
cases of disease e follows a Poisson distribution. There is both an approximate and
exact method for computing the confidence interval.

Approximate Method

This method is appropriate if the number of incident cases is large, say e > 20. The 95%
confidence interval formula is

2
Z
|D 1i 0.975)
( 2\e

Example

Suppose that e = 10,954 incidence cases of disease are observed in 1,600,000 person-
years of follow-up. The incidence density is

p_&_ 10954 063

"~y 1,600,000
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The 95% confidence interval is

2 2
|D(1izoﬂj _0.0068| 14226
2./e 2./10,954

(0.0068 x 0.981,0.0068 x1.019).
(0.0067,0.0070)

Theoretical Note
e The confidence interval formula arises from the result that, if X ~ Poisson(/l), then

\/Y ~N (ﬁ,l/4)
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Exact Method

If the number of incident cases is too small for the approximate method, then exact
probabilities from the Poisson distribution must be used to construct the confidence
interval.

An exact (1— a)lOO% confidence interval for the incidence density is of the form

55
y 'y
where the upper and lower bounds are such that Pr[Y, <e|=Pr[Y, >e|=«/2 and

Y, ~Poisson(e, )

Y, ~Poisson (e, )

Small Sample Example

Suppose that we observe e = 10 cases for which there were 1000 person-years of
follow-up. The resulting incidence density is

ID = 10 0.01.

1000

188



We can perform an iterative search using software that computes Poisson probabilities
to find the upper and lower bounds of an exact 95% confidence interval.

e Pr[Y_ 210]=0.025 for Y, ~Poisson(4.8).
e Pr[Y, <10]=0.025 for Y, ~ Poisson(18.4).

Therefore, the exact confidence interval is

4.8 18.4
10001000

j: (0.0048,0.0184).

9.2.4 Follow-up Data

¢ Follow-up data result from subjects being observed or followed for a period of time.
Subjects for whom disease is not observed at the end of their follow-up period are
said to be censored. The follow-up time is the length of time from study entry until
disease occurrence or censoring.

e Reasons for censoring:
¢ Follow-up loss due to migration, non-response, withdrawal of consent, etc.
e Death from another cause
¢ No longer at risk; e.g. hysterectomy when pregnancy is the outcome
e Termination of study prior to disease occurrence
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Follow-up Data Example

12
O><|
900

10

Subject
6

Year (Study Calendar)

e Subject 1 and 2 have 2.5 and 3.5 years of follow-up until disease occurrence,
respectively

e Subject 3 is followed for 1.5 years at which point s/he dies from another cause

e Subject 4 begins follow-up at year 1 and dies from another cause at year 3.5.
S/he has 2.5 years of follow-up.

e Subject 5 begins follow-up at year 1. The study is stopped at year 5.5 for a total
of 4.5 years of follow-up. S/he is still alive at that time and has not experienced
the disease.
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e The length of follow-up is more easily seen if we shift the start times for all
subjects to zero. This is often the way that follow-up data is conceptualized
when study entry coincides with the start of exposure to a risk factor or the
initiation of an intervention.

—— Observation Period
N X Disease
() Death
o
—
o4
w —
3] -
Q
o]
3 2
- O
)
~
O —
| | | | | |
0 1 2 3 4 5

Year (Study Entry)
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e The follow-up times can be summarized as

Subject Years of Disease

Follow-up
2.5
3.5
1.5
2.5
4.5
0.5
0.5
2.5
2.5
10 2.5
11 1.5
12 1.5

Total 26.0

OO N |UIRWIN|EF

el el llelel] Jlelleliel] il

e The incidence density is the number of new cases of disease divided by the total
follow-up time. In our example,

ID =5/26.0=0.19 cases per year.
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9.2.5 Interval Data

It may be the case that the time of disease occurrence is unobservable; rather we know
only that the disease occurs within certain time intervals.

¢ \We need a numerical follow-up time for each subject in order to compute the
incidence density.

e One option is to assume that death and censoring occur at the midpoint of the
associated interval.

Cardiac Transplant Example

Table 1. Survival after Cardiac Transplant

Postoperative Interval Subjects at Deaths Censored
(months) start of interval

[0,2) 300 167 28
[2,4) 105 13 14
[4,6) 78 9 6
[6,8) 63 7 5
[8,10) 51 2 7
[10,12) 42 10 2
[12,14) 30 0 6
Totals - 208 68
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Consider the first interval of [0,2) months.

o0 The 300 — 167 — 28 = 105 subjects who remained at-risk throughout the entire
interval contribute 105 x 2 = 210 months.

o The deaths and censorings are assumed to occur at month 1, halfway through
the interval. Thus the 167 subjects who died and the 28 who were censored
each contribute one month for a sum of 195 x 1 = 195 months.

o The total person-months in the first interval is 210 + 195 = 405 months.
A summary of the months of follow-up time is given in Table 2.

Table 2. Follow-up Time for the Cardiac Transplant Subjects

Postoperative Interval | At Risk Through | Deaths | Censored | Follow-up
(months) Interval

[0,2) 105x2=210 | 167x1| 28x1 405
[2,4) 78 x 2 =156 13 x 1 14 x 1 183
[4.6) 63 x2 =126 9x1 6x 1 141
[6.8) 51 x 2 =102 7x1 5x 1 114
[8,10) 42 x 2 =84 2x1 7x1 93
[10,12) 30 x 2 =60 10 x 1 2x1 72
[12,14) 24 x 2 =48 Ox1 6 x1 54
Totals 786 208 68 1062
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e The incidence density is then calculated as the number of deaths divided by the
follow-up time calculated in the table: 208 / 1062 = 0.196 deaths per month.

9.2.6 Stable Populations

Another method for calculating follow-up is to assume that the at-risk population is stable
over time.

¢ In this case we do not need to know exact follow-up times because we assume that
every individual has the same follow-up time.

e Particularly useful in computing incidence density for registry data.

Example

Suppose that we are interested in the incidence of bladder cancer in the lowa City
metropolitan area.

e Assume that the population in the metro area of approximately 100,000 individuals
Is stable over time.

e Suppose that there are 500 cases of bladder cancer reported to the lowa State
Health Registry over a 5-year period.

e The incidence density is 500 / (5 x 100,000) = 0.001 cases per year.
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9.2.7

Comments

Incidence rate, as was initially defined, is an instantaneous measure of disease
onset at a point in time.

Our estimate of the incidence rate was an average over a period of time.

There is no reason to believe that the true incidence rate is constant; namely, the
same at each point in time over the follow-up period.

As the follow-up window becomes smaller the incidence density will approach the
incidence rate. The trade-off, however, is that a smaller window leads to less
follow-up time and fewer observed events, thus increasing the uncertainty in our
estimate.

Ideally, the incidence rate would be estimated as a function of time. Methods to do
this are discussed in the Applied Survival Analysis course (171:242).

The Mortality Rate can be thought of as an Incidence Rate where the “disease” of
interest is death. Consequently, the material presented here for the incidence rate
also applies to the mortality rate.
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9.3 Incident Rate Ratio

9.3.1 Data Layout

Multiple Exposure Categories

To measure the association between | levels of an exposure variable and the incidence
rate, we will work with the data as summarized in the following table.

Exposure Levels Totals
X1 X2 X|
Incident e o e e
Cases ! 2 !
Follow-
up Time Y1 Y2 y y

where

I
e e= Zei = total number of incident cases
i=1

I
e y=)y, = total follow-up time

i=1
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Two Exposure Categories
In the simple case of two exposure categories, the table is

Unexposed Exposed Totals
Incident Cases e1 e; e
Follow-up Time Y1 Yo y

9.3.2 Estimation

A ratio comparison two average rates is called an incidence density ratio (IDR) or rate
ratio. The IDR for the | exposure category, relative to the i™ exposure category is

IDR — ID; &)y,
ID, ey,

where

e |D; and ID; are the incidence density estimates for the i™ and j" exposure
categories, respectively.

e ¢e; and g; are the number of incident cases within each category.
e y;andy; are the observed follow-up times within each category.
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e The IDR can take on any value greater than or equal to zero

o Values less then 1 indicate a negative association between exposure and
disease.

o Value greater than 1 indicate a positive association.
o If the rates are equal then the IDR will evaluate to 1, indicating no association.
o The further away from 1, the stronger the association.

Example

The following table summarizes the number of Prevalent and Incident cases during a 2-
year follow-up of a hypothetical stable population of size N, stratified by exposure status
and age.

Unexposed Exposed
Age N Prevalent Incident N Prevalent Incident
40-49 240,000 600 240 35,000 175 70
50-59 230,000 2,840 1,136 50,000 1,220 488
60-69 200,000 9,525 3,810 60,000 5,455 2,182
70-79 130,000 14,445 5,778 55,000 11,000 4,400
Totals 800,000 27,410 10,954 200,000 17,850 7,140
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The resulting incidence density rates are

Unexposed Exposed
Age e y ID e y ID
40-49 240 480,000 0.0005 70 70,000 0.0010
50-59 1,136 460,000 0.0025 1,220 100,000 0.0049
60-69 3,810 400,000 0.0095 5,455 120,000 0.0182
70-79 5,778 260,000 0.0222 4,400 110,000 0.0400
Totals 10,954 1,600,000 0.0068 7,140 400,000 0.0179
For example, the crude density rates over all age groups are
10954 0.0068 ID 1140 0.0179

unexposed — 2 x 800,000

exposed ~ 5 500,000

Thus, the incidence density ratio for the exposed versus the unexposed populations is

IDR =

0.0068

200
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Conclusion

e The 2-year average rate of disease is 2.6 times greater in the exposed population
than in the unexposed population.

e There is a positive association between disease incidence and exposure.

¢ Note, however, that each age-specific ratio is approximately equal to 2.0; noticeably
less than the crude ratio. Since age is a (positive) risk factor for the disease and
the mean age for the exposed subjects is greater than that for the unexposed, the
crude exposure effect is distorted or confounded by age. Indirect or direct
standardization could be used to address the age effect.

9.3.3 Confidence Intervals

Consider the calculation of the incidence density ratio as

DR = €2/Y2
e,/Y,

We will only discuss the approximate method for computing the confidence interval.
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If the incidence rate was the same for both the exposed and unexposed subjects, then
we could combine the two groups to estimate the overall incidence density

D=%
y

where e is the total number of incident cases and y is the total follow-up time. Under this
scenario we would expect to see

e

E, =y, x—
1 ly
e
E,=y,x—
2 2y

number of cases in each group.

Approximate Method
If the number of expected cases is large, say E,,E, > 20, then the approximate 95%

confidence interval is

E.e, E, (e, +1) Fo.975,2¢,+2.2¢,
E,(e +1) Fo.975,26,+2.2¢, E.e
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Example

We have
e, =10,954
e, =7,140
E, =y, % 1600000 299 144752
y 2,000,000
E, =y, =400,000 229 _34188
y 2,000,000

Software can be used to find percentiles for the F distribution,
F0.975,2e0+2,2e1 = FO.975,21910,14280 =1.03

F0.975,2e1+2,2eo = Fo.975,14282,21008 = 1.03

The associated confidence interval for the rate estimate of 2.6 is

14,475.2x7,140  14,475.2x7,141x1.03
3,618.8x10,955x1.03° 3,618.8x10,954

(2.53,2.69)
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9.3.4 Hypothesis Testing

Suppose we are interested in testing the equality of incidence densities across levels of
an exposure variable. Namely, the null and alternative hypotheses are

HO:ID]_:IDZ :--':IDl
H,:ID, #1D;, for somei and j

The standard chi-square goodness of fit statistic is

_ (observed-expected)”
E e
— expected

In our case, the statistic can be expressed as

- (e-E))’
X2 — | | _ 2
; E X1
where E; is the expected number of cases, under the null hypothesis that the incidence
densities are equal across exposure levels, and is computed as

Ei ZYiE-
y

The two-sided p-value is
p= Pr[;gf_l > XZJ.
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Example
The goodness of fit statistic is

(10,954 -14,475.2)° . (7.140- 3,618.8)°
14,475.2 3,618.8
with a 2-sided p-value of p = Pr[;(f > 4282.79] <0.0001. Therefore, the incidence

densities differ significantly between the exposed and unexposed subjects. Note that
there are only two exposure groups in this example.

=4282.79 ~ 47

Thus, the null and alternative hypotheses are simply
H, :1D, =D,
H,:ID, #1D,
which are equivalent to
H,:IDR =1
H,:IDR =1
Hence, we could have concluded equivalently that the incidence density ratio is
significantly different from one. In particular, the IDR of 2.6 is significantly greater than

one. There is a statistically significant positive association between exposure and
disease (p < 0.0001).
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9.4

94.1

9.4.2

Incidence Risk

Definition
The probability of disease developing in an individual over a specified time interval.
Value must be between zero and one.
Examples
o Risk of developing breast cancer by age 50

o Risk of developing leukemia 5 years after nuclear detonation at Hiroshima
o Risk of binge drinking between ages 18 and 21

Cumulative Incidence

A measure or estimate of average risk.

Assumes that the follow-up times are approximately the same for all subjects and
that there is no censoring.

Calculated as the proportion of subjects who become diseased over the study
period:

|- number of incident cases
total number of subjects

Dimensionless quantity which is often reported as a percentage.
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¢ All the statistical methods for binomial proportions apply (confidence intervals, tests
of association, etc.)

Example

5,000 subjects were enrolled in a study and followed for 5 years. 100 incident cases of
disease were observed during the study period.

e Cumulative incidence is 100 / 5,000 = 0.02 or 2%.
e There is a 2% risk of disease within the associated 5-year time window.

9.4.3 Kaplan-Meier Estimator

Cumulative incidence has limited use as an estimate of risk because it does not
adequately account for censoring. The Kaplan-Meier estimator is one popular solution.

Nonparametric method for estimating risk.

Yields an estimate of risk for any point in time during the follow-up period.
Also referred to as the Product-Limit estimator.

Allows for censoring and varying lengths of follow-up.

Follow-up Data Example

We will use the times to disease or censoring (*) in our original example to illustrate the
Kaplan-Meier estimator:

0.5, 0.5%, 1.5, 1.5%, 1.5%, 2.5, 2.5, 2.5%, 2.5%, 2.5%, 3.5, 4.5*
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Step 1: Construct a table with a row for time zero and each subsequent time point at
which an incident case is observed.

Table 3. Kaplan-Meier Estimate of the Cumulative Survival Function in the Follow-up

Example
Time (t) | Number at Risk (ny) | Number of Cases (e) | px St
0 12 0 1.000 | 1.000
0.5 12 1 0.917]0.917
1.5 10 1 0.900 | 0.825
2.5
3.5
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Step 2: Calculate the proportion p; of subjects at risk at time t who are not incident cases

This is referred to as the conditional probability of remaining disease-free (surviving)
beyond time t. For example,
12-0
=———=1.00
Po 12
12-1
=———=0.917.
Pos 12

10-1
=—"—"=0.900
P15 10
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Step 3. Calculate the proportion of original subjects that remain disease-free at time t

St :Hpj'

j<t
In our example,
Sy = P, =1.000
S, = PoPos =(1.000)(0.917) =0.917
S, = PoPosPis =(1.000)(0.917)(0.900) = 0.825

e This is called the Kaplan-Meier estimate of the cumulative survival function.

e s;is the estimated probability of surviving beyond any time-point in the interval
[t,t’), where t' is the next observed failure time.

¢ In the context of this course, s; is interpreted as the probability of remaining
disease-free beyond time t.

e =1 - s;is the estimated probability (risk) that a subject will be diseased by time t.

Thus, we have an estimate of disease risk for any time point during the follow-up period.
For instance, the estimated 1-year risk of disease in our example is

n=1-s,=1-0.917=0.083 or 8.3%

since t = 1 falls within the interval [0.5, 1.5).
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SAS Program and Output

data followup; 8 2.50
input ID Time Disease; 9 2.50
cards; 10 2.5 0
1 0.5 1 11 3.5 1
2 0.50 12 4.5 0
3 1.5 1 ;
4 1.50
5 1.50 proc lifetest plots=(s) data=followup;
6 2.5 1 time Time*Disease(0);
7 2.5 1 run;
Syntax

PROC LIFETEST provides non-parametric methods for estimating and comparing
survival distributions for follow-up data.

plots=(s) requests that a survival curve be plotted.

The variables containing the follow-up times and censoring indicators are specified
with the time statement.

o Time here is the variable of follow-up times in the SAS dataset followup.

o Disease is the indicator variable for censoring. The variable is coded so that a
value of 0 indicates censoring and 1 indicates disease onset.
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The LIFETEST Procedure

Product-Limit Survival Estimates

Survival
Standard Number Number
Time Survival Failure Error Failed Left

0.00000 1.0000 0 0 0 12
0.50000 0.9167 0.0833 0.0798 1 11
0.50000* . . . 1 10
1.50000 0.8250 0.1750 0.1128 2 9
1.50000* 2 8
1.50000* 2 7
2.50000 . . . 3 6
2.50000 0.5893 0.4107 0.1623 4 5
2.50000% 4 4
2.50000* 4 3
2.50000% . . . 4 2
3.50000 0.2946 0.7054 0.2236 5 1
4.50000* 5 0

NOTE: The marked survival times are censored observations.
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Summary Statistics for Time Variable Time

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)
75 . 3.50000
50 3.50000 2.50000 .
25 2.50000 1.50000 3.50000
Mean Standard Error
2.83095 0.32255

NOTE: The mean survival time and its standard error were underestimated because the largest
observation was censored and the estimation was restricted to the largest event time.

Summary of the Number of Censored and Uncensored Values

Percent
Total Failed Censored Censored
12 5 7 58.33
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Estimated Disease Risk

e As was mentioned, disease risk as a function of time can be calculated as one
minus the Kaplan-Meier estimates.

e The corresponding estimate for our follow-up example is given in the following plot
(not a SAS graph).

o
—

0.8

0.6

04

Cumulative Risk of Disease

0.2
|

Follow-up Time (Years)

e This is an estimate of the cumulative probability of disease as a function of time.
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For example, the plot shows that there is:
o0 An 8.3% risk of developing the disease during the first year of follow-up.
o A 17.5% risk of developing the disease during the first 2 years of follow-up.

Comments on the Kaplan-Meier Estimator

The methods of Kaplan-Meier provide an estimate of the cumulative probability of
remaining at risk (surviving) as a function of time.

The estimated values are commonly referred to as the Kaplan-Meier estimate of the
survival function. The associated plots are known as Kaplan-Meier survival curves.

The Kaplan-Meier estimator yields a step-function; i.e. the function/curve has a
discrete number of points at which its value changes.

Subtracting the Kaplan-Meier estimates from one gives the estimated risk of
disease. Specifically, it gives an estimate of the cumulative probability of disease at
any point in time during the follow-up period.

Since the Kaplan-Meier estimator is a measure of cumulative probability, the
associated survival curve is decreasing as a function of time. Conversely, the risk
curve is increasing.

The outcome of interest need not be limited to diseases. These methods can be
applied to the general situation of subjects being followed until the occurrence of
any dichotomous event; such as death, pregnancy, recovery, retirement, etc.
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9.4.4 Life Table Method

Life table methods are appropriate if
1. The time of disease is observable only within certain time intervals, or

2. Interval, rather than point, estimates of incidence are desired.

We will discuss the actuarial method that assumes censoring occurs at the midpoint of

the associated interval.

e The algorithm for computing risk using life tables is similar to the method of Kaplan-

Meier, except that we are now interested in the probability of surviving beyond

intervals of time rather than points in time.
e Consider the Cardiac Transplant data used earlier to compute incidence rates from

interval data (page 193):

Time (t) | Number at Start (n,) | Deaths (e;) | Censored (c;) | Number at Risk (nt)
[0,2) 300 167 28 286
[2,4) 105 13 14 08
[4,6) 78 9 6 75
6,8) 63 7 5 60.5
[8,10) 51 2 7 475
[10,12) 42 10 2 41
[12,14) 30 0 6 27
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Step 1: Compute the average number of subjects at risk within each interval.

Under the assumption that censoring occurs at the interval midpoints, the average
number at risk in the t" interval is

n =n,—c,/2

Step 2: Compute the survival probabilities. The probability that a subject remains
disease-free through interval t, given that s/he made it that far is

and the cumulative probability of remaining disease-free up to time tis

St :Hpj'

j<t
Note that the probability of surviving through interval t is not included in the calculation of
the cumulative survival. Finally, the cumulative probability of disease is

I :1—5t
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Time Interval | Number at RiSk(n: ) Deaths (&) o S ¢

[0,2) 286 167 | 0.4161|1.0000 | 0.0000
[2,4) 98 13 0.86730.4161 | 0.5839
[4,6) 75 9 0.8800 | 0.3609 | 0.6391
[6,8) 60.5 4 0.884310.3176|0.6824
8,10) 475 2 0.9579 | 0.2808 | 0.7192
[10,12) 41 10 0.7561 | 0.2690|0.7310
[12,14) 27 0 1.0000|0.2034 | 0.7966
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SAS Program and Output

data cardiac; 8 O 7
input Time Death N; 10 1 10
cards; 10 0 2
0 1 167 120 6
0O 0 28 14 0 24
2 1 13
2 0 14
4 1 9 proc lifetest method=life plots=(s)
4 0 6 data=cardiac;
6 1 7 time Time*Death(0);
6 0 5 freq N;
8 1 2 run;
Syntax

e method=life specifies that the life table method be used to compute survival
probabilities. The Kaplan-Meier method is the default.

e The interval option (not shown) can be used to manually define the life table
intervals.

e The freq statement identifies a variable containing the frequency of occurrences
of each observation. N is the frequency variable in the dataset cardiac.
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The LIFETEST Procedure

Interval
[Lower, Upper)
0 2
2 4
4 6
6 8
8 10
10 12
12 14
14 16
Interval
[Lower, Upper)
0 2
2 4
4 6
6 8
8 10
10 12
12 14
14 16

Numb
Fail

167
13

Fai

O O O oo oo

er
ed

lure

.5839
.6391
.6824
.7192
.7310
. 7966
. 7966

28
1

(o) \© I N BN &) o) I -

24

Number
Censored

Survival
Standard
Error

O O O oo oo

.0291
.0290
.0289
.0287
.0287
.0282
.0282

Effective

Sample
Size

286.
98.
75.
60.
47.
41.
27.
12.

O O oo Ul O oo

Median
Residual
Lifetime

1.7126
9.8585

Life Table Survival Estimates

Conditional
Conditional Probability
Probability Standard
of Failure Error Survival
0.5839 0.0291 1.0000
0.1327 0.0343 0.4161
0.1200 0.0375 0.3609
0.1157 0.0411 0.3176
0.0421 0.0291 0.2808
0.2439 0.0671 0.2690
0 0 0.2034
0 0 0.2034
Median
Standard
Error
0.1013
0.6406
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Evaluated at the Midpoint of the Interval

PDF Hazard
Interval Standard Standard
[Lower, Upper) PDF Error Hazard Error
0 2 0.2920 0.0146 0.412346 0.029069
2 4 0.0276 0.00739 0.071038 0.019653
4 6 0.0217 0.00699 0.06383 0.021233
6 8 0.0184 0.00674 0.061404 0.023165
8 10 0.00591 0.00414 0.021505 0.015203
10 12 0.0328 0.00968 0.138889 0.043495
12 14 0 . 0
14 16 0 . 0

Summary of the Number of Censored and Uncensored Values

Percent
Total Failed Censored Censored
300 208 92 30.67
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9.5 Log-Rank Test

9.5.1 Introduction

Leukemia Study Example

A clinical trial was conducted to study the effects of an experimental drug on time to
death in leukemia patients. Forty-two patients were randomized to receive a placebo or
the drug. The number of weeks until death or censoring (*) were:

e Placebo (21 patients): 1,1, 2,2,3,4,4,5,5,8,8,8, 8,11, 11, 12, 12, 15, 17, 22,
23

o Drug (21 patients): 6, 6, 6, 6%, 7, 9*, 10, 10%, 11*, 13, 16, 17*, 19*, 20*, 22, 23, 25*,
32%, 32%, 34* 35*

Results

e The log-rank test was used to test the null hypothesis that the mortality rates
between the two groups are equal, versus the two-sided alternative they differ.

e A value of 16.8 was obtained for the 4/ test statistic.

e At the 5% level of significance, it was concluded that time to death differs between
the two groups (p < 0.0001).
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Questions
1. What are the properties of the log-rank test?
2. When is the test appropriate?
3. How should the results be interpreted?

9.5.2 Methodology

Consider the collection of ordered distinct times of death t for the two groups of subjects.

t e1t N1t €2t Not
1 2 21 0 21
2 2 19 0 21
3 1 17 0 21
4 2 16 0 21
5 2 14 0 21
6 0 12 3 21
4 0 12 1 17
8 4 12 0 16
10 0 8 1 15
23 1 1 1 6
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At time t there are ny; subjects at risk in group 1 of which ey, died. ny; and e, are similarly
defined for group 2. The events at time t can be summarized in the 2 x 2 table

Diseased Survivors At Risk

GFOUp 1 elt nlt - elt nlt
Group 2 €ot Ny — €y N,y
TOtals et nt - et nt

If we condition on knowing the table margins and assume a common rate of disease,
then ey; iIs a hypergeometric random variable with a mean and variance given by
e
— t
E (elt) =Ny —
nt
r(e.)= Ny, N, € (nt _et)
var (g, ) = = A LR
N, (nt N )

The standard test for an association between the row and column factors for
independent 2 x 2 tables is the Mantel-Haenszel statistic.
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This statistic is constructed by subtracting the expected number of incident cases in
Group 1 from the observed cases, and then standardizing this difference by the square

root of the variance:
Z(elt —-E (elt ))

.k t\/zt:var(elt)

The square of this statistic X7, has an approximate chi-square distribution with one
degree of freedom and is typically reported in practice.

~N(0,2).

e X/, is known as the log-rank statistic. It can be generalized for the comparison of
more than two groups of subjects.

e The p-value is computed as
P = Prl:le 2 XI\Z/IHi|
and is inherently two-sided.

e The log-rank test is a non-parametric test. As in the Kaplan-Meier estimator, no
assumptions are made about the distribution of the survival times.

e Each of the 2 x 2 tables can be viewed as a comparison of the incidence rates at
the corresponding point in time. Since each of the e;, —E (e, ) differences receives

equal weight in the test statistic, the log-rank test is most powerful when the
incidence rates are proportional over time.
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¢ A non-significant result from the log-rank test does not imply that the incidence
rates are equal; only that the test does not provide evidence to the contrary.

Leukemia Example: The log-rank test for the leukemia data is based on 17 unique
failure times, each of which can be summarized in a 2 x 2 table. The first six tables are
given below.

Time
1 Deaths Survivors At Risk
Placebo |2 19 21
Drug 0 21 21
2 40 42
E=1.000 var=0.488
2 Deaths Survivors At Risk
Placebo |2 17 19
Drug 0 21 21
2 38 40

E=0.950 var=0.486
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Time

Placebo
Drug

Placebo
Drug

Placebo
Drug

Placebo
Drug

Deaths Survivors

1 16

0 21

1 37

E =0.447 var=0.247
Deaths Survivors

2 14

0 21

2 35
E=0.865 var=0.477
Deaths Survivors

2 12

0 21

2 33

E =0.800 var=0.466
Deaths Survivors
0 12

3 18

3 30
E=1.091 var=0.651
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The calculations necessary for computing the log-rank statistic are given in the following
work sheet.

t e1t 2t e Nyt Nat Ny E(ew) en-E(e) var(ey)
1 2 0 2 21 21 42 1.000 1.000 0.488
2 2 0 2 19 21 40 0.950 1.050 0.486
3 1 0 1 17 21 38 0.447 0.553 0.247
4 2 0 2 16 21 37 0.865 1.135 0.477
5 2 0 2 14 21 35 0.800 1.200 0.466
6 0 3 3 12 21 33 1.091 -1.091 0.651
7 0 1 1 12 17 29 0.414 -0.414 0.243
8 4 0 4 12 16 28 1.714 2.286 0.871
10 0 1 1 8 15 23 0.348 -0.348 0.227
11 2 0 2 8 13 21 0.762 1.238 0.448
12 2 0 2 6 12 18 0.667 1.333 0.418
13 0 1 1 4 12 16 0.250 -0.250 0.188
15 1 0 1 4 11 15 0.267 0.733 0.196
16 0 1 1 3 11 14 0.214 -0.214 0.168
17 1 0 1 3 10 13 0.231 0.769 0.178
22 1 1 2 2 7 9 0.444 0.556 0.302
23 1 1 2 1 6 7 0.286 0.714 0.204
Total 21 9 30 10.251 6.257
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Summing the terms over all 17 failure times gives

, [(2-1.000)+(2-0.950)+...+(1-0.286)]
MH 0.488 +0.486 +...+0.204

- 10.257°
6.257

=16.79

Thus, the 2-sided p-value is

p =Pr|  >16.79 | = 0.0000417

which agrees with the p-value given in the original statement of the analysis results.
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SAS Program and Output

data leukemia; 2526 0
input ID Group Time Disease; 26 27 1
cards; 2729 0
1 11 1 28 210 1
2 11 1 29 2100
3 12 1 302110
4 12 1 312131
5 13 1 32216 1
6 14 1 332170
7 14 1 34 2190
8 15 1 352200
9 15 1 36 2 22 1
1018 1 37 2231
1118 1 382250
1218 1 39 2320
1318 1 40 2 32 0
14 1 11 1 41 2 34 0
15111 1 42 2 36 O
16 1 12 1 ;

17 1 12 1

18 1 15 1 proc lifetest plots=(s) data=leukemia;
191 17 1 time Time*Disease(0);

201 22 1 strata Group;

21 1231 run;

2226 1

2326 1

24 26 1
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The LIFETEST Procedure
Stratum 1: Group = 1

Product-Limit Survival Estimates

Survival
Standard Number Number

Time Survival Failure Error Failed Left
0.0000 1.0000 0 0 0 21
1.0000 . . . 1 20
1.0000 0.9048 0.0952 0.0641 2 19
2.0000 . . . 3 18
2.0000 0.8095 0.1905 0.0857 4 17
3.0000 0.7619 0.2381 0.0929 5 16
4.0000 . . . 6 15
4.0000 0.6667 0.3333 0.1029 7 14
5.0000 . . . 8 13
5.0000 0.5714 0.4286 0.1080 9 12
8.0000 10 11
8.0000 11 10
8.0000 . . . 12 9
8.0000 0.3810 0.6190 0.1060 13 8
11.0000 . . . 14 7
11.0000 0.2857 0.7143 0.0986 15 6
12.0000 . . . 16 5
12.0000 0.1905 0.8095 0.0857 17 4
15.0000 0.1429 0.8571 0.0764 18 3
17.0000 0.0952 0.9048 0.0641 19 2
22.0000 0.0476 0.9524 0.0465 20 1
23.0000 0 1.0000 0 21 0
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Summary Statistics for Time Variable Time

Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)
75 12.0000 8.0000 17.0000
50 8.0000 4.0000 11.0000
25 4.0000 2.0000 8.0000
Mean Standard Error
8.6667 1.4114

The LIFETEST Procedure

event time.

Summary of the Number of Censored and Uncensored Values

Percent

Stratum Group Total Failed Censored Censored
1 1 21 21 0 0.00

2 2 21 9 12 57.14

Total 42 30 12 28.57
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The LIFETEST Procedure

Testing Homogeneity of Survival Curves for Time over Strata

Rank Statistics

Group Log-Rank Wilcoxon
1 10.251 271.00
2 -10.251 -271.00

Covariance Matrix for the Log-Rank Statistics

Group 1 2
1 6.25696 -6.25696
2 -6.25696 6.25696

Covariance Matrix for the Wilcoxon Statistics

Group 1 2
1 5457.11 -5457.11
2 -5457.11 5457.11

Test of Equality over Strata

Pr >
Test Chi-Square DF Chi-Square
Log-Rank 16.7929 1 <.0001
Wilcoxon 13.4579 1 0.0002
-2Log(LR) 16.5459 1 <.0001

236



Distribution Functicn

Surviwaol
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9.7 Points of Emphasis



10.1

Suppose that we would like to develop a mathematical model that describes the

Overview

underlying relationship between, say, age and systolic blood pressure.

Systolic BP
140 180 200 220
| | | |

120
l

160
|

Age
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Analysis Goals

1. Select an appropriate mathematical model to use.
2. Find the “best” fit to the data

3. Use the model to make inference about the effect of the predictor variable (age) on
the response variable (systolic blood pressure).

Strateqy:
1. Assume a linear effect of age on blood pressure.

2. Estimate the “best” fit to the data.

3. Does the fitted model provide an adequate explanation of the systolic blood
pressures:

e No = Examine the model assumptions, assume a new model for the data, and
repeat from step 2.

e Yes = Stop
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Notation
e Let X denote the predictor variable and Y the response variable.
¢ A straight-line model for the data can be expressed as
Y =4, + pX
where g, is called the “intercept” and p, the “slope”.

o /f, is the rate of change in Y for each unit change in X. If X increases by 1 unit,

then Y increases by g, units. Suppose, for example, that we were to model the
effect of age on blood pressure as

Y =98.71+0.97X.

This would imply that blood pressures increases by 0.97 units for every 1-year
Increase in age.
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10.2 Linear Regression Model Assumptions
1. The Y values are independent, given X.
2. At any given value of X, Y is normally distributed.
3. In simple linear regression, the means of the response variable lie on the straight
line
Hyx = Po+ PX.
where 4, Is read as the mean of Y given X. Think of this as the expected value of

Y at the given value of X.

4. The variance of Y is the same at any value of X; oy, =o”.

5. The X values are measured without error.
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The previous assumptions are illustrated in the following graphic:

JiX, ¥)

L

Hy|x = a + fix

* SR . 99 0

*a
/ P}'qu

X

g

Figure 8.2.1. Representation of the simple linear regression model.
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The simple linear regression model may be written mathematically as
Y = My TE
=p,+BX+¢
where
* . =B+ BX isthe true population mean as a function of X, which cannot be

observe directly.
e ¢=Y —pu, Istheresidual value. Itis the difference between the observed Y and

the true mean of V.
e ¢is assumed to be a Normal random variable with a mean of zero and variance
equal to &2,

&~ N(O,GZ).

¢ |f we could observe the & they would be randomly scattered about zero.
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10.3 Data Format

The data in simple linear regression consist of a set of n data points
(X, Y1)s(X5:Y5 )5 (X,,Y, ). For instance, the data in the blood pressure example look like

Subject SBP Age
1 144 39
2 220 47
3 138 45
4 145 47
5 162 65
30 175 69

where each blood pressure-age pair is measured on an individual subject.
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104 Parameter Estimation

Observed Data and Regression Line

7 T T T T T

Observed Y
oF atX =4

Residual

Predicted
4 | YatX=4

The least-squares method determines the best-fitting straight line by minimizing the
sum of squares of the lengths of the vertical-line segments drawn from the observed
data points on the scatter diagram to the fitted line (the residuals).
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For the data set (X,,Y,),(X5,Y5 ) (XsY1 )

Let g, + B be the value of the true regression line at x..

Let ﬁo and Bl denote the estimated intercept and slope of the “best fitting” straight
line.

The estimated regression line is thus represented by the equation y, = BO + lei :

Call SSE= (v, -¥,) = >.(v: - B, - Bx )2 the sum of squares due to error.

We want to find the 4, and £, that minimize the SSE; that is
SSE=Y.(vi-A-Ax) <X (vi-A-Bx)

for any other estimators g, and g, .

10.4.1 Least-Squares Estimates

The slope and intercept estimates that minimize the SSE are given by

SOV s o
A= =S ey Ay A

where X =) x,/nand y =)y, /n.
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SAS Program and Output

data bp; 150 56 158 53
input sbp age; 140 59 144 63
cards; 110 34 130 29
144 39 128 42 125 25
220 47 130 48 175 69
138 45 135 45 . 40
145 47 114 17 c 50
162 65 116 20 . 60
142 46 124 19 ;
170 67 136 36
124 42 142 50 proc reg data=bp;
158 67 120 39 model sbp = age / clm cli;
154 56 120 21
162 64 160 44 run;

Syntax

PROG REG performs linear regression analysis based on the method of least
squares.

The response and predictor variables are supplied in the model statement. The
clm and cli options request confidence intervals (for the mean) and prediction
intervals (for individual predictions), respectively.

The blood pressure measurements are missing “.” for the last three entries in the
dataset. SAS will exclude these records from the estimation of the regression
parameters. However, SAS will use the resulting regression model to produce
estimates of the missing blood pressures.
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The REG Procedure
Model: MODEL1
Dependent Variable:

Source

Model
Error
Corrected Total

Root MSE
Dependent Mean
Coeff Var
Variable DF
Intercept 1
age 1

sbp
Analysis of Variance
Sum of Mean
DF Squares Square
1 6394.02269 6394.02269
28 8393.44398 299.76586
29 14787
17.31375 R-Square 0.4324
142.53333 Adj R-Sq 0.4121
12.14716

Parameter Estimates

Parameter Standard

Estimate Error t Value
98.71472 10.00047 9.87
0.97087 0.21022 4.62

F Value

21.33

Pr > |t

<.0001
<.0001
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The REG Procedure
Model: MODEL1
Dependent Variable:

Obs

0N O~ WD =

D MDD MNDMMNOOMNMNOMNOMN A A4 a4 a4 a4 a a a a a
NOoO OO hAOWON -0 000NN~ OO0

Dep Var

144

sbp

.0000
220.
138.
145.
162.
142.
170.
124.
158.
154.
162.
150.
140.
110.
128.
130.
135.
114.
116.
124.
136.
142.
120.
120.
160.
158.
144.

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

sbp

Pred

136.
144,
142,
144,

161

143.
163.
139.
163.
153.
160.
153.
155.

131

139.
145.
142.
115.
118.
117.
133.
147.
136.
119.

141

150.
159.

icted
Value

5787
3456
4039
3456
.8213
3748
7630
4913
7630
0835
8504
0835
9961
.7243
4913
3165
4039
2195
1321
1613
6661
2582
5787
1030
.4330
1708
8796

Output Statistics

Std Error
Mean Predict

AW WUWWWOOOoOOOOWOWOWOWPAOWOU WO WO WOo Wwwowow

.4139
.1853
.1612
.1853
.2377
.1663
.5787
.2289
.5787
.9001
.0717
.9001
.2999
.9332
.2289
.2180
.1612
.7058
.1568
.3382
.6984
.3225
.4139
.9774
.1700
.5675
.9090

129.
137.
135.
137.
.0923
136.
152.
132.
152.
145.
150.
145.
147.
123.
132.
138.
135.
.4832
105.
104.
126.
140.
129.
106.
134.
.8632
149.

151

101

142

95% CL Mean

5857
8208
9285
8208

8889
3356
8771
3356
0946
4616
0946
1881
6676
8771
7248
9285

5204
1781
0901
4525
5857
8588
9395

8238

143.
150.
148.
150.
172.
149.
175.
146.
175.
.0724
.2393
.0724
164.
139.
146.
.9082
148.
128.
130.
130.
.2420
154.
143.
.3472
147.
157.
169.

161
171
161

151

141

131

5717
8704
8792
8704
5502
8606
1905
1055
1905

8041
7810
1055

8792
9558
7439
1444

0640
5717

9265
4785
9353
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95% CL Predict

100.
108.
106.
108.
124.
107.
126.
103.
126.
116.
123.
116.
119.

95.
103.
109.
106.

7.

80.

79.

97.
111
100.

81
105.
113.
123.

4302
2848
3520
2848
7684
3210
5018
4142
5018
7292
8945
7292
4531
3551
4142
2435
3520
1867
4909
3939
4003

. 1455

4302

.5833

3779
9602
0159

172.
.4064
.4558
.4064
198.
.4285
.0242
175.
.0242
L4377
197.
L4377
192.
168.
175.
.3895
.4558
153.
155.
154.
169.
.3709
172.
156.
.4882
.3815
196.

180
178
180

179
201

201
189

189

181

178

183

177
186

7271

8742

5684

8063

5391
0935
5684

2523
7734
9286
9318

7271
6227

7432



The REG Procedure
Model: MODEL1
Dependent Variable: sbp

Obs

28
29
30
31
32
33

Dep Var
sbp

130.0000
125.0000
175.0000

Pred

126.

122

165.
137.
147.
156.

icted
Value

8700
.9865
7048
5495
2582
9669

Output Statistics

Std Error
Mean Predict

AW WOOOoO DN

.6362
.2825
.9299
.3402
.3225
. 4451

117.
112.
153.
130.
140.
147.

95% CL Mean

3731
1657
5579
7075
4525
8615

136.
133.
177.
144.
154.
166.

3668
8072
8517
3915
0640
0724

250

95% CL Predict

90.
85.
128.
101.
111.
120.

1549
9069
2167
4300
1455
3511

163.
160.
203.
173.
.3709
193.

183

5851
0661
1929
6691

5828



10.5 Inference
Note that the least-square estimate of the slope can be written as

L SRy g (0
S YR T
_ Z(Xis;x)yi

where S, = Z(xi — >_<)2. The estimator for the intercept can be expressed in a similar
form.

Theoretical Results: If y,,y,,...,y, are independent, normally distributed random

variables with means x and variance o, and if c,,c,,...,c, are known constants, then
the following hold:

o L= Zciyi is called a linear function of the y and also has a normal distribution.

e The mean and variance of L are
U = Z:Ci,ui and o = Zcizaz :
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e The relevant results are as follows:

1.
2.

The least-squares estimators ﬁo and ,31 are normally distributed

Bo and ,31 are unbiased estimators of the true population intercept £, and slope

o

. The variance of 3, and j, are

var(4,) = 02(%+§j and var(f,) = az(sij.

XX XX

The square root of the variance is known as the standard error of the parameter
estimate; i.e.

se(ﬁo) = %+S)_(—2
and
se(,[?l):a Si

. Among all linear estimators, the least-squares estimators have minimum

variance.
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5. In order to make statistical inference about our regression estimates, we will
estimate the common variance o° by the residual variance

A2 1 % 2 _ SSE

o —n_pZ(Yi Yi) _n—p
where p is the number of regression parameters (p = 2 in the case of simple
linear regression). n—p is referred to as the error degrees of freedom.

10.5.1 Inference for the Slope

If g, is the true slope of the regression line, then

T = ﬂl_ﬂl ~1
— ~ n-p -

se(ﬁl)

In the case of simple linear regression, this statistic can be expressed as
T = ﬁ_ﬂl — 131_:31 ~
Se(ﬂl) 6 ]/Sxx

n-2"
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Confidence Interval
A 95% confidence interval for the slope is

ﬂ’\l i tn—p,O.97SS/é (ﬁ,\l) *

Example: From the SAS analysis, the estimated slope and standard error are
f,=0.9709 and se(/3,)=0.2102. The error degrees of freedom is n—p =30-2 = 28.

Thus, a 95% confidence interval for the slope is
0.9709 £ 1,4, 4,5 (0.2102)
0.9709 £(2.05)(0.2102).
(0.540,1.402)
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Hypothesis Testing
The test of the hypotheses
Hy: b= bl
H,: B, #Db,

where b, is the hypothesized null value (often zero), is based on the test statistic T.
Under the null hypothesis, this statistic has a t distribution with n — p degrees of freedom.

The two-sided p-value is
p=2Pr[t _ >|[].

Example: The test statistic given in SAS is for a null slope value of zero,
H, 5, =0
H,: 5, #0
Thus,
_ g\l—Abl _0.9709-0 _ 4.618
se(f,)  0.2102

for which the p-value is p = 2Pr[t28 > \4.618\] =7.87e —5. Therefore, at the 5% level of
significance, age has a significant positive effect on blood pressure (p < 0.0001).

T
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10.5.2 Inference for the Intercept

If S, is the true intercept of the regression line, then

In the case of simple linear regression, this statistic can be written as

~

T :ég_ﬁo _ ﬂo_ﬂo
se(f,) 6JUn+x2/S,

n-2"-

Confidence Interval
A 95% confidence interval for the intercept is

ﬁAO + tn—p,0.9758/é (IBAO) ’

Example: From the SAS analysis, the estimated intercept and standard error are
,30 =98.71 and se(,ﬁ’o) =10.00. Thus, a 95% confidence interval for the intercept is
98.71+ 1,5, 475 (10.00)
98.71+(2.05)(10.00).
(78.21,119.21)
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Hypothesis Testing
The test of the hypotheses
H, 1 Sy = by
H,: B, #b,

where by is the hypothesized null value (often zero), is based on the test statistic T.
Under the null hypothesis, this statistic has a t distribution with n— p degrees of freedom.

The two-sided p-value is
p=2Pr[t _ >T|[].

Example: The test statistic given in SAS is for testing a null intercept value equal to
zero,

I_Io : ﬁo =0
H,:B,#0
Thus,
B, —b, 98.71-0
T = —= = =
se(ﬂo) 10.00
for which the p-value is p = 2Pr[t,, >(9.871|=1.28e —10. Therefore, at the 5% level of
significance, the intercept is significantly different from zero (p < 0.0001).

=9.871
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10.5.3 Regression Estimates

One way to indicate the precision in the parameter estimates is to construct a confidence
interval for the regression line at select X values. Suppose that we want a confidence
interval for the regression line at the value x,. We will talk about two potential regression

estimates - an estimate of the mean as well as that for an individual subject.
Estimated Mean Values of the Response Variable

The regression estimate at x, of the mean of the distribution for Y is simply

Ia\qxO =P + BX%-

A 95% confidence interval for this mean value is given by

ILAIY|x0 T tn—p,0.975Se (IaY|x0 )
which, for simple linear regression, is

2
A 11 (%, —X
(ﬂo + ﬁlxo) x tn2,0.9750-\/ﬁ T (OS—) :

XX
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Example: The confidence intervals for the estimated blood pressure means were
requested via the clm option in the SAS regression analysis. They can be found in the
resulting output under the heading “95% CL Mean”. For instance, the estimated mean
and 95% confidence interval for the first subject (x, = 39) are

fly o = 136.58
(129.59,143.57)

The estimated means and confidence intervals are summarized in the following plot.

180

Predicted Systolic BP
140 160
1 1

120
|

100
|

20 30 40 50 60 70

Age
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Predicted Values of the Response Variable
The predicted value at x, for an individual subject is computed as

37::30"'51)(0'

It is frequently convenient to construct a "confidence interval” for this predicted Y value.

e This is commonly referred to as a prediction interval to distinguish it from the
aforementioned confidence interval for the mean of the regression line.

e To get an interval estimate at X, we first estimated the mean of y at xo as we did
before, and then account for the extra variability in y.

e The prediction interval will be wider than the confidence interval for the mean due to
the extra subject-to-subject variability.

o A 95% prediction interval is given by
yA itn—p,0.975 Se(y’\)

which, for simple linear regression, is

n S

XX

(ﬂ,\o * ﬁ1xo> t tn2,0.9756\/1+ 1 + w -
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Example: The confidence intervals for the predicted blood pressures were requested via
the cli option in the SAS regression analysis. They can be found in the resulting output
under the heading “95% CL Predict”. For instance, the predicted blood pressure and
95% confidence interval for the first subject (x, = 39) are

y =136.58
(100.43,172.73)

The predicted values and confidence intervals are summarized in the following plot.

160 180 200
| | |

Predicted Systolic BP
140
1

100 120
| |

80
|

20 30 40 50 60 70

Age
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10.6 Interpretation of Regression Estimates
Consider the hypotheses for the regression slope
H,:8,=0
H,:5#0

If we fail to conclude that the slope is significantly different from zero, then we are saying
one of the following:

1. The true model is Y = g, + ¢; the regression line has no slope. This means that X

does not help in predicting Y. A model without X does just as well in predicting Y as
a model with X.

2. The true model is not linear.
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If we were to analyze the data from either of the following graphs using simple linear
regression, our slope estimate would not be significant.

¢ In the first plot, the slope is not significant because we have chosen the wrong
(linear) model.

¢ In the second, there probably is no relationship.
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If we conclude that the slope is significantly different from zero, then the following are
true:

1. X provides significant evidence for the prediction of Y. The model Y =g, + g X +¢
is significantly better than the simple model Y = f, + ¢ for predicting Y.

2. A better model may still exist. For instance, in the graph below, there is evidence of
a linear effect, but that does not fully describe the relationship between X and Y.

264



10.7

Points of Emphasis

Be familiar with the linear regression model assumptions and the general concept
of least-squares.

Fit a regression model in SAS using PROC REG.

Interpret the regression parameters, including the estimated effect of the predictor
variable on the response variable. Use the regression model to predict Y values at
a given value of X. Plot the regression line.

Assess the significance of the regression estimates using SAS output. Compute a
confidence interval and p-value. Interpret the results.

Know the difference between prediction intervals and confidence intervals and how
to compute these if supplied with the standard errors.
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11.1 The Method of Maximum Likelihood

Binomial Example
Suppose that we are interested in estimating the prevalence of a particular disease in a
large population.
e Let 4 be the true prevalence in the population, 0 <6 <1.
e Suppose that a random sample of n individuals is selected from this population.
e LetY be the random variable denoting the number of individuals in the random
sample of size n who have the disease.
e The possible values of Y are 0, 1,..., n.
Consequently, Y has a binomial distribution with parameters n and é; that is,

Y ~Bin(n,6).

Analysis Goal: Use n and Y to obtain a “good” (unbiased and small variance) estimate of
the true prevalenced.
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Note that the probability function for the binomial random variable Y is

where

The following table displays, for n =5, the results of the probability function evaluated at

Pr[Y =vy;6] :(

Y

n
y

n!

jey (1-0)"

yl(n—y)

select values for 8 and all possible valuesof Y (y =0, 1, 2, 3, 4, and 5).

9 y

0 1 2 3 4 5
0.2 0.328 | 0.410 | 0.205 | 0.051 | 0.006 | 0.000
0.4 0.078 | 0.259 | 0.346 | 0.230 | 0.077 | 0.010
0.6 0.010 | 0.077 | 0.230 | 0.346 | 0.259 | 0.07/8
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For example,

PrlY =3,0=0.2] = @0.230.853 PrlY =3;0=0.4]= (2)0.430.653
=10(0.2)*(0.8)° =10(0.4)*(0.6)°
=0.051 =0.230

PrlY =3,6=0.6]= (2)0.630.453

=10(0.6)’(0.4)’
= 0.346

Suppose that we would like to decide between the three select values of ¢ (0.2, 0.4, and
0.6). If we were to observe 3 cases out of 5, then it is most likely to have occurred if
¢ =0.6 - the largest value of Pr[Y = 3;6?]. Examination of the table indicates that

e y=0orl= =02
° y:2:>§=0.4
e y=3,4,0r5=6=0.6
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In particular,

0.2 y=01
0=404 y=2
0.6 y=345

Is called the maximum likelihood estimator of 4.

Definition
The method of maximum likelihood (ML) is the process of selecting the value of &,
denoted @, that satisfies the inequality

Pr[y;é] >Pr|y;6" |

where € is any alternative value of @ and vy is the observed data.

Binomial Example: In general, when any value of 0 <8 <1 is possible, the ML method
involves finding the value @ for which

Pr{y;d] :(

n
y

jey (1-0)""

IS maximized as a function of 4.
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The maximization can be achieve with calculus, by
1. Taking the derivative of the previous equation with respect to 4.
2. Setting the derivative equal to zero.
3. Solving for &,

For instance,

yO(1-0)" ~(n-y)e’ (1-0)"" ]
0" (1-6)""[y(1-6)~(n-y)¢]

0" (1-0)" " (y -né)

< O X O X 55

The derivative evaluates to zero for @ equal to 0, 1, or y/n. The first two minimize the
probability function; the third maximizes it. Thus, the maximum likelihood estimate is

o=y

n
This is the sample proportion that you learned to use in Introduction to Biostatistics.
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This estimator has the property that
Pr[y;é] >Pr|y;6" |

for any value 6.

The following figure illustrates the maximum likelihood process for the binomial
distribution:

pr(¥; 6)

pr(Y; 0) ¢~~~ -

pr(Y; 8) = ,,Cy8Y(1—6)m—Y

[ S

D>
I
S~
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Note

e The solid curve represents the probability of the data (Y) for each value of the
parameter 6.

e The method selects the estimate & that yields the largest value of the likelihood
Pr[Y;0].

e Note that Y is the fixed quantity in this problem. We are searching for the estimate
¢ that has the largest “likelihood” given the data.

General Notation

In general, assume that we have a data set that represents a random sample from a
population

Y YoreenY, -

We will also allow for the possibility of more than one parameter of interest (e.g. the
intercept and slope parameter in simple linear regression).

e Denote the data vector as

Y=(Y0YorsYn)

and the parameter vector as

8=(0.6,....6,).
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» Define the likelihood function L(y;8) as the probability distribution for the data
evaluated at the parameter vector 0.

e The maximum likelihood estimate is the vector of values 8 =(,,6,....,4, ) that
maximizes the likelihood function; i.e.

L(y;ﬁ) >L(y:8’)
where 0 is any other set of parameter estimates.

¢ In practice, we find the maximum likelihood estimates using iterative computer
algorithms because in most cases there is no closed form for the solution.

e The Logistic regression techniques that we will discuss in this course use iterative
methods to find the maximum likelihood estimates.

11.2 Statistical Inference using Maximum Likelihood

Besides yielding estimates of the parameters, the maximum likelihood method yields
several results that are useful in comparing models (testing hypotheses) and
constructing confidence intervals, including

e The maximized likelihood value L(y;é).

e Estimates of the variances (standard errors) of the parameter estimates 6.

¢ Estimates of the covariances (correlations) among the elements of 6.
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Regression Example

Recall the simple linear regression example where systolic blood pressure (Y) was
modeled as a function of age (X). We now want to use the observations

(Xl’yl)’(xz’yz)"'"(Xn’yn)
to decide which of the following models is most consistent with the data:

Model 1 Y=8+¢
Model 2 Y=8,+BX+¢
Model 3 Y =B, +BX+BX*+e&

Model 2: Simple Linear Regression

The usual regression assumptions hold:
e The Y values are independent

o Y ~N(B,+BX,0%)

e The X values are measured without error.
The parameter vector of interest is

0= (ﬁo’ﬂl,gz)
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For each observation, we can write the normal probability density function as

f (yi;ﬂo’ﬂpaz) = \/%exp{_?iz[yi _(ﬁo + 6% )]Z}

Under the assumption that the Y’s are independent, the likelihood function is given by

L(yiBuboo’) = TTH (v o)

P s Bl A s T

Taking partial derivatives with respect to the three parameters and setting them equal to
zero yields a set of three equations in three unknowns.

e The solutions to these three equations are the maximum likelihood estimates

3 =V — X A:Z(Xi_i)(yi_y)
Po=Y - BX, A (% —x)

and
6% = %:Zl[yi - (ﬂ’\o + lei ):|2 = SSTE

where SSE is the sum of squared errors for the fitted straight line.
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e The previous solutions are the same as the least-squares estimates. This

equivalence holds in general for multiple linear regression where the residuals are
independent and normally distributed.

e The ML estimator 62 is a biased estimator: the unbiased estimator is

( n JAZ SSE
o = .
n-p n-p

11.2.1 Likelihood Ratio Test
In the case of linear regression, the likelihood function obtains its maximum at
L(y;é) = (27[(326)_”/2

where &2 is the maximum likelihood estimate of the variance. It is more convenient to
work with the natural log of the likelihood

InL(y;é) = —gln(Zm%ze)

We will use this maximum value to construct the likelihood ratio test statistic.
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Hypothesis Testing

We will use the likelihood ratio test to compare models in a manner entirely analogous to
using the partial F-test in multiple linear regression.

1. Fit the full model
2. Fit the reduced model
3. Look at the change in the maximum likelihood

4. If the change is large then we will reject the hypothesis that the reduced model is as
good as the full model.

From our blood pressure example, SAS was used to compute the log-likelihood for the
three models of interest.

Model |Form InL(y;é)

1 Y=p te 11355732
2 Y =B+ fX te "127.0783
3 Y =B+ X+ X+ s -127.0781
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Notes

L(:8,,6%) < L(¥:3,,8.,6°) < L(¥: 3. . 167
This is analogous to the result that in multiple linear regression R? increases as
more variables are added to the model.

Models 1, 2, and 3 represent a set of hierarchical models. In other words, the
variables contained in earlier models, appear in the later ones.

We will use the hierarchical nature of the models to test hypotheses, just as we did
in multiple linear regression.

Suppose the “Full” model has p + k parameters and the “Reduced” model has p
parameters. Then, if the sample size is large, the likelihood ratio statistic

X* = _Z(InLReduced - Ir”—Full) - Zkz
follows a chi-square distribution with k degrees of freedom.

That is, the degrees of freedom is equal to the number of parameters in the full
model minus the number in the reduced model.
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Reqgression Example:

Suppose that we wanted to compare model 1 with model 2; that is, test that a linear
model is better than a model with just an intercept (no effect of age).

e The Full model is
Y=8,+BX+¢
and the Reduced model is
Y= +¢.
e The likelihood ratio test statistic is computed as
X* = _2(InLReduced - InLFuII)
= -2(-135.5732+127.0783)
=16.9898 ~ 4’

and yields a p-value of p =Pr| 7 >16.9898 | =3.76e —5. Therefore, at the 5%

level of significance, the linear model provides a better fit to the data than the
intercept-only model.

¢ Note that this comparison of models is equivalent to testing the hypotheses
H,:8,=0
H,:B,#0
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We could compare the fit of the quadratic model to that of the linear model.
e The Full model is

Y =8,+BX+BX*+e&
and the Reduced model is
Y=8+pX+e.
e The likelihood ratio test statistic is computed as
X* = _Z(InLReduced —In LFuII)
=-2(-127.0783+127.0781)
=0.0004 ~ y?

which has a p-value of p = Pr[;(f > 0.0004] =0.9840. Therefore, at the 5% level of

significance, the quadratic model does not provide a better fit to the data than the
linear model.

¢ Note that this comparison of models is equivalent to testing the hypotheses

H,:5,=0
H,:B,#0
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Finally, we could compare the fit of the quadratic model to the intercept-only model.
e The Full model is
Y =8,+BX+BX*+e&
and the Reduced model is
Y= +¢.
e The likelihood ratio test statistic is computed as
X* = _Z(InLReduced - InLFuII)
=-2(-135.5732+127.0781)
=16.9902 ~ 4>

which has a p-value of p =Pr| 77 >16.9902 | = 2.04e 5. Therefore, at the 5%

level of significance, the quadratic model provide a better fit to the data than the
intercept-only model.

¢ Note that this comparison of models is comparable to testing the hypotheses
H,:5,=0,4,=0
H,:pB,#00r B, 20
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SAS Program and Output

data b

input sbp age;

car
144
220
138
145
162

175

P;

ds;
39
47
45
47
65

69

Syntax

;
proc genmod data=bp;
model sbp = ;

proc genmod data=bp;
model sbp = age;

proc genmod data=bp;
model sbp = age age*age;
run;

e PROC GENMOD is one of several regression procedures available in SAS. It can
be used to perform many different types of regression, including linear regression.

e We use it here to obtain maximum likelihood results (standard errors and log
likelihood); PROC REG only provides least-squares estimates.

e The three GENMOD statements correspond to the three models of interest.

282



The GENMOD Procedure

Model Information

Data Set WORK. BP
Distribution Normal
Link Function Identity
Dependent Variable sbp
Observations Used 30
Missing Values 3

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 29 14787 .4667 509.9126
Scaled Deviance 29 30.0000 1.0345
Pearson Chi-Square 29 14787 .4667 509.9126
Scaled Pearson X2 29 30.0000 1.0345
Log Likelihood -135.5732

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square
Intercept 1 142.5333 4.0535 134.5887 150.4780 1236.46
Scale 1 22.2017 2.8662 17.2384 28.5941

NOTE: The scale parameter was estimated by maximum likelihood.
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The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF
Deviance 28
Scaled Deviance 28
Pearson Chi-Square 28
Scaled Pearson X2 28

Log Likelihood

Algorithm converged.

Value

8393.4440
30.0000
8393.4440
30.0000
-127.0783

Value/DF

299.7659
1.0714
299.7659
1.0714

Analysis Of Parameter Estimates

Parameter DF Estimate

Intercept 1 98.7147
age 1 0.9709
Scale 1 16.7267

Standard Wald 95% Confidence Chi-
Error Limits Square Pr > ChiSq
9.6614 79.7788 117.6507 104.40 <.0001
0.2031 0.5728 1.3689 22.85 <.0001

2.1594 12.9873 21.5426

NOTE: The scale parameter was estimated by maximum likelihood.
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The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion

Deviance

Scaled Deviance
Pearson Chi-Square
Scaled Pearson X2
Log Likelihood

Algorithm converged.

Parameter DF Estimate

Intercept 1 98.2569
age 1 0.9949
age*age 1 -0.00083
Scale 1 16.7265

DF

27
27
27
27

Value

8393.3127
30.0000
8393.3127
30.0000
-127.0781

Value/DF

310.8634
1.1111
310.8634
1.1111

Analysis Of Parameter Estimates

Standard Wald 95% Confidence

Error Limits

23.2366 52.7141
1.1295 -1.2189
0.0128 -0.0254
2.1594 12.9872

Chi-

Square

143.7998 17.88

3.2088 0.78

0.0249 0.00
21.5425

NOTE: The scale parameter was estimated by maximum likelihood.
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11.2.2 Wald Statistics

PROC GENMOD gives confidence intervals and test statistics that are different than the
ones obtained in PROC REG. Previously, we based our inference on the least-squares
test statistic
T=4-4 ~t. .
se(d)

The standard errors in PROC GENMOD are estimated differently; using maximum
likelihood methods. For sufficiently large sample sizes, the maximum likelihood test
statistic

06 _
=0 N(0,2)

can be assumed to follow a normal distribution.

Results
e Suppose that the hypotheses of interest are
H,:60 =c
H,:0 %c’
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e The hypotheses can be tested with the following maximum likelihood statistic:
4-C _N(04).
se(d)

otherwise known as the Wald statistic, for which the two-sided p-value is

}.

e Because the square of a standard normal random variable follows a chi-square
distribution with one degree of freedom, the p-value is often computed as

2
p=Pr| 2> a-c ||
se(d)
The chi-square form of the statistic and the p-value are reported by PROC
GENMOD.

e A 95% Wald confidence interval is given by
éi T Z0.975S (él )

g -

e~ ~

se(d)

p = ZP{Z >
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Regression Example: In model 2, we can compute the 95% Wald confidence for the
slope as

ﬂ,\l * 20.9755% (,81)
0.9709+1.96(0.2031).
(0.573,1.369)

The chi-square statistic for testing the hypotheses that

H,:8,=0
H,:8,#0

Is computed as

Ao _ (0.9709j s
se(ﬂl) 0.2031
for which the p-value is p =Pr| z7 > 22.85|=1.75e - 6.
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11.2.3 Summary of Test Statistics

The following table summarizes the three different test statistics considered for the linear
and quadratic terms in our blood pressure example:

Alternative Hypothesis . Method .
Least-Squares | Likelihood Ratio Wald
H,:5,#0 T =4.62 X*=16.99 | X*=22.85
p < 0.0001 p <0.0001 | p<0.0001
H,:5,#0 T =-0.02 X*=0.0004 |X*=0.0005
p < 0.9838 p<0.9840 | p<0.9827

Notes
¢ |n general, the p-values will differ between the three methods.

e They are very similar here because the sample size is large and the effect is either
very significant or non-significant.

e Smaller sample sizes will lead to larger discrepancies in the results.
e The preferred method is the likelihood ratio test.
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11.3 Points of Emphasis

1. Be familiar with the method of maximum likelihood. Idea is to find values for the
parameters that maximize the likelihood function for a given set of data. It is used
to estimate model parameters and standard errors and to compare the fit of nested
models.

2. Fit regression models with PROC GENMOD.
3. Perform the likelihood ratio test to compare nested models.

4. Use the maximum likelihood results from GENMOD to construct Wald confidence
intervals and test statistics.
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12.1 Overview

Logistic regression is like linear regression in that it is a method for modeling the effect of
predictor variables on a response variable. The difference is that the response variable
Is binary; e.g.

e Dead or alive

e Diseased or non-diseased
e Exposed or unexposed

¢ Incident case or control

Most of the techniques learned in linear regression are applicable to logistic regression.
The main difference is in how the parameters are estimated and interpreted.
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CHD Example

Data are available on 100 patients from a cross-sectional study where we have age in
years and whether or not the individual patient shows signs of coronary heart disease
(CHD).

age chd
20
23
24
25
25

claldw Nk
|lolk|olo|o|T

100 69 1

where
¢ id is the unique study identifier.
e age is the age of the subject at the time of the cross-sectional sample.

e chd is an indicator variable for evidence of coronary heart disease (0 = no CHD; 1
= CHD).
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In general, we will use a 0/1 indicator variable to represent the absence/presence of the
event of interest. A scatter plot of CHD by age is given below.

O OO0 OO 000000000 0OOOOOOOOOOOOOO o

CHD status

o — o 0000 OO0 0O0O0O0O0O00000O000O0O0OO0OOOOOOQOO o OO0 O o

| | | |
20 30 40 50 60 70

Age (years)
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Note

Suppose we were to use linear regression to analyze these data, say,
Y=0+BX+e

where ¢ ~N(0,6%) or, equivalently,

Y ~N(B,+BX.c%).

In other words, the linear regression model assumes that the response variable is
normally distributed with constant variance. Does this assumption hold when the
response variable is dichotomous?

If Y is dichotomous, it is still reasonable to assume that the error term has a mean
of zero.

From the definition of the expected value,
E(Y)=0xPr[Y =0]+1xPr[Y =1]
=PrlY =1]
=T
Consequently, the expected value of our model can be written as
7=E(Y)=E(f,+pX+¢)
=E(5,)+E(BX)+E(¢).
=P+ X
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However, Y is a Bernoulli random variable whose variance is given by
Var (Y)=z(1-7)=(5, + £X)(1- B, - fX)

which is a function of the predictor variables. This violates the assumption that the
variance is constant.

e Furthermore, Y is dichotomous which clearly violates the normality assumption.

Probability as the Response Variable
A frequency table with CHD summarized by age intervals is shown below.

Age N CHD Me_:an
No Yes (Proportion CHD)
20-29 10 9 1 0.10
30-34 15 13 2 0.13
35-39 12 9 3 0.25
40-44 15 10 5 0.33
45-49 13 7 6 0.46
50-54 8 3 5 0.63
55-59 17 4 13 0.76
60-66 10 2 8 0.80
Total 100 57 43 0.43
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Note

e The column labeled “Mean” represents the mean of the CHD values within each
interval.

e Because the values of Y are 0 or 1, the mean is just the number of individuals with
evidence of CHD (CHD = 1) divided by the total number of individuals in that age
group, i.e. the mean is the proportion with evidence of CHD.

¢ Note that the proportion of CHD events increases with age.

Let the quantity E (Y | x) represents the expected value of Y given X, i.e. the theoretical
mean of Y given the value of x.

¢ In simple linear regression we write
Hyx = E(Y |X)::B0 + X

This expression implies that it is possible for E(Y |x) to take on any value between
—o0 and oo.

¢ The column labeled “Mean” in the previous table estimates the expected values. In
fact, the expected values are probabilities.

e Because YiseitherOor1l, E (Y \x) is the probability of disease at the given x value.
Denote this probability as

z(x)=E(Y |x)=Pr[Y =1]x].

Clearly, z(x) must take on values 0 < z(x)<1.
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The following is a plot of the observed proportions from the table.

0.8
I

0.6

0.5

CHD Proportion
0.4
l

N\

N

0.1

30 40 50 60

Age (years)
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Note that the curve is “S-shaped”. It resembles the shape of a cumulative probability
distribution. We will consider the logistic distribution as a tool for modeling the
relationship between a binary response variable and one or more predictor variables.

12.2 Logistic Model

The logistic regression model has the form
Y ~Binomial (17(x))
7(x)
In| ——— | =, + B,X
|:1_ 7Z'(X):| 180 ﬂl
where the expression on the left-hand side is referred to as the log-odds or logit. In
other words, the response is the natural log of the disease odds for the given x value.

e The logit transformation “linearizes” the relationship between 7z(x) and the
covariate X.

e The logit takes on values —w <logit7(Xx) <.

e There are alternative models for dichotomous response variables. One reasons for
the popularity of the logit model is that the coefficients have a simple interpretation
in terms of the odds ratios.
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e The odds of disease in this model is
7T (X
% =exp{f, + B}
Note that the relationship between the odds and the predictor variable x is

nonlinear.

e The logit model can be rewritten in terms of the probability of disease, such that
Bo+Bix
e

T 1y eh

which implies that 0 < z(x) <1; also a nonlinear function of the predictors.

7(x)

12.2.1 Model Assumptions

In linear regression we assume that an observed outcome can be expressed as
Y =E(Y | x)+ & where ¢ has mean zero.

e The quantity ¢ is called the error and expresses an observation’s deviation from the
conditional mean.

e We usually assume that ¢ ~N (O, 02). In particular, we assume that the variance is
the same for all values of x.
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If the dichotomous random variable Y represents the outcome from an individual subject
then

1. The Y values are independent and take on values of either O or 1.

2. Since Pr(Y =1|x)=z(x) and Pr(Y =0]|x) =1-7(x),
Y has a binomial distribution with n =1 and p = z(x).
Therefore
e E(Y[x)=7(x)
o var(Y|[x)=x(x)(1-7z(x))
That is, the conditional distribution of the response variable Y follows a binomial
distribution with probability given by the conditional mean z(x).

eﬂo"'ﬁlx

3. The conditional mean is modeled as 7 (x) = Lo ol
+e/h/

4. The X values are measured without error.
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12.2.2 Summary

1. The conditional mean of the regression equation must be bounded between 0 and
1. The form of the logistic model guarantees satisfies this property.

2. The parameters in the logistic model have a natural interpretation in terms of the
odds ratio.

3. The binomial, not the normal, distribution describes the distribution of the response
variable and will be the statistical distribution upon which the analysis is based.

4. The principles that guide an analysis using linear regression will also guide us in
logistic regression.

12.3 Maximum Likelihood for Logistic Regression

Just as in simple linear regression, the data will be a sample of independent
observations. In the case of one predictor variable, the data are given by

(X0 Y1)s (X2 Y2 )5 (X0sY )

where y; represents the value of the dichotomous response variable and x; is the value of
the predictor variable for the i subject.

Furthermore, assume that the response variable has been coded as 0 or 1, representing
the absence (0) or the presence (1) of the event, respectively.
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In simple linear regression we assumed that

E(Y|x) =8+ Bx

and used least-squares to estimate the parameters (ﬂo,ﬂl,az) that minimized the sum of

squares

Z(yi - ﬂo o ﬂlxi )2 .

For many reasons, this will not work for logistic regression. Rather, we must use the
method of maximum likelihood to obtain parameter estimates.

o In brief, this method selects the values for the parameters g, and g, which
maximize the probability of obtaining the observed set of data.

e The method is based on the form of the likelihood function when the response
variable is assumed to be a binomial random variable.

e This function expresses the probability of the observed data as a function of the
unknown parameters.
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12.3.1 Likelihood Function

The function for the conditional probability

eﬂo"‘ﬁﬁ(
PriY =1|X|=7n(X)=——F—+
[ | ] 72-( ) 1+ eﬂ0+ﬂlx
and implies that
1
PrlY =0|X|=1-7n(X)=——F—+.
[¥ =01X]=1-7(x) = -
Thus,
1. For those pairs (x;, y;) where y; = 1 the contribution to the likelihood function is
z(x;), and

2. For those where y; = 0 the contribution to the likelihood function is 1— 7 (x; ).

A general way of describing 1 and 2 jointly is

7(%)" (1-7(x))”
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To see why, note that when y;= 1 the result is

7(x) (1-7(x)) == (%)

and when y; = 0 the result is

7(%) (1-7(x))" =1-7(x).

Because the observations are assumed to be independent, the likelihood function is
obtained as the product of the individual terms for each observation or

: i Ly
L(B) =7 (x)" (17 (x))"”
Maximum likelihood requires that we use, as our estimate of 8, the value which

maximizes this expression.

It is easier to work with the log of the likelihood function

INL(B)= D4y, 7z (%) + (1-y, In[1- 2 (x)]}

i=1

If we choose the values of the parameters that maximize the log of the likelihood, those
same values will also maximize the likelihood.
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12.3.2 Likelihood Estimates

In the simple case of one predictor variable with a linear effect in the model,
7(X)
In| ———|= B, + X
|:l— 7Z'(X):| ﬁo ﬂl
there are two parameters to estimate, B, and g,. We therefore have to take the partial

derivatives of L(B) with respect to the parameters, set the derivatives equal to zero and

solve for the parameters. The two resulting equations are called the likelihood equations
and are given by

n n eﬁo"‘ﬂlxi
;[Yi _7Z'(Xi )] = ;|:yi _W} =0
and

| n eﬂo“‘ﬂlxi
gxi L= (x)]= 2% |:yi —W} =0

i=1

These are not linear in the parameters. Hence, iterative methods are used to solve
them.

Fortunately, we don’t have to worry about how the equations are solved; statistical
software programs solve them for us. We will use g, and g, to denote the solutions to

the likelihood equations; i.e. the maximum likelihood estimates.
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SAS Program and Output

data chd;
input id age chd; proc logistic data=chd descending;
cards; model chd = age;
1 20 0 output out=results predicted=p lower=Icl
2 23 0 upper=ucl;
3 24 0
5 25 1 proc print data=results;
iéé 69 1 proc genmod data=chd descending;
model chd = age / dist=binomial;
run;
Syntax
e Both PROC LOGISTIC and PROC GENMOD can be used to perform logistic
regression.

¢ |f the data are coded 1 for disease and O for non-disease then the descending
option is required to force SAS to estimate Pr[Y =1 x] rather than the default of

PrlY =0|x].
e Both procedures use maximum likelihood methods to fit the logistic regression
models.

e The output statement requests that specific estimates from the analysis be saved
in the SAS dataset result. This output statement would work in either procedure.
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The LOGISTIC Procedure

Model Information

Data Set WORK. CHD
Response Variable CHD

Number of Response Levels 2

Number of Observations 100

Model binary logit
Optimization Technique Fisher's scoring

Response Profile

Ordered Total
Value CHD Frequency

1 1 43

2 0 57

Probability modeled is CHD=1.

Model Fit Statistics

Intercept
Criterion Only
AIC 138.663
SC 141.268
-2 Log L 136.663
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Model Convergence Status

Intercept
and
Covariates

111.353
116.563
107.353

Test Chi-Square DF
Likelihood Ratio 29.3099 1
Score 26.3989 1
Wald 21.2541 1

Convergence criterion (GCONV=1E-8) satisfied.

Testing Global Null Hypothesis: BETA=0

Pr > ChiSq

<.0001
<.0001
<.0001



The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -5.3095 1.1337 21.9350 <.0001
AGE 1 0.1109 0.0241 21.2541 <.0001

O0dds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits
AGE 1.117 1.066 1.171

Association of Predicted Probabilities and Observed Responses

Percent Concordant 79.0 Somers' D 0.600
Percent Discordant 19.0 Gamma 0.612
Percent Tied 2.0 Tau-a 0.297
Pairs 2451 c 0.800
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The GENMOD Procedure

Model Information

Data Set WORK . CHD
Distribution Binomial
Link Function Logit
Dependent Variable CHD
Observations Used 100

Response Profile

Ordered Total
Value CHD Frequency

1 1 43

2 0 57

PROC GENMOD is modeling the probability that CHD='1"'.

Criteria For Assessing Goodness Of Fit

Criterion DF
Deviance 98
Scaled Deviance 98
Pearson Chi-Square 98
Scaled Pearson X2 98

Log Likelihood

Algorithm converged.

Value

107.3531
107.3531
101.9429
101.9429
-53.6765

Value/DF

.0954
.0954
.0402
.0402
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Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 -5.3095 1.1337 -7.5314 -3.0875 21.94 <.0001
AGE 1 0.1109 0.0241 0.0638 0.1581 21.25 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Summary of Results

. . Wald
Variable Parameter | Estimate SE 95% CI Chi-Square | p-value
Intercept ,BO -5.3095 |1.1337 | (-7.53, -3.08) 21.94 <0.0001
Age ,Bl 0.1109 |0.0241 | (0.064, 0.158) 21.25 <0.0001

Notes

e The parameter estimates are for the associated effect on the log-odds of disease.
Thus, for every year increase in age, the log-odds of CHD increases by 0.1109
units.

e With 95% confidence, the effect of age could be as small as 0.0638 units or as
large as 0.1581 units.

e The Wald chi-square statistic is computed as

(2 )
X2 = |~ 22
(se(ﬂ)J ‘
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The test statistic for age is

o _ (0.1109
0.0241

for which p =Pr| 7 >21.25|=4.03e—6. Therefore, at the 5% level of
significance, there is a positive effect of age on CHD.

2
) ~ 21.25

e The Wald 95% confidence interval is
B+2,q558(f).
For the effect of age, the confidence interval is
0.1109 £1.96(0.0241)

(0.06,0.16)
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12.3.3 Probability of Disease

The probability estimates as a function of age are given by

eﬁ0+ﬁlx

CHD Example:
The estimated probability function is

-5.309+0.1109x

~ e
”(X) = 1+ @ 5-309+0.1109x

For instance, at age 20, the estimated probability of CHD is

@ ~5:3095+0.1109(20)

1+e

In the SAS analysis, these probabilities were computed for each of the subjects in the
study and saved in the results dataset, along with the upper and lower bounds of the
95% Wald confidence intervals.

#(20) = +=0.0435.

-5.3095+0.1109(20
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Subject 1 was 20 years-old. From the printout of the results dataset, we see that the
estimated probability and 95% confidence interval are 0.04348 and (0.101207, 0.14470).

Therefore, at age 20 the estimated mean probability of CHD is 4.3% with a 95%
confidence interval of (1.2%,14.5%). The estimated CHD probability as a continuous

function of age is plotted below.
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Notes
e The depicted logistic curve is like the regression line in simple linear regression.

e The estimates are for the probability of CHD. They are not estimates of the disease
status for an individual.

e The probability estimates from logistic regression are only generalizable to the
study population if the study design is cohort or cross-sectional.

e Because the proportion of diseased and non-diseased subjects is fixed by the case-
control design, the resulting estimates are conditional probabilities; i.e. the

probability of disease given that diseased subjects are more likely to be selected for
inclusion in the study.
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12.4 Points of Emphasis

1.

S

The need for logistic regression when the response is dichotomous. Understand
which linear regression assumptions are not appropriate for dichotomous response
variables.

. Logistic regression assumptions. Response has a binomial distribution; know the

form of the mean and variance.

. Form of the logistic model. Be able to write down the log-odds, odds, and

probability as a function of the predictor variables.
Use of PROC LOGISTIC or PROC GENMOD to fit logistic regression models.

. Interpret SAS output. Estimated effect of predictor variables on the log-odds of

disease. Construct Wald confidence intervals and test statistics.

. Use SAS results to compute the estimated probability of disease. Know when the

estimated probability is generalizable to the study population.
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13.1 Odds Ratio Estimates
In Section 11, we fit the following logistic regression model for the effect of age on CHD

{%} b+ ix.

It turns out that there is a natural interpretation of the g, parameter, the effect of age, in

terms of the relative odds of disease. Note that the model can be expressed as a
function of the odds of disease g(x),

Specifically, our fitted model is

§(x)=exp{-5.3095 +0.1109x }

where X is the age variable.
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13.1.1 Linear Effect for the Predictor

Odds Ratio Estimate
Goal: Estimate the CHD odds ratio for an individual aged 60, relative to a 50 year-old.

The odds ratio of interest is the ratio of the CHD odds at age 60 versus the odds at age
50,

~ _ CHD odds @ age 60 _ g(60) 7(60)/(1-7(60))

~ CHD odds @ age 50 g(50) 7(50)/(1-7(50))"

The two disease odds needed to estimate the desired odds ratio are obtained from the
logistic regression model.

1. The numerator is §(60) = exp{,bA’0 + i, % 60}, and

2. The denominator §(50) = exp{4, + A, x50}.

319



Therefore, the estimated odds ratio is

which evaluates to

OR = exp{0.1109 x10} = 3.03.

General Result: The estimated disease odds ratio for an individual with predictor
variable x', relative to x", is computed from the logistic regression model as

(<)

OR =
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In the case of our model

o

we have the following results:

The estimated odds of CHD for subjects aged 60 was 3.03 times the odds for those
aged 50. It can be shown that this estimate holds for any 10-year increase in age.

That is, for a 10-year increase in age the disease odds ratio increases by a factor of
3.03.

The odds ratio for a Ax increase in age is
OR = exp{f, x Ax}.
For a one-year increase in age, the odds ratio is simply
OR =exp{f,}.

It is common to pick a reference age at which to report odds ratios. If the reference
age is chosen to be, say, age 20, then we have the following odds ratio function:

OR = % = exp{B, x(x - 20)}.

A plot of this function as estimated from the CHD data is given below.
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exp(0.1109 * (Age - 20))
15 20 25

10

I I I I I I
20 25 30 35 40 45

Age (years)

Note that the odds ratio is equal to unity at the reference age of 20.
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Confidence Interval
As we saw earlier, the 95% Wald confidence interval for a given regression parameter is

ﬂ,\ * ZO.975 Se(ﬁ) .

We would like to find a comparable confidence interval for the estimated odds ratios. In
particular, suppose that we want a confidence interval for the estimated odds ratio

OR = exp{ A, xc|

where c is some constant.

To obtain the Wald confidence interval:
1. Compute the confidence interval for g, xc, and

2. Exponentiate the result.

Since se(f, xc) =se(f,)xc|, the 95% Wald confidence interval for

OR =exp{f, xc}
IS computed as

exp{(,ﬁ1 XC) % 2y 475 x S€( B, ) X \c\}
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CHD Example:
The estimated odds ratio for a 10-year increase in age was found to be

OR = exp{,é1 xlO}
=exp{0.1109x10} = 3.03

for which the 95% Wald confidence interval is

exp{ﬁA1 x10+ 2, 47, x5€( 3, ) x 10}
exp{0.1109 x10 +1.96 x 0.0241x 10}
exp{1.109 +0.472) |
(1.89,4.86)
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SAS Program and Output

proc logistic data=chd descending;
model chd = age / risklimits;
units age = 1 10;

proc genmod data=chd descending;
model chd = age / dist=binomial;
estimate '1 unit' age 1 / exp;
estimate '10 unit' age 10 / exp;
run;

Syntax

e The risklimits option in PROC LOGISTIC produces estimates of the odds ratio
along with Wald confidence intervals.

e The units statement allows the user to specify the unit of change in the predictor
variable so that customized odds ratios can be estimated. The default is to
estimate the odds ratio for a one unit change in the predictor variable. Any unit of
change may be specified with this option.
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The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr >
Intercept 1 -5.3095 1.1337 21.9350
AGE 1 0.1109 0.0241 21.2541

O0dds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits
AGE 1.117 1.066 1.171

Association of Predicted Probabilities and Observed Responses

Percent Concordant 79.0 Somers' D 0.600
Percent Discordant 19.0 Gamma 0.612
Percent Tied 2.0 Tau-a 0.297
Pairs 2451 c 0.800

Wald Confidence Interval for Adjusted Odds Ratios

Effect unit Estimate 95% Confidence Limits
AGE 1.0000 1.117 1.066 1.171
AGE 10.0000 3.032 1.892 4.859

ChiSq

<.0001
<.0001
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The GENMOD Procedure

Model Information

Data Set WORK . CHD
Distribution Binomial
Link Function Logit
Dependent Variable CHD
Observations Used 100

Response Profile

Ordered Total
Value CHD Frequency

1 1 43
2 0 57

PROC GENMOD is modeling the probability that CHD='1"'.

Parameter Information

Parameter Effect
Prm1 Intercept
Prm2 AGE
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Criteria For Assessing Goodness Of Fit

Criterion

Deviance

Scaled Deviance
Pearson Chi-Square
Scaled Pearson X2
Log Likelihood

Algorithm converged.

Parameter DF Estimate

Intercept 1 -5.3095
AGE 1 0.1109
Scale 0 1.0000

DF

98
98
98
98

Value

107.3531
107.3531
101.9429
101.9429
-53.6765

Value/DF

.0954
.0954
.0402
.0402

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Error Limits Square
1.1337 -7.5314 -3.0875 21.94
0.0241 0.0638 0.1581 21.25
0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Contrast Estimate Results

Standard
Label Estimate Error
1 unit 0.1109 0.0241
Exp(1 unit) 1.1173 0.0269
10 unit 1.1092 0.2406
Exp(10 unit) 3.0320 0.7295

Chi-

Alpha Confidence Limits Square

0.0638
1.0658
0.6376
1.8920

0.1581 21.25
1.1713
1.5808 21.25
4.8587
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Pr > ChiSq

<.0001
<.0001

Pr > ChiSq
<.0001

<.0001



13.1.2 Quadratic Effect for the Predictor

Suppose that we decide to extend our model to include a quadratic effect for age

|n{%} = B, + BX+ B,X2

or, equivalently,
g(x)=exp{B, + Bx+B,x*}.
How does this change our approach to estimating the odds ratio?

Recall the general result that the estimated disease odds at x’, relative to x”, is

— 3 (X'
or - 90).

§(x")
Because of the quadratic term in the model, the estimated odds ratio is no longer
constant for a given unit difference between the two values of the predictor variable.
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CHD Example

Suppose that the following parameter estimates were obtained for the quadratic model:

Variable Parameter Estimate SE p-value
Intercept Do -4.2407 4.2902 0.3229
Age B 0.0613 0.1946 0.7527
Age’ By 0.0005 0.0021 0.7982

Odds Ratio Estimate
Goal: Estimate the CHD odds ratio for an individual aged 60, relative to a 50 year-old.

The odds ratio that we seek is the ratio of the estimated odds at age 60, to that at age
50. So according to the logistic regression model

—  §(60) exp{B,+pB,x60+p3,x60%)
G(50) exp{A, + B, x50+ B, x50°)
=exp{ﬁA1><(60—50)+,[§’2 x(602 _502)}_

OR =

=exp{,x10+ 3, x1100}
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Inserting in the parameter estimates gives
OR = exp{0.0613 x 10 +0.0005 x 1100}
=3.20

Unlike in the model with a linear effect for age, this estimated odds ratio is not the same
for any 10-year increase in age. Consider, for instance, the odds ratio for an individual
age 40, compared to a 30 year-old:

&5 exp{ 3, + B, x 40+ j, x 40° |

= exp{ 3, x (40 -30) + j, x(40” - 30°)|

- eXp{BO +,6A’1><30+,ﬁ2 ><302}
= exp{,x10+ 3, x 700} = exp{0.0613 x 10 +0.0005 x 700}
=2.62

This difference highlights the importance of computing the odds ratio for x’, relative to
X”, by
1. Constructing the ratio of the odds from the logistic regression model for x’, versus
x":l.e.
OR =§(x)/d(x").
2. Reducing this equation to a form that is the exponential of the estimated regression
parameters.
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Confidence Interval

When the estimated odds ratio involves multiple parameters (e.g. 4, and g, in our

current example) calculation of the confidence interval is a bit more involved. The
general idea is the same as with the linear effect for age. To obtain a 95% Wald
confidence interval for the estimated odds ratio

OR = exp{ﬂlxc1+ﬁ2 sz}

perform the following steps:
1. Compute the confidence interval for g, xc, + 5, xc,,

(ﬁl xC, + f3, ><Cz)i Zy 975 Se(ﬁl XC, + f3, ><C2)
where ¢; and ¢, are constants.
2. Exponentiate the result.

The difficulty arises in finding the standard error for a combination of parameters. This
involves the use of the covariance matrix for the parameters. In this course, we will let
the PROC GENMOD procedure in SAS do the work for us.
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SAS Program and Output

proc genmod data=chd descending;
model chd = age age*age / dist=binomial;
estimate '60 vs 50' age 10 age*age 1100 / exp;
run;

Syntax
¢ Note that the quadratic effect for age, age*age, is included in the model statement.
e The estimate statement can be used to produce odds ratio estimates and
confidence intervals.
e The text in quotes is the label assigned to the corresponding results in the output.
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e The result from the estimate statement is

> A%
where the c; are constants specified in the code immediately after the model terms.
Any term appearing on the right-hand side of the model statement may be assigned

a value. Omitted terms are given a value of zero; i.e. not included in the
summation. For example, the SAS code

estimate '60 vs 50' age 10 age*age 1100 / exp;

computes the estimate
B, x10+ f3,x1100.
The exp options exponentiates the result, giving
exp{/3, x10+ 3, x 1100}

which is the odds ratio discussed previously.

e The estimate statement also provides 95% Wald confidence intervals and the p-
value for testing that the odds ratio is significantly different from one.
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The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square
Intercept 1 -4.2408 4.2902 -12.6494 4.1678 0.98
AGE 1 0.0613 0.1946 -0.3202 0.4428 0.10
AGE*AGE 1 0.0005 0.0021 -0.0037 0.0047 0.07
Scale 0 1.0000 0.0000 1.0000 1.0000
NOTE: The scale parameter was held fixed.

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square
60 vs 50 1.2162 0.4890 0.05 0.2578 2.1746 6.19

Exp(60 vs 50) 3.3742 1.6500 0.05 1.2940 8.7986
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0.3229
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Pr > ChiSq
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13.1.3 Categorical Effect for the Predictor

Consider the categorical variable for age

1 age<35
agecat =<2 35<age<55
3 age=>55
and the indicator variables
1 agecat=1 1 agecat=2 1 agecat=3
agecatl= J ., agecat2 = J . ,and agecat3 = J L.
O otherwise O otherwise 0 otherwise

Note that the three age categories are represented in the following manner:

Age Discrete Nominal

agecat agecatl agecat?2 agecat3
<35 1 1 0 0
35-54 2 0 1 0
55+ 3 0 0 1
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There are two different ways to include the categorical effect of age in the regression
model.

1. As an integer variable,

In{i} = f, + B, xagecat.
1-7

With this coding there is a predetermined difference between the levels of the
predictor. The integer values used for the categories imply that there is a constant
different between adjacent categories. Other values, such as means, medians, or
midpoints, could be assigned to the categories.

2. As a nominal variable,
InLL} = S, + B, xagecatl+ S, xagecat2.
- 7T

This allows for the effect of age to be estimated separately for each level. Only two
of the indicator variables are needed to represent the three categories in the

regression model. The odds ratio estimates will be the same regardless of which
two are chosen.
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SAS Code and Output

data chdmod; agecat2 = 0;
set chd; agecat3 = 1;
if age < 35 then do; end;
agecat = 1;
agecatl = 1; proc genmod data=chdmod descending;
agecat2 = 0; model chd = agecat / dist=binomial;
agecat3 = 0; estimate "2 vs 1" agecat 1 / exp;
end; estimate "3 vs 2" agecat 1 / exp;
else if 35 <= age < 55 then do; estimate "3 vs 1" agecat 2 / exp;
agecat = 2;
agecatl = 0; proc genmod data=chdmod descending;
agecat2 = 1; model chd = agecatl agecat2 / dist=binomial;
agecat3 = 0; estimate "2 vs 1" agecatl -1 agecat2 1 / exp;
end; estimate "3 vs 2" agecatl O agecat2 -1 / exp;
else i1If age >= 55 then do; estimate "3 vs 1" agecatl -1 agecat2 0O / exp;
agecat = 3; run;

agecatl = 0O;

Syntax

e The discrete and nominal age variables are added to the new dataset chdmod.
PROC GENMOD is used to fit logistic regression modes for the two variables.
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The GENMOD Procedure

Analysis Of Parameter Estimates

Parameter DF Estimate
Intercept 1 -3.6679
agecat 1 1.6323
Scale 0 1.0000

Standard

0
0
0

Error

.8305
.3771
.0000

Wald 95% Confidence

Limits
-5.2956 -2.0401
0.8931 2.3714
1.0000 1.0000

NOTE: The scale parameter was held fixed.

Label Estimate
2 vs 1 1.6323
Exp(2 vs 1) 5.1154
3 vs 2 1.6323
Exp(3 vs 2) 5.1154
3 vs 1 3.2645

Exp(3 vs 1)  26.1671

Sta

© O <+ O =+ O

Contrast Estimate Results

ndard
Error

L3771
.9291
L3771
.9291
. 7542
.7362

Alpha

O O O O O o

.05
.05
.05
.05
.05
.05

Confidence Limits

a = N O N O

.8931
.4427
.8931
.4427
. 7862
.9669

10.

10.

114.

.3714

7123

.3714

7123

. 7428

7528

Chi-
Square

19.51
18.73

Chi-
Square

18.73
18.73

18.73
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Pr > ChiSq

<.0001
<.0001

Pr > ChiSq
<.0001
<.0001

<.0001



The GENMOD Procedure

Parameter

Intercept
agecati
agecat2
Scale

DF

Analysis Of Parameter Estimates

Estimate

1.2528
-3.2452
-1.6756

1.0000

Standard

Error

0.4629
0.7701
0.5490
0.0000

Wald 95% Confidence

Limits
0.3455 2.1600
-4.7546 -1.7358
-2.7516 -0.5996
1.0000 1.0000

NOTE: The scale parameter was held fixed.

Label

2 vs 1
Exp(2 vs 1)
3 vs 2
Exp(3 vs 2)
3 vs 1
Exp(3 vs 1)

Estimate

[ 33, B N

.5696
.8046
.6756
.3421
.2452
25.

6667

Sta

© O N O WwOo

Contrast Estimate Results

ndard
Error

.6826
.2795
.5490
.9328
L7701
.7662

Alpha

O O O O o o

.05
.05
.05
.05
.05
.05

Confidence Limits

[ e =

.2318
.2608
.5996
.8214
.7358
.6735

18.

15.

116.

.9074

3089

.7516

6683

. 7546

1156

Chi-
Square

7.32

17.76
9.32

Chi-
Square

5.29
9.32

17.76
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Pr > ChiSq
0.0068

<.0001
0.0023

Pr > ChiSq
0.0215
0.0023

<.0001



Parameter Estimates

Model 2

A} = f, + B, xagecatl+ S, x agecat?

A} = 3, + B, x agecat = -3.6679 + 1.6323 x agecat

m[_
1-7
m[_

1-7

=1.2528 —3.2452 x agecatl-1.6756 x agecat 2
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Model Variable Parameter | Estimate SE Chi-Squar\évald o-value
1 Intercept B, -3.6679 0.8305 19.51 <0.0001
agecat yia 1.6323 | 0.3771 18.73 <0.0001
2 Intercept ,30 1.2528 0.4629 7.32 0.0068
agecatl S, -3.2452 | 0.7701 17.76 <0.0001
agecat2 5, -1.6756 0.5490 9.32 0.0023

Model 1




Odds Ratio Estimate: Category 2 vs. 1

Model 1
The estimated odds ratio is

G(agecat =2) exp{f,+pB,x2} )
Q(agecat = ) B eXp{BO +,5’1X1} —exp{ﬁl}
ex

p{1.6323} =5.12

/\

Model 2
The estimated odds ratio for the second model is

—~  {(agecatl=0,agecat2 =1) eXp{/Afo +f,x0+ f3, Xl} 5 A
Oor =Y - - o = - = exp{ 4, - 5|
G (agecatl=1agecat2=0) exp{j, + 4, x1+ B, %0

— exp{-1.6756 +3.2452} = exp{1.5696} = 4.80
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Odds Ratio Estimate: Category 3 vs. 2

Model 1
The estimated odds ratio is

G(agecat =3) exp{f,+pB,x3} )
Q(agecat = ) B exp {Bo N ,31 y 2} = eXp{ﬁl}
ex

p{1.6323} =5.12

/\

Model 2
The estimated odds ratio for the second model is

g (agecatl: 0,agecat2 = O) B exp{BO + [31 x0+ ,82 X 0}
G(agecatl=0.agecat2=1) exp{f,+j x0+f, =1}
exp{1.6756} =5.34

OR

A
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Odds Ratio Estimate: Category 3vs. 1

Model 1
The estimated odds ratio is

g (agecat =3) eXp{ﬂA’o + fx 3}
G(agecat=1) exp{f,+ 4 x1]
exp{1.6323 x 2} = exp{3.2645} = 26.17

/\

=exp{p,x2|

Model 2
The estimated odds ratio for the second model is

—

oR (agecatl=0,agecat2=0) exp{BO + 3, x0+ f3, % 0}

g
g (agecatl=Zlagecat2=0) exp{ﬁo + B x1+ f3, x o}
exp{3.2452} = 25.67

=exp{-4,|
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Notes

¢ \Wald estimates of the confidence intervals can be computed from the standard
error estimates given in the SAS output.

e Treating the age categories as an integer variable, agecat, resulted in identical
odds ratio for 2 vs. 1 and 3 vs. 2.

e Analyzing age as a nominal variable, agecatl and agecat2, allowed the odds ratios
for 2 vs. 1 and 3 vs. 2 to differ.

Summary of Results

Odds Ratio Model Formula Estimate 95% CI
2vs. 1 1 exp{4,| 5.12 (2.44,10.71)
2 exp{f, - A} | 480 (1.26, 18.31)
3vs. 2 1 exp{ /| 5.12 (2.44,10.71)
2 exp{-4,} 5.34 (1.82, 15.67)
3vs. 1 1 exp{f,x2} | 2617 | (5.97,114.75)
2 exp{-/,} 2567 | (5.67,116.12)
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13.2 Points of Emphasis

1.

B w

Be able to write down the odds for a logistic regression model as an exponential
function of the S parameters and predictor variables.

Estimate the odds ratio from logistic regression models where a linear effect is
specified for the predictor variable. Construct Wald confidence intervals.

Compute the odds ratios when the predictor has a quadratic effect.

For a categorical predictor, know how to express the odds ratio as an exponential
function of the model parameters.

Use PROC GENMOD to estimate odds ratios and confidence intervals, as well as
to test the significance of the odds ratios. Understand how the regression equation
for the odds ratio is used to determine the values in the estimate statement.
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14.1 Introduction

One of the advantages of regression modeling is the ability to examine the effect of
multiple predictor variables on an outcome of interest. In general, the multivariate

logistic regression model is of the form
7(x)
|n|:?(x)j| - IBO + ﬁlxl + ﬁZXZ +...+ ﬂpo
where there are p predictor variables x.. We will use the notational convention that

X = (X X0 X, ).

Radon Example

Four-hundred thirteen lung cancer cases and six-hundred fourteen population-based
controls were enrolled in the lowa Radon Lung Cancer case-control study. The
Investigators were interested in assessing the effect of radon exposure on lung cancer
risk, while controlling for other important risk factors. Consider the following variables

from the study:
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Table 1. Variable descriptions for the lowa Radon Study example.

Variable | Description Values
case Lung cancer indicator 1 = case
0 = control
wim20 20-year radon exposure (working-level months) continuous
age Age at enrollment (control) or diagnosis (case) continuous
smkever | Indicator for ever-smokers 1 = ever-smoker
0 = never-smoker
smkcur | Indicator for current smokers 1 = current smoker
0 = ex or never smoker
school Attained education level 1 = grade school

2 = high school

3 = some college

4 = college degree
5 = graduate school
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The categorical and continuous variables are summarized in Table 2 and Table 3.

Table 2. Descriptive statistics for the categorical variables in the radon study.

Variable Levels N Percents
case 1 413 40.2
0 614 59.8
smkever 1 557 54.2
0 470 45.8
smkcur 1 325 31.6
0 702 68.4
school 1 89 8.7
2 535 52.1
3 288 28.0
4 82 8.0
5 33 3.2

Table 3. Descriptive statistics for the continuous variables in the radon study.

Variable Mean SD Min Max
wim20 10.64 8.89 1.42 91.54
age 67.61 8.67 44.16 84.80
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Analysis Goal: Perform a multivariate logistic regression analysis of the data. Typical

objectives are to

¢ |dentify the variables important in predicting lung cancer risk.
e Determine if radon exposure is a significant predictor, after controlling for age,

smoking, and socio-economic status.
e Assess whether the covariates interact in their effect on lung cancer risk.

o Estimate the effect of age, smoking, and education.

We will consider the logistic model

| 7(x) | B+ pwWIm20+ g,age + fsmkever + fF,smkeur
1-7(x)|  +Bschooll+ Bschool2 + g,school3 + B,school 4
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SAS Program and Output

proc import datafile="H:\Radon.txt"
out=radon
dbms=TAB
replace;

data radonmod;

set radon;

school1l = (school = 1);
school2 = (school = 2);
school3 = (school = 3);
school4 = (school = 4);
school5 = (school = 5);

proc genmod data=radonmod descending;
model case = wlm20 age smkever smkcur
school1l school2 school3 school4 / dist=binomial;
run;

Syntax

¢ PROC IMPORT reads the data from the tab-delimited file Radon.txt into the SAS
dataset radon.

¢ A new dataset radonmod is created. It contains the original data plus added
indicator variables for education.

e PROC GENMOD is used here to fit the multivariate logistic regression model.
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The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Confidence

Parameter DF Estimate Error

Intercept 1 -5.7831 0.8658 -7.
WLM20 1 0.0105 0.0096 -0.
AGE 1 0.0408 0.0097 0.
SMKEVER 1 1.8477 0.1984 1
SMKCUR 1 1.6116 0.1987 1
schooli 1 1.0773 0.5610 -0.
school2 1 0.9014 0.5056 -0.
school3 1 0.7424 0.5161 -0.
school4 1 0.5238 0.5776 -0.
Scale 0 1.0000 0.0000 1

NOTE: The scale parameter was held fixed.

Limits

4801 -
0084
0217

.4588
.2222

0222
0895
2692
6083

.0000

~ 4o apOMNMOO R

.0862
.0294
.0599
.2366
.0009
.1768
.8923
.7539
.6559
.0000

Chi-
Square

44.62

1.18
17.57
86.72
65.81
.69
.18
.07
.82

OoON Ww
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Pr > ChiSq
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.0001
L2772
.0001
.0001
.0001
.0548
.0746
.1503
.3645



Parameter Estimates

Variable Parameter Estimate SE Chi- Squarewald o-value
Intercept B, -5.7831 0.8658 44.62 <0.0001
wim20 B 0.0105 0.0096 1.18 0.2772
age 5, 0.0408 0.0097 17.57 <0.0001
smkever yia 1.8477 0.1984 86.72 <0.0001
smkeur B, 1.6116 0.1987 65.81 <0.0001
schooll yia 1.0773 0.5610 3.69 0.0548
school2 JiA 0.9014 0.5056 3.18 0.0746
school3 yia 0.7424 0.5161 2.07 0.1503
school4 JiA 0.5238 0.5776 0.82 0.3645

These are the maximum likelihood estimates for the intercept and eight predictor
variables in the model.

¢ Note that there are four predictor (indicator) variables for the effect of education.

e Each predictor has an estimate, standard error, Wald chi-square statistic, and p-

value.
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e As in multiple linear regression, the individual p-values are used to determine if the

associated parameter is significant, given that the remaining predictors are in the
model.

14.1.1 Odds Ratio Estimates
The general approach to computing odds ratios for a multiple logistic regression model is
the same as before:
1. Construct the ratio of the odds from the logistic regression model for x’, versus x”
——~  q(x’
or - 9)
§(x")
where x is now a set of values for the predictor variables.**

2. Reduce this equation to a form that is the exponential of the estimated regression
parameters.

3. Insert regression estimates for the parameters to obtain the odds ratio.

4. The estimate statement in PROC GENMOD can be used to estimate the
confidence interval and test hypotheses.
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The main difference from the univariate models in Section 12 is that now x is a set of

multiple predictors for which we must specify values to compute the odds ratio. In the
multivariate case,

G(x)=exp{ B, + Bx,+ BXy+ ...+ B X, |
and so
OR =exp{f,(x = x)+ B, (x; = x2) +...+ B, (x, = xq )}

**Note that if the value of a predictor variable is the same in the numerator and
denominator odds, then that predictor does not factor into the calculation of the odds
ratio. For instance, if x| = x7 then

ﬁp(xé_xg)zo

and so the term for the p™ predictor drops out of the equation for the odds ratio.

In our example, the estimated odds model is

g“(x):exp{

B, + Bwim20 + f,age + f,smkever + 3,smkcur
+f.schooll+ B.school 2 + 3,school3 + B,school 4|
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Where the estimated coefficients in the proposed model are

A

b,

Ps

P

Ps

Ps

B,

Py

0.0105

0.0408

1.8477

1.6116

1.0773

0.9014

0.7424

0.5238

Example 1 - WLM20

Goal: Estimate the lung cancer odds ratio for individuals with 10 WLM radon exposure,
relative to 5 WLM exposure.

Q: In the multivariate setting, we have variables other than radon exposure to consider in
computing the odds ratio. What values should be use for them?

A: Our goal is really to estimate the odds ratio associated with radon exposure, while
controlling for the effects of the other predictors in the model. We do this by comparing
the odds for two individuals who differ only in their radon exposure (10 vs. 5). The
individuals are the same with respect to the other predictor variables (age, smoking,
education).
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Specifically, the model estimates of the numerator and denominator odds are

. B, + B, x10+ f3,age + ,smkever + ,smkecur
1. g(x")=exps” ", A . .
+psschooll+ B.school2 + S,school 3 + S;school 4
B, + B, x5+ B,age + f,smkever + ,smkcur
+f.schooll+ S.school 2 + f,school 3 + B,school 4

2. Q(x”):exp{

so that

- =exp{f,x(10-5)} =exp{0.0105x5} =1.05.

The other terms do not contribute because the values for those predictor variables are
held constant. The 95% Wald confidence interval is

exp {(ﬁl X 5) tZyg75 X S€ (Bl) X 5}
exp{(0.0105 x5) +1.96 x 0.0096 x5}.
(0.96,1.16)
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SAS Program and Output

proc genmod data=radonmod descending;
model case = wlm20 age smkever smkcur
school1l school2 school3 school4 / dist=binomial;
estimate 'wlm20: 10vs5' wlm20 5 / exp;

run;

Contrast Estimate Results

Standard Chi-
Label Estimate Error  Alpha Confidence Limits Square Pr > ChiSq
wlm20: 10v5 0.0524 0.0482 0.05 -0.0421 0.1469 1.18 0.2772
Exp(wlm20: 10v5) 1.0538 0.0508 0.05 0.9588 1.1582

Example 2 - Age

Goal: Estimate the lung cancer odds ratio for individuals aged 60, relative to 50 year-
olds.

Same approach as used to estimate the odds ratio for radon exposure. Now age is the
only variable that changes, and all others are fixed:

or -9 (age = 60)
g (age =50)

= exp{3, x(60-50)} = exp{0.0408 x10} =1.50

358



The 95% Wald confidence interval is

exp {(ﬁAz X 10) +2Z,4,5 XS€ (ﬂ’\z) X 10}
exp{(0.0408 x 10) +1.96 x 0.0097 x 10}.
(1.24,1.82)

SAS Program and Output

proc genmod data=radonmod descending;
model case = wlm20 age smkever smkcur
school1l school2 school3 school4 / dist=binomial;
estimate 'age: 60vs50' age 10 / exp;

run;

Contrast Estimate Results

Standard Chi-
Label Estimate Error  Alpha Confidence Limits Square Pr > ChiSq
age: 60vs50 0.4084 0.0974 0.05 0.2174 0.5993 17.57 <.0001
Exp(age: 60vs50) 1.5044 0.1466 0.05 1.2429 1.8209
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Example 3 - Smoking

Goal: Estimate the lung cancer odds ratio for current smokers, relative to never-
smokers.

Recall that we have two indicator variables for smoking, smkever and smkcur. These
are used to identify an individual as a current, ex, or never smoker as illustrated in the
table below.

Status smkever smkcur
Never Smoker 0 0
Ex-Smoker 1 0
Current Smoker 1 1

Thus, the odds ratio we seek is
OR - g (smkever =1smkcur =1)
~ §(smkever =0,smkeur =0)

=exp{B, + B,} =exp{1.8477 +1.6116} = 31.79

=exp{f; x(1-0)+ B, x(1-0)}

Since the odds ratio estimate involves more than one parameter, we use PROC
GENMOD to obtain the 95% Wald confidence interval (21.08,47.95).
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SAS Program and Ouptup

proc genmod data=radonmod descending;
model case = wlm20 age smkever smkcur
school1l school2 school3 school4 / dist=binomial;
estimate 'smk: cur vs never' smkever 1 smkcur 1 / exp;

run;
Contrast Estimate Results

Standard Chi-
Label Estimate Error Alpha Confidence Limits Square
smk: cur vs never 3.4593 0.2097 0.05 3.0484 3.8702 272.25
Exp(smk: cur vs never) 31.7951 6.6660 0.05 21.0815 47.9533

Contrast Estimate Results

Label Pr > ChiSq
smk: cur vs never <.0001
Exp(smk: cur vs never)
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Example 4 - Education

Goal: Estimate the lung cancer odds ratio for individuals with only a high school degree,
relative to those with a college degree.

Education status was included in the model using the four indicator variables
summarized below.

Status schooll | school2 | school3 | school4
Grade School 1 0 0 0
High School 0 1 0 0
Some College 0 0 1 0
College Degree 0 0 0 1
Graduate School 0 0 0 0

The desired odds ratio is

g (school2 =1 school4 =0)
g (school2 = 0,school 4 = 1)

=exp{f; - B,} = exp{0.9014 -0.5238} =1.46

OR =

:exp{BG ><(1—O)+ﬁA’8 x(O—l)}

and the 95% Wald confidence interval from PROC GENMOD is (0.78,2.72).

362



SAS Program and Output

proc genmod data=radonmod descending;
model case = wlm20 age smkever smkcur
school1l school2 school3 school4 / dist=binomial;
estimate 'school: 2 vs 4' school2 1 schoold4 -1 / exp;

run;
Contrast Estimate Results
Standard Chi-
Label Estimate Error Alpha Confidence Limits Square
school: 2 vs 4 0.3776 0.3187 0.05 -0.2471 1.0023 1.40
Exp(school: 2 vs 4) 1.4588 0.4650 0.05 0.7810 2.7246

Contrast Estimate Results
Label Pr > ChiSq

school: 2 vs 4 0.2362
Exp(school: 2 vs 4)
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Example 5 - Age and Smoking

Goal: Estimate the lung cancer odds ratio for current smokers aged 60, relative to
never-smokers aged 50.

The odds ratio estimate is

OR - g (age = 60,smkever =1,smkcur =1)
- §(age = 50,smkever =0,smkeur =0)
e

Xp{ /3, x (60 ~50) + f, x(1-0) + B, x (1-0)}
=exp{B,x10+ j, + B,} =exp{0.0408 x10 +1.8477 +1.6116)
=47.81

with a 95% Wald confidence interval of (28.86,79.28).
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SAS Program and Output

proc genmod data=radonmod descending;
model case = wlm20 age smkever smkcur
school1l school2 school3 school4 / dist=binomial;
estimate 'age|smk: 60|cur vs 50|never' age 10 smkever 1 smkcur 1 / exp;

run;
Contrast Estimate Results
Standard
Label Estimate Error Alpha Confidence Limits
age/smk: 60/cur vs 50/never 3.8677 0.2578 0.05 3.3624 4.3730
Exp(age/smk: 60/cur vs 50/never) 47.8324 12.3312 0.05 28.8591 79.2796
Contrast Estimate Results
Chi-
Label Square Pr > ChiSq
age/smk: 60/cur vs 50/never 225.08 <.0001
Exp(age/smk: 60/cur vs 50/never)
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14.2 Points of Emphasis

1. Be able to write down the odds for a multivariate logistic regression model as an

exponential function of the g parameters and predictor variables.

Estimate the odds ratio for any predictor or combination of predictors in the model.

. Compute manually confidence intervals for odds ratios that involve a single
parameter.

. Use PROC GENMOD to estimate odds ratios and confidence intervals.

. Assess the statistical significance of the odds ratio based on the confidence interval
or p-value.

6. Interpret the odds ratio.

SEN

62 IS
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16.1 Introduction

There are many different regression models that may be constructed from a given set of
predictor variables. Two analysts may come up with different regression models given
the same set of data. How can we compare the two models?

The three methods discussed in this section are:
1. Likelihood Ratio Test
2. Wald Test
3. Akiake Information Criterion (AIC)

CHD Example

Recall that we looked at four different models for the effect of age on the odds of
coronary heard disease. These models were

Modgl _ Age Effect
1 | logit| z(x) |= 4, + page Continuous (Linear)
2 |logit| 7(x) | = B, + Bage + B,age’ Continuous (Quadratic)
3 | logit| 7(x)]= B, + Bagecat Categorical (Integer)
4 |logit| z(x)|= B, + Bagecatl+ B,agecat2 | Categorical (Nominal)

Where age is the age in years of the study subject; agecat is the three-level categorical
(<35, 35-54, 55+) classification of age.
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16.2 Likelihood Ratio Test

The Likelihood Ratio Test (LRT) was covered in the context of maximum likelihood
methods for linear regression models. The LRT proceeds as follows:

1. Fit the “full” model with p + k predictor variables.
2. Fit the “reduced” model with p predictors.
3. Look at the change in the maximum likelihood

XZ - _Z(InLreduced - Inl‘full) - Zkz
4. If the difference, as measured by the p-value
p=Pr| zZ>X?],

Is significant then we conclude that full model provides a better fit to the data than
the reduced model. In other words, the k predictor variables are significant in the
model.

CHD Example:

The values of the log-likelihood functions for the four models are available from the
previous PROC GENMOD output.
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Model |Parameters Log-Likelihood
0 Py -68.3315
1 B, + page -53.6765
2 B, + page + B,age’ -53.6440
3 P, + pagecat -55.7029
4 B, + pagecatl+ g,agecat2 -55.6969

Note that Model 1 is nested within Model 2, since the latter simply adds a quadratic
effect to the model. In other words, Model 2 contains all of the predictors found in Model
1; i.e. the linear effect for age. The LRT is equivalent to

H,:5,=0
H,:8,#0
and yields a test statistic value of
X? =-2(-53.6765 - (-53.6440))
=0.065 ~
for which p = Pr[;(f > 0.065] =0.7988. Therefore, at the 5% level of significance, the full

model does not provide a better fit than the reduced model. The quadratic effect is not
significant.
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It is not obvious that Model 3 is nested within Model 4, but that is the case.

¢ When indicator variables are used to model the effect of a categorical variable, no
assumption is made about the function form of the relationship (linear, quadratic,
etc.) with disease.

e Thus, Model 4 is the most general way of estimating the three-level categorical
effect of age.

e Any other coding of this categorical effect that uses fewer variables will be nested
within Model 4.

The LRT statistic comparing these two models is
X?* = -2(-55.7029 - (-55.6969))
=0.012 ~ 4;

for which p = Pr[;(f > 0.012] =0.9128. Therefore, at the 5% level of significance, a
linear term for the categorical age variable provides an adequate fit to the data.

Model O does not include an effect for age. It is nested within the other four and may be
used to test the significance of the associated age effects.
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Lo LRT
Model | Log-Likelihood Statistic af o-value
0 -68.3315 0 - -
1 -53.6765 29.3100 1 6.17e-8
2 -53.6440 29.3750 2 4.18e-7
3 -55.7029 25.2572 1 5.02e-7
4 -55.6969 25.2692 2 3.26e-6

We see that age is significant in all of the models.
e Each null hypothesis is a global test of the age variables in the model.

Model Ho Ha

1 S, =0 S, #0

2 p,=0,4,=0 py=0orpg,#0
3 S, =0 p#0

4 p.=0,06,=0 p.#=0orp,#0

¢ Recall that Model 2 and 4 did not provide a significantly better fit than Model 1 or 3,
respectively. These models contain terms for age that are not significant. Thus,
the corresponding global tests of age are less significant than the global tests for
the reduced models.
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e The reduced models adequately explain the age effects with fewer terms. Thus,
the reduced models provide more powerful tests of the age effect; i.e. smaller p-
values.

e The LRT is the most appropriate method for comparing nested models.
e This method requires fitting both the full and reduced model.

e The LRT cannot be used to compare Models 1 and 2 to Models 3 and 4, since they
are not nested. The age variables - continuous versus categorical - are different.

16.3 Wald Test

The Wald test can also be used to compare nested models. Specifically, the test may be
used to assess the significance of terms in a given model. We have already used the
Wald test for the hypotheses

H,: =0
H,:8+#0

where g is a parameter in the regression model.
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When maximum likelihood methods are used the test statistic is

for which p = Pr[;(f > XZJ. So far, we have only used the Wald test for a single
parameter. The test has a general form that allows one to simultaneously test the

significance of multiple parameters.

CHD Example:

The following results were obtained for Models 1 and 2:

Parameter Wald
Model | Term Estimate SE Chi-Square | p-value
1 Intercept | -5.3095 1.1337 21.94 <0.0001
age 0.1109 0.0241 21.25 <0.0001
2 Intercept | -4.2408 4.2902 0.98 0.3229
age 0.0613 0.1946 0.10 0.7527
age” 0.0005 | 0.0021 0.07 0.7982
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The comparison of Models 1 and 2 is equivalent to a test of the hypotheses
H,:5,=0
H,:B,#0

The Wald statistic for this test is
A 2 2
X2 _ ﬂ{ _ (0.000SJ _0.06
se(f,) 0.0021

for which p = Pr[;(f > 0.06] =0.81. The quadratic term is not significantly different from
zero. Therefore, Model 2 is not significantly different from Model 1.

The Wald test could also be used to test the hypotheses

H,:5,=0,4,=0
H,:p,#00r g0

We will rely on SAS to compute the appropriate Wald test statistic for multiple
parameters.
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SAS Program and Output

proc genmod descending data=chd;
model chd = age age*age / dist=binomial;

contrast 'Global age' age 1, age*age 1 / wald;
contrast 'Global age' age 1, age*age 1;

run;

Syntax

e PROC GENMOD is used to fit the logistic regression model with a quadratic effect
for age.

e The contrast statement may be used to test the null hypothesis that several
parameters are simultaneously equal to zero.

o Like the estimate statement, the first item is a label to appear in the output.

e The variable names of the parameters to be tested are followed by a one and
separated by commas.

e The wald option requests that the Wald statistic be computed; the default is the
Likelihood Ratio statistic.

e The contrast statement is also available in PROC LOGISTIC. LOGISTIC will only
provide the Wald statistic; hence, the wald option is not needed there.
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The GENMOD Procedure

Contrast Results

Chi-
Contrast DF Square Pr > ChiSq Type
Global age 2 21.46 <.0001 Wald
Global age 2 29.37 <.0001 LR

Notes

e The Likelihood Ratio and Wald test are alternative methods of comparing nested
models.

e The LRT is preferred because the test statistic has better distributional properties.

e The Wald test statistic is often easier to compute since a second, reduced model
need not be fit. Thus, it has a longer history of use.
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16.4 Akiake Information Criterion (AIC)

Neither the Likelihood Ratio test nor the Wald test can be used compare models that are
not nested. There are several methods to handle this problem. We will discuss one, the
Akaike Information Criterion (AIC).

Akaike (1972) proposed a method of comparison based on both the log-likelihood and
the number of parameters in the model. The AIC is defined as

AIC =-2InL+2p

where p is the number of parameters in the model. Based on this criterion the model of
choice is the one with the lowest AIC.

CHD Example:

Suppose that we want to compare the model with a linear effect for age (Model 1) to the
model with a categorical effect (Model 4).

Model |Parameters Log-Likelihood
1 B, + page -53.6765
4 B, + pagecatl+ S,agecat?2 -55.6969
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The AIC for each model is

Model —2InL 2p AIC
1 107.35 4 111.35
4 111.39 6 117.39

Model 1 has the smaller AIC and would be selected based on this criterion.

Notes

e The AIC is a method for choosing among competing models. It is does not provide
a test for detecting statistically significant differences between models.

e The Likelihood Ratio and Wald tests should be used to compare nested models.

e The AIC may be used to compare models that are not nested. It is often referred to
as a goodness-of-fit statistic.
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16.5 lowa Radon Lung Cancer Example
Definitions for several variables from the lowa Radon Study are given in Table 1.

Table 1. Variables in the lowa Radon Study.

Variable | Description Values
case Lung cancer indicator 1 = case, 0 = control
age Age at enrollment (control) or diagnosis (case) | continuous
bmi Body mass index continuous
children | Number of children discrete continuous
city Lived within city limits 1=yes,0=no
prelung | Previous lung disease 1=yes, 0=no
pyr Cigarette pack-years continuous
pyrrate | pyr/ (age - 5) continuous
school | Attained education level 1 = grade school
2 = high school
3 = some college
4 = college degree
5 = graduate school
smkcur | Indicator for current smokers 1 = current smoker
0 = ex or never smoker
smkever | Indicator for ever-smokers 1 = ever-smoker
0 = never-smoker
smkquit | Years since smoking cessation continuous
smkyrs | Years as a smoker continuous
wim20 | 20-year radon exposure (working-level months) | continuous

379




In the previous section we discussed the multivariate logistic regression model

S, + Swim20 + g,age + S,smkever + B,smkcur

logit| 7(x) | =

+p;schooll+ B.;school2 + g,school 3 + S;school 4

where 7(x) is the conditional probability of lung cancer.
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16.5.1 Likelihood Ratio Test

The Likelihood Ratio statistic may be used to test a specific risk factor in the model by
comparing the full model containing the risk factor to a reduced model without the factor.
Likelihood Ratio tests are given in Table 2 for the risk factors in three different models.

Table 2. Likelihood Ratio tests for lung cancer risk factors.

Model Terms -2Log-Lik | Chi-Square | df | p-value
1 int + wim20 + age + smkever + smkcur 978.72 i i i
+ schooll + school2 + school3 + school4 '
- wim20 979.91 1.19 1 | 0.2753
- age 996.95 18.23 1 | <0.0001
- smkever 1072.11 93.39 1 | <0.0001
- smkcur 1049.84 71.12 1 | <0.0001
- schooll - school2 - school3 - school4 984.38 5.66 4 | 0.2260
2 int + age + smkever + smkcur 979 91 i i i
+ schooll + school2 + school3 + school4 '
- age 999.26 19.35 1 | <0.0001
- smkever 1072.57 92.66 1 | <0.0001
- smkcur 1052.07 72.16 1 |<0.0001
- schooll - school2 - school3 - school4 985.54 5.63 4 | 0.2285
3 int + age + smkever + smkcur 985.54 - - -
- age 1006.20 20.66 1 |<0.0001
- smkever 1077.81 92.27 1 | <0.0001
- smkcur 1061.82 76.28 1 <0.001
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Notes

¢ In addition to the full model, a reduced model must be fit for every risk factor that is
tested using the Likelihood Ratio statistic. This may involve a significant amount of
work.

e The chi-square statistic for school has 4 degrees of freedom; the number of model
terms (indicator variables) for that risk factor.

16.5.2 Wald Test

Alternatively, Wald tests can be used to test the significance of risk factors in the model.
Results for the predictors in the first lung cancer risk model are given below.

. . Wald
Variable | Estimate SE Chi-Square of n-value
Intercept | -5.7831 0.8658 44.62 1 <0.0001
wim20 0.0105 0.0096 1.18 1 0.2772
age 0.0408 0.0097 17.57 1 <0.0001
smkever 1.8477 0.1984 86.72 1 <0.0001
smkcur 1.6116 0.1987 65.81 1 <0.0001
schooll 1.0773 0.5610
school2 0.9014 0.5056 .
school3 0.7424 0.5161 550 4 0.2398
school4 0.5238 0.5776

* Obtained from SAS
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The Wald statistics for Model 1 can be used to test the significance of a select risk factor,
given the remaining terms in the model.

e Based on the results, we see that wim20 is not significant, given the other terms (p
=0.2772).

e Likewise, school is not a significant risk factor, given the other terms (p = 0.2398).
Note that the corresponding chi-square statistic has 4 degrees of freedom; the
number of indicator variables.

e Since the test statistics are conditional on the remaining terms in the model, it is not
appropriate to omit both the risk factor for radon and school based on the
associated p-values.

¢ We might decide to omit wim20 from the model since it is the most non-significant
risk factor.

SAS Program and Output

proc genmod descending data=radon;
class school;
model case = wlm20 age smkever smkcur school / dist=binomial typeS3;
contrast 'school' school 1 0 0 O -1,
school 0 1 0 0 -1,
school 0 01 0 -1,
school 0 0 0 1 -1 / wald;
run;
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The GENMOD Procedure

Contrast Results

Chi-
Contrast DF Square Pr > ChiSq Type

school 4 5.50 0.2398 Wald

In the results below for Model 2, school is not a significant risk factor, given the
remaining terms in the model (p = 0.2429).

Table 3. Lung Cancer Model 2.

. . Wald
Variable | Estimate SE Chi-Square of o-value
Intercept | -5.7462 0.8647 44.16 1 <0.0001
age 0.0419 0.0097 18.64 1 <0.0001
smkever 1.8369 0.1979 86.16 1 <0.0001
smkcur 1.6207 0.1984 66.72 1 <0.0001
schooll 1.0675 0.5606
school2 0.9097 0.5052 .
school3 0.7499 0.5157 5.46 4 0.2429
school4 0.5292 0.5769

* Obtained from SAS
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Therefore, we might decide to remove education from the model.

Notes

Table 4. Lung Cancer Model 3.

. : Wald
Variable | Estimate SE Chi-Square of o-value
Intercept | -4.9875 0.6966 51.27 1 <0.0001
age 0.0428 0.0096 19.84 1 <0.0001
smkever 1.8263 0.1970 85.93 1 <0.0001
smkcur 1.6509 0.1972 70.12 1 <0.0001

e The same tests were carried out with both the Likelihood Ratio and Wald statistics.

o Fifteen models had to be fit in the LRT example. Only three were needed in the
Wald example.

e The conclusions were the same for this example.
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16.5.3 Akiake Information Criterion

The behavior of the AIC can be seen by comparing the three lung cancer models.

Model | Terms -2Log-Lik 2p AIC

1 int + wim20 + age + smkever + smkcur 978.72 18 996.72
+ schooll + school2 + school3 + school4

2 int + age + smkeve r +smkcur 979.91 16 995.91
+ schooll + school2 + school3 + school4

3 int + age + smkever + smkcur 985.54 8 993.54

In this case the models are nested and the LRT or Wald test would be preferable.

Nevertheless, note that

e The value of the log-likelihood function can always be made larger by adding more
variables. Conversely, -2 times the log-likelihood function decreases as more
variables are added. Thus, our goodness-of-fit statistic should take into account the

number of terms in the model.
e The 2p term in the AIC statistic

AIC =-2InL+2p

represents a “penalty” for adding terms to the model. Remember that we want the

model with the lowest AIC value.
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Suppose that there are two lung cancer models under consideration:

Model 1:
S, + Swim20 + g,age + S,smkever + B,smkcur

logit| 7(x) | =

+p;schooll+ B;school2 + g,school 3 + S;school 4

Model 4:
logit| 7(x)|= S, + BwIm20 + B,age + B,pyrrate** + ,smkquit + S;school

Since the models are not nested, it is not appropriate to use the Likelihood Ratio or Wald
test to compare the two. The AIC can be used here.

Model =2InL 2p AIC
1 978.72 18 996.72
4 912.65 12 924.65

Based on the AIC, Model 4 clearly provides a better fit to the data than does Model 1.
We cannot necessarily say that the difference is statistically significant. Calculation of a
p-value is complicated because the distribution of the AIC statistic is not known. It can
be done, but is beyond the scope of this course.

387



16.6 Points of Emphasis

1. Understand the relative advantages and disadvantages of the Wald, LRT, and AIC
statistics for comparing different regression models.
2. Compute manually the LRT and AIC statistics.
3. Know the distribution for the Wald and LRT test statistics and the form of their p-
value formulas.
4. Use PROC GENMOD results to compare nested and non-nested models.
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Summary of Results..
17.4 Points of Emphasis



17.1 Introduction

Confounding and interaction were first covered in the discussion of Mantel-Haenszel
methods for estimating adjusted odds ratios and relative risks. It was noted that
whenever an epidemiologic study is designed or analyzed, the issues of

e Confounding
e [nteraction

need to be considered. This is also true when using logistic regression methods to
model the effects of predictor variables.

17.2 Confounding

Confounding is the bias in the risk estimate that can result when the exposure-disease
relationship under study is partially or wholly explained by the effects of an extraneous
variable.

17.2.1 lowa Radon Example

Suppose that we are interested in the effect of previous lung disease (1=yes/0=no) on
the odds of lung cancer. The unadjusted effect can be modeled as

logit[ 7(x) | = A, + Bprelung
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SAS Logistic Analysis of Prelung

proc genmod data=raonmod descending;
model case = prelung / dist=binomial;
run;

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 -0.6604 0.0807 -0.8186 -0.5023 67.01 <.0001
PRELUNG 1 0.7596 0.1349 0.4952 1.0240 31.71 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

We see that there is an apparent effect of previous lung disease when modeled by
alone.

prelung Odds Ratio 95% Wald CI
0=no 1.00 -
1 =vyes 2.14 (1.64, 2.78)

The following SAS analysis shows that previous lung disease is related to smoking.
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SAS Tables Analysis of Prelung

proc freq data=radonmod;
tables prelung*smkever prelung*case smkever*prelung*case / relrisk cmh nopercent norow nocol;
run;

The FREQ Procedure

Table of PRELUNG by SMKEVER

PRELUNG SMKEVER

Frequency 0 1 Total
0 349 335 684
1 121 222 343

Total 470 557 1027

Statistics for Table of PRELUNG by SMKEVER

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (0Odds Ratio) 1.9114 1.4628 2.4975
Cohort (Col1 Risk) 1.4464 1.2312 1.6991
Cohort (Col2 Risk) 0.7567 0.6783 0.8441

Sample Size = 1027
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Note

e The odds ratio between previous lung disease and smoking is 1.91 with a 95%
confidence interval of (1.46, 2.50).

e There is a significant, positive association between the two variables.
e Smoking is known to be associated with lung cancer.

Therefore, smoking may be confounding the crude relationship between previous lung
disease and lung cancer that appears in the following SAS analysis where

e The crude lung cancer odds ratio for previous lung is 2.14 with a 95% confidence
interval of (1.64, 2.78).

e The same estimate was obtained in the initial logistic regression analysis. This will
be the case when a single dichotomous predictor is in the model.
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The FREQ Procedure

Table of PRELUNG by CASE

PRELUNG CASE

Frequency 0 1 Total
0 451 233 684
1 163 180 343

Total 614 413 1027

Statistics for Table of PRELUNG by CASE

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (0dds Ratio) 2.1375 1.6409 2.7844
Cohort (Col1 Risk) 1.3875 1.2262 1.5700
Cohort (Col2 Risk) 0.6491 0.5615 0.7504

Sample Size = 1027
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In the additional analyses that follow

e Smoking is a potential confounder because it is related to previous lung disease as
well as to lung cancer.

e Further evidence of the confounding can be seen in the difference between the
crude odds ratio (2.14) and the Mantel-Haenszel odds ratio (1.77).

e The confounding effects of smoking should be controlled for in the logistic
regression analysis.
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The FREQ Procedure

Table 1 of PRELUNG by CASE
Controlling for SMKEVER=0

PRELUNG CASE

Frequency 0 1 Total
0 317 32 349
1 97 24 121

Total 414 56 470

Statistics for Table 1 of PRELUNG by CASE
Controlling for SMKEVER=0

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (Odds Ratio) 2.4510 1.3778 4.3604
Cohort (Col1 Risk) 1.1330 1.0307 1.2456
Cohort (Col2 Risk) 0.4623 0.2840 0.7525

Sample Size = 470
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The FREQ Procedure

Table 2 of PRELUNG by CASE
Controlling for SMKEVER=1

PRELUNG CASE

Frequency 0 1 Total
0 134 201 335
1 66 156 222

Total 200 357 557

Statistics for Table 2 of PRELUNG by CASE
Controlling for SMKEVER=1

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
Case-Control (Odds Ratio) 1.5758 1.0978 2.2617
Cohort (Col1 Risk) 1.3455 1.0573 1.7122
Cohort (Col2 Risk) 0.8538 0.7555 0.9650

Sample Size = 557
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The FREQ Procedure

Estimates of the Common Relative Risk (Rowi1/Row2)

Type of Study Method Value 95% Confidence Limits
Case-Control Mantel-Haenszel 1.7658 1.2977 2.4027
(0dds Ratio) Logit 1.7852 1.3144 2.4245
Cohort Mantel-Haenszel 1.2085 1.0848 1.3463
(Col1 Risk) Logit 1.1594 1.0616 1.2662
Cohort Mantel-Haenszel 0.7913 0.7003 0.8942
(Col2 Risk) Logit 0.8233 0.7312 0.9271

Breslow-Day Test for
Homogeneity of the 0dds Ratios

Chi-Square 1.6334
DF 1
Pr > ChiSq 0.2012

Total Sample Size = 1027
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17.2.2 Confounding in Logistic Regression

Confounding is controlled for in logistic regression by including the relevant variables in
the model. For instance, to control for the confounding effects of smoking, we might fit
the model

logit[ 7(x) | = B, + Bprelung + B,smkever .

The parameter estimates for the two proposed models are compared in the table below.

Model | Term Estimate SE p-value
1 Intercept -0.6604 0.0807 <0.0001
prelung 0.7596 0.1349 <0.0001
2 Intercept -1.3616 0.1531 <0.0001
prelung 0.5786 0.1582 0.0003
smkever 2.4139 0.1685 <0.0001

Notice the change in the parameter estimate for prelung after including the smoking
variable. After controlling for smoking, the effect of previous lung disease is not as
pronounced. The odds ratio for previous lung disease, adjusted for smoking is 1.78 with
a 95% confidence interval of (1.31, 2.43). Therefore, smoking accounts for some of the
apparent association in the crude odds ratio of 2.14.
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Since smoking is a confounder, it is important that we adequately control for this risk factor
in order to get a clear picture of the true effect of previous lung disease. A single
dichotomous variable for smoking rarely provides adequate control. Other possible choices

for this example are

Model | Term Estimate SE p-value
3 Intercept -2.1313 | 0.1526 | <0.0001
prelung 0.4493 0.1659 0.0068
smkever 1.7846 0.1949 | <0.0001
smkcur 1.4087 0.1893 | <0.0001
4 Intercept -2.0178 | 0.1441 | <0.0001
prelung 0.2843 0.1737 0.1017
smkyrs 0.0707 0.0041 | <0.0001
smkquit -0.0197 | 0.0086 0.0225
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More comprehensive smoking variables are included in the subsequent models.

e Model 2 simply includes a single dichotomous variable for ever-smokers; whereas,
Model 4 includes continuous variables for years of smoking and years since
smoking cessation.

¢ As the control for smoking improves, the estimated effect for previous lung disease
decreases and becomes less significant.

e With better control for smoking, the effect of previous lung disease is non-significant
(p =0.1017).

17.2.3 Identification of Confounders

Controlling for confounding requires that you identify variables that potentially impact the
estimated effect of the predictor of interest. At times, there is a clearly defined set of
confounding variables. More often, though, the confounding variables are less clearly
understood. Furthermore, it may be too cumbersome to identify the important
confounders through logistic regression modeling of every possible combination of the
variables.

One common method of screening for potential confounders is to look at correlations
among the study variables. Variables that are correlated with the predictor of interest as
well as with the disease are potential confounders.
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SAS Correlation Analysis

proc corr spearman data=radon;
var case prelung age children pyr pyrrate school smkcur smkever smkquit smkyrs wlm20;

run;

Syntax
e PROC CORR computes all pairwise correlations between the variables listed in the

var statement.

e The spearman option requests spearman rank correlations; appropriate for
variables that may not be normally distributed.
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The CORR Procedure

12 Variables: CASE
SMKCUR
Variable N
CASE 1027 0
PRELUNG 1027 0
AGE 1027 67.
CHILDREN 1027 3
PYR 1027 19
PYRRATE 1027 0
SCHOOL 1027 2
SMKCUR 1027 0
SMKEVER 1027 0
SMKQUIT 1027 4
SMKYRS 1027 20.
WLM20 1027 10.

PRELUNG AGE

SMKEVER SMKQUIT SMKYRS

Mean

.40214
.33398
60617
.10906
.82656
.32444
.44985
.31646
.54236
.59826
69620
64205

CHILDREN PYR

Simple Statistics

Std Dev

- 00 O O

2

(¢)]

© O O O o

21

.49057
.47186
.67481
.95958
.65853
.42056
.87980
.46532
.49845
.97630
.58525
.89201

6

oo

N O W W

PYRRATE
WLM20

Median Minimum
0 0

0 0
.12320 44.16153
.00000 0
.85000 0
.05889 0
.00000 1.00000
0 0
.00000 0
0 0
.00000 0
.17985 1.42265
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SCHOOL

Maximum

.00000
.00000
.80493
.00000

45175

.55702
.00000
.00000
.00000
.35489
.00000
.53930



CASE

PRELUNG

AGE

CASE

PRELUNG

AGE

Spearman Correlation Coefficients, N = 1027
Prob > |r| under HO: Rho=0

CASE

1.00000

0.17712

<.0001

0.02672
0.3923

PRELUNG

0.17712
<.0001

1.00000

0.05344
0.0870

AGE

0.02672
0.3923

0.05344
0.0870

1.00000

CHILDREN PYR
-0.07303 0.60480
0.0192 <.0001
-0.05910 0.21111
0.0583 <.0001
-0.15191 -0.07319
<.0001 0.0190

Spearman Correlation Coefficients, N = 1027
Prob > |r| under HO: Rho=0

SCHOOL

-0.12006
0.0001

-0.03629
0.2453

-0.05269
0.0915

SMKCUR

0.52220
<.0001

0.18846
<.0001

-0.17258
<.0001

SMKEVER

0.53016
<.0001

0.14907
<.0001

-0.10056
0.0013

SMKQUIT SMKYRS
0.16559 0.60422
<.0001 <.0001
0.01838 0.20278
0.5562 <.0001
0.03142 0.02389
0.3144 0.4445
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PYRRATE

0.60098
<.0001

0.20688
<.0001

-0.12860
<.0001

WLM20

0.03389
0.2779

0.03916
0.2098

0.10819
0.0005



The CORR Procedure

CHILDREN

PYR

PYRRATE

SCHOOL

SMKCUR

SMKEVER

SMKQUIT

SMKYRS

WLM20

Spearman Correlation Coefficients, N =
Prob > |r| under HO: Rho=0

CASE

-0.07303
0.0192

0.60480
<.0001

0.60098
<.0001

-0.12006
0.0001

0.52220
<.0001

0.53016
<.0001

0.16559
<.0001

0.60422
<.0001

0.03389
0.2779

PRELUNG

-0.05910
0.0583

0.21111
<.0001

0.20688
<.0001

-0.03629
0.2453

0.18846
<.0001

0.14907
<.0001

0.01838
0.5562

0.20278
<.0001

0.03916
0.2098

AGE

-0.15191
<.0001

-0.07319
0.0190

-0.12860
<.0001

-0.05269
0.0915

-0.17258
<.0001

-0.10056
0.0013

0.03142
0.3144

0.02389
0.4445

0.10819
0.0005

CHILDREN

1.00000

-0.08336

0.0075

-0.07456
0.0169

-0.06213
0.0465

-0.02568
0.4111

-0.09816
0.0016

-0.10883
0.0005

-0.10045
0.0013

-0.04412
0.1577

1027

PYR

-0.08336
0.0075

1.00000
0.99546
<.0001

-0.12055
0.0001

0.70529
<.0001

0.90750
<.0001

0.44097
<.0001

0.93653
<.0001

-0.01560
0.6175
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PYRRATE

-0.07456
0.0169

0.99546
<.0001

1.00000

-0.11955

0.0001

0.71950
<.0001

0.90750
<.0001

0.42785
<.0001

0.92226
<.0001

-0.02468
0.4294



Spearman Correlation Coefficients, N = 1027
Prob > |r| under HO: Rho=0

SCHOOL
CHILDREN -0.06213
0.0465
PYR -0.12055
0.0001
PYRRATE -0.11955
0.0001
SCHOOL 1.00000
SMKCUR -0.11536
0.0002
SMKEVER -0.07794
0.0125
SMKQUIT 0.01298
0.6778
SMKYRS -0.11644
0.0002
WLM20 -0.00661
0.8325

SMKCUR

-0.02568
0.4111

0.70529
<.0001

0.71950
<.0001

-0.11536
0.0002

1.00000

0.62502

<.0001

-0.08948
0.0041

0.75215
<.0001

-0.01125
0.7188

SMKEVER

-0.09816
0.0016

0.90750
<.0001

0.90750
<.0001

-0.07794
0.0125

0.62502
<.0001

1.00000

0.63811

<.0001

0.90756
<.0001

-0.01435
0.6460

SMKQUIT SMKYRS
-0.10883 -0.10045
0.0005 0.0013
0.44097 0.93653
<.0001 <.0001
0.42785 0.92226
<.0001 <.0001
0.01298 -0.11644
0.6778 0.0002
-0.08948 0.75215
0.0041 <.0001
0.63811 0.90756
<.0001 <.0001
1.00000 0.40405
<.0001
0.40405 1.00000
<.0001
-0.00084 0.00787
0.9786 0.8011
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WLM20

-0.04412
0.1577

-0.01560
0.6175

-0.02468
0.4294

-0.00661
0.8325

-0.01125
0.7188

-0.01435
0.6460

-0.00084
0.9786

0.00787
0.8011

1.00000



Note

e The first number is the correlation coefficient between the indicated row and column
variable. Positive values indicate a positive association.

e The second number is the p-value testing if the correlation is significantly different
from zero.

e Prelung is significantly correlated with the smoking variables (except smkquit).
The smoking variables, in turn, are correlated with case. Thus, these results
suggest that smoking is a potential confounder

e The correlation analysis is an exploratory method for identifying potential
confounders and is not guaranteed to uncover all confounding variables.
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17.2.4 Summary

Suppose that logistic regression is being used to estimate the effect of a predictor
variable X.

e A confounder is any variable associated with X as well as with the disease of
interest.

e A variable is a confounder if and only if its inclusion in the model changes the
estimated effect of X. The result could be to increase or decrease the estimate for
X.

¢ Any confounding variable that has an appreciable impact on the effect of X should
be considered for inclusion, even if the confounder itself is not statistically
significant in the model.

e The confounder should be properly controlled for in the logistic regression model.
This involves:

1. Identifying potential confounders at the study design phase.

2. Collecting detailed and complete information on the confounders during the data
collection phase.

3. Choosing among the available potential confounding variables and determining
the functional form to use in the regression model during the data analysis
phase.
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e Control for confounding in logistic regression is analogous to the Mantel-Haenszel
method for computing odds ratios. In both cases, the odds ratio is assumed to be
constant across the levels of the confounder. In our logistic regression example,
the odds ratio for those with previous lung disease is

OR =exp{f,}

at any given value of the confounder. If the odds ratio varies across the levels of an
extraneous variable, then we have interaction.

17.3 Interaction

A logistic regression model with only main effect terms implies that the variables do not
interact in their effect on disease. In other words, the odds ratio for a given predictor
does not vary across the levels of an extraneous variable. There are changes that can
be made to the logistic model if this is not the case.

17.3.1 Model 2

Consider our model with main effects for previous lung disease and smoking,

logit| 7 (x) | =—1.3616 + 0.4735prelung + 2.4139smkever .
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Among never-smokers, the estimated odds ratio for previous lung disease is

OR — g (prelung =1,smkever =0)
- §(prelung = 0,smkever =0)
=exp{0.4735} =1.61

= exp{0.4735(1-0)+2.4139(0-0)}

Likewise, among ever-smokers, the estimated odds ratio is

OR =3 (prelung =1.smkever =1) _ exp{0.4735(1-0) +2.4139(1-1)}
g (prelung = 0,smkever =1) _

=exp{0.4735} =1.61

In other words, the form of this model implies that smoking status does not affect the
estimated odds ratio for previous lung disease; that previous lung disease and smoking
do not interact in their effect on lung cancer.

This may not be the case. In the earlier Mantel-Haenszel analysis, we obtained the
following odds ratio estimates within the smoking strata:

smkever OR 95% CI
0 2.45 (1.38, 4.36)
1 1.58 (1.10, 2.26)

409



The odds ratios did not differ significantly according to the Breslow-Day test (p = 0.2012).
We could perform an analogous test using logistic regression. Suppose that we fit the
following model:

logit| z(x)|= B, + B,prelung + B,smkever + S;prelung x smkever

SAS Program and Output

proc genmod data=radonmod descending;
model case = prelung smkever prelung*smkever / dist=binomial;
estimate 'smkever=0:prelung' prelung 1 / exp;
estimate 'smkever=1:prelung' prelung 1 prelung*smkever 1 / exp;
run;
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The GENMOD Procedure

Parameter

Intercept
PRELUNG

SMKEVER
PRELUNG*SMKEVER
Scale

Label

smkever=0:prelung

DF

O — =4 a4

Est

- O N O DN

Exp (smkever=0:prelung)

smkever=1:prelung

Exp(smkever=1:prelung)

Analysis Of Parameter Estimates

St
imate

.2932
.8965
.6986
.4418
.0000

andard
Error

0.1855
0.2939
0.2164
0.3470
0.0000

Wald 95%
Confidence Limits Square

-2.6567
0.3205
2.2744

-1.1218
1.0000

Chi-

-1.9296 152.85

1

3
0
1

Contrast Estimate Results

Estimate

0.8965
2.4510
0.4547
1.5758

Contrast Estimate Results

Label

smkever=1:prelung

Exp(smkever=1:prelung)

smkever=0:prelung

Exp(smkever=0:prelung)

Pr > Chi

0.01

0.00

Standard
Error Alpha
0.2939 0.05
0.7204 0.05
0.1844 0.05
0.2906 0.05
Sq
37
23

.4725 9.30
.1228 155.47
.2383 1.62
.0000

Pr > ChiSq

<.0001
0.0023
<.0001
0.2029

Confidence Limits Sq

0.3205
1.3778
0.0933
1.0978
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4.3603
0.8161
2.2617

Chi-
uare

9.30

6.08



Summary of Results

Term Estimate SE p-value
Intercept -2.2932 0.1855 <0.0001
prelung 0.8965 0.2939 0.0023
smkever 2.6986 0.2164 <0.0001
prelung*smkever -0.4418 0.3470 0.2029

The interaction term allows the odds ratio for previous lung disease to vary across levels
of smoking, and vice versa.

¢ Note the following values for the terms in the model

Prior Lung Disease | Smoker | prelung | smkever | prelung*smkever
No No 0 0 0

Yes 0 1 0
Yes No 1 0 0

Yes 1 1 1
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e For never-smokers, the estimated odds ratio for previous lung disease is

OR = g (prelung =1,smkever =0, prelung x smkever = 0)
B g (prelung = 0,smkever =0, prelung x smkever =0)
=2.45

= exp{0.8965(1-0)}

e For ever-smokers, the estimated odds ratio is

e~

OR — g (prelung =1smkever = 1,prelung x smkever =1)
d

(prelung = 0,smkever =1 prelung x smkever = O)
exp{0.8965(1-0)—0.4418(1-0)}
1.58

e Testing the significance of the interaction term is akin to testing if the odds ratio
varies across the levels of the extraneous variable. In this case, the Wald test
indicates that the odds ratios do not differ significantly (p = 0.2029).
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17.3.2 Model 3

Our third model,
logit[ 7(x) | = B, + Bprelung + B,smkever + Bsmkeur

contains two indicator variables for smoking in order to control for the effects of current,
ex, and never-smokers. Again, this model implies that the odds ratio for previous lung
disease is constant across smoking status. The following model would allow the odds
ratios to vary:

S, + Aprelung + g,smkever + g,smkcur

logit| 7(x) | =

+f,prelung x smkever + S prelung x smkeur -

SAS Program and Output

proc genmod data=radonmod descending;
model case = prelung smkever smkcur prelung*smkever prelung*smkcur / dist=binomial;
estimate 'smk nvr:prelung' prelung 1 / exp;
estimate 'smk ex:prelung' prelung 1 prelung*smkever 1 / exp;
estimate 'smk cur:prelung' prelung 1 prelung*smkever 1 prelung*smkcur 1/ exp;
contrast 'interaction' prelung*smkever 1, prelung*smkcur 1 / wald;
contrast 'interaction' prelung*smkever 1, prelung*smkcur 1;

run;
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The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq
Intercept 1 -2.2932 0.1855 -2.6567 -1.9296 152.85 <.0001
PRELUNG 1 0.8965 0.2939 0.3205 1.4725 9.30 0.0023
SMKEVER 1 1.9032 0.2454 1.4223 2.3841 60.16 <.0001
SMKCUR 1 1.6650 0.2439 1.1871 2.1430 46.62 <.0001
PRELUNG*SMKEVER 1 -0.3087 0.4112 -1.1146 0.4972 0.56 0.4528
PRELUNG*SMKCUR 1 -0.6270 0.3928 -1.3970 0.1429 2.55 0.1104
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Contrast Estimate Results

Standard
Label Estimate Error Alpha
smk nvr:prelung 0.8965 0.2939 0.05
Exp(smk nvr:prelung) 2.4510 0.7204 0.05
smk ex:prelung 0.5878 0.2876 0.05
Exp(smk ex:prelung) 1.8000 0.5176 0.05
smk cur:prelung -0.0393 0.2676 0.05
Exp(smk cur:prelung) 0.9615 0.2573 0.05
Contrast Estimate Results
Label Pr > ChiSq
smk nvr:prelung 0.0023
Exp(smk nvr:prelung)
smk ex:prelung 0.0410
Exp(smk ex:prelung)
smk cur:prelung 0.8834
Exp(smk cur:prelung)
Contrast Results
Chi-
Contrast DF Square Pr > ChiSq Type
interaction 2 5.88 0.0529 Wald
interaction 2 5.81 0.0549 LR

Confidence Limits

oo -+ 0O =+ 0O

.3205
.3778
.0242
.0245
.5638
.5690
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.4725
.3603
.1514
.1626
.4853
.6247

Chi-
Square

9.30

4.18

0.02



Summary of Results

e For never-smokers (smkever = 0, smkcur = 0), the estimated odds ratio for
previous lung disease is

OR =

g(pretung =1) _ . 10.8965(1—0)|
(prelung =0) :

g
=2.45

e For ex-smokers (smkever = 1, smkcur = 0), the estimated odds ratio is

g (prelung =1, prelung x smkever =1)
g (prelung = 0, prelung x smkever = 0)
exp{0.8965(1-0)—0.3087(1-0)}
1.80

OR =

e For current smokers (smkever = 1, smkcur = 1), the estimated odds ratio is
OR — Q(prelung =1, prelung x smkever =1, prelung x smkcur = 1)
g (prelung = 0, prelung x smkever = 0, prelung x smkcur =0)
= exp{0.8965(1-0)—0.3087(1-0)-0.6270(1-0)}
=0.9615
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¢ A global test that the odds ratios are equal is performed by testing that the two
interaction terms are simultaneously equal to zero. This can be accomplished via
the contrast statement in PROC GENMOD. The interaction terms are marginally
non-significant (Wald p = 0.0529, LR p = 0.0549).

17.3.3 Model 4

Continuous variables for smoking are included in the fourth model,
logit[ 7(x) | = B, + Bprelung + B,smkyrs + B;smkquit .
Interaction terms could be added as follows:

o 't[ ( )] S, + pprelung + S,smkyrs + g,smkquit
| X)|= :
L +,prelung x smkyrs + . prelung x smkquit

SAS Program and Output

proc genmod data=radonmod descending;
model case = prelung smkyrs smkquit prelung*smkyrs prelung*smkquit / dist=binomial;
estimate 'smkO/0:prelung' prelung 1 / exp;
estimate 'smk10/5:prelung' prelung 1 prelung*smkyrs 10 prelung*smkquit 5 / exp;
estimate 'smki15/0:prelung' prelung 1 prelung*smkyrs 15 / exp;

contrast 'interaction' prelung*smkyrs 1, prelung*smkquit 1 / wald;
run;
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The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq
Intercept 1 -2.2494 0.1757 -2.5938 -1.9050 163.87 <.0001
PRELUNG 1 0.9372 0.2784 0.3915 1.4830 11.33 0.0008
SMKYRS 1 0.0801 0.0055 0.0693 0.0910 210.83 <.0001
SMKQUIT 1 -0.0173 0.0102 -0.0373 0.0027 2.87 0.0904
PRELUNG*SMKYRS 1 -0.0236 0.0083 -0.0398 -0.0073 8.10 0.0044
PRELUNG*SMKQUIT 1 -0.0108 0.0197 -0.0494 0.0278 0.30 0.5839
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Contrast Estimate Results

Standard
Label Estimate Error
smk0/0:prelung 0.9372 0.2784
Exp(smk0/0:prelung) 2.5529 0.7108
smk10/5:prelung 0.6475 0.2122
Exp (smk10/5:prelung) 1.9108 0.4055
smk15/0:prelung 0.5836 0.2063
Exp(smk15/0:prelung) 1.7925 0.3697

Contrast Estimate Results
Label Pr > ChiSq
smk0/0:prelung 0.0008
Exp (smkO/0:prelung)
smk10/5:prelung 0.0023
Exp(smk10/5:prelung)
smk15/0:prelung 0.0047
Exp(smk15/0:prelung)
Contrast Results
Chi-

Contrast DF Square Pr > ChiSq
interaction 2 8.70 0.0129

Alpha

O O O O O o

.05
.05
.05
.05
.05
.05

Type

Wald

Confidence Limits

- O =+ O =0

.3915
L4792
.2316
.2606
.1793
.1964
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NON = »~ =

.4830
.4060
.0634
.8963
.9879
.6856

Chi-
Square

11.33

9.31

8.01



Summary of Results

e For never-smokers (smkyrs = 0, smkquit = 0), the estimated odds ratio for previous
lung disease is

OR =exp{/,} = exp{0.9372
= 2.55

e For smokers, the odds ratio for previous lung disease is
OR =exp{f, + f,smkyrs + S,smkquit } .

For example, the estimated odds ratio for previous lung disease among individuals
who smoked for 10 years (smkyrs = 10) and quit five years ago (smkquit = 5) is

OR = exp{ A, + 5,10+ j;5| = exp{0.9372-0.0236(10) - 0.0108(5)}
=1.91

The estimated odds ratio among current smokers (smkquit = 0) who smoked for 15
years (smkyrs = 15) is

OR = exp{ A, + 5,15+ ;0] = exp{0.9372-0.0236(15)}
=1.79
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The global test of the interaction terms is significant (p = 0.0129). In particular, it
appears that previous lung disease is more strongly associated with lung cancer
among never-smokers. Furthermore, the interaction term with smkquit is not
significant (p = 0.5839) and could be omitted from the model.

17.4 Points of Emphasis

1.

Definition of confounding. The importance of including confounding variables in the
logistic regression model. How to identify confounders.

2. Estimation and interpretation of the odds ratio with interaction terms in the model.
3.
4. Use PROC GENMOD to estimate odds ratios as well as fit and test the significance

Significance testing for interaction terms.

of interaction terms.
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18.1 Introduction

18.1.1 Residuals

In linear regression, where the response variable y. for each subjects is modeled as
Vi =By + BXy + BoXo + BX + &
the residuals are used to examine the fit of the model. Recall that the residuals r. are
defined as the difference between the observed y, and the predicted y,. In particular,
L=y, -y =YV, _,éo _leli _ﬂAZXZi _"'_lépxpi'
Residuals provide estimates of the error terms ¢ in the model. Hence, they may be

used to check the assumption that ¢ ~ N (0,02); i.e. that the error terms are

e Normally distributed with
e Constant variance.

Systolic Blood Pressure Example

In Section 10, simple linear regression was used to model systolic blood pressure (y) as
a function of age (x). The estimated regression model was

y, =98.71+0.97x,.
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A histogram plot of the residuals is given in Figure 1.

¢ The non-symmetric shape of the histogram calls into question the normality
assumption for the residuals.

¢ A normal Q-Q plot of the residuals could be constructed as another visual check of
normality. Departures from normality can be tested with the Shapiro-Wilk statistic.

0 —

Frequency
4
!

[ I I I I ]
-20 0 20 40 60 80

Residuals

Figure 1. Histogram plot of the residuals in the Blood Pressure Example.
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Below, the residuals are plotted against the predicted blood pressures.

Residuals

T T T T T
120 130 140 150 160

Predicted Blood Pressure

e The constant variance assumption does not appear to be severely violated. There
are more sophisticated residuals that can be computed to check the constant
variance assumption, e.g. standardized residuals.

¢ Note the one extreme residual value that shows up in both plots. This is indicative
of a model that provides a poor explanation of the relationship between age and
blood pressure for the corresponding subject. One should check that the data were
entered correctly and possibly consider excluding this subject from the analysis.
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18.1.2 QOutliers

Outliers are a concern in any analysis and are most easily illustrated in the context of
linear regression.

The solid lines in the following figures give the regression fit with the outlier in the
analysis; the dashed lines give the fit without the outlier. The first figure depicts an
outlier whose response value is not explained well by the predictor in the model. In other
words, there is a relatively large difference between the observed and predicted
response (the residual value).

Outlier

1.0 12 1.4 16 18 20
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The second figure with an influential outlier may or may not have a large residual value,
but it does have a significant impact on the estimated effect of the predictor.

Influential Outlier

18.1.3 Goodness-of-fit

The sum-of-squared errors
2

SSE = Z(Yi B y\l)

measures the aggregate deviation of the predicted values from the observed. We would
like for SSE to be small.
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The R? statistic

 SST -SSE
SST

R2

where

2

SST=>(y,~-y) and SSR=>(¥,-y)",

provides a measure of the overall fit of a linear regression model to the data.
Specifically, it measures the amount of variability in the response variable explained by
the predictors in the model. In the blood pressure example,

-2 _ 14787 -8393.4
14787

=0.4324.

43.2% of the variation in the systolic blood pressures is explained by the linear effect of
age.
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18.2 Logistic Regression Diagnostics

lowa Radon Example

Suppose that we fit the lung cancer risk model

:

ﬂ}_

1- 7Z'(X)

B, + page + p,school + g,smkyrs + g,smkquit + Swim20

to obtain the following parameter estimates:

Once a regression model has been formulated, the next step is to assess the fit of the
model to the data. In other words, examine how well the predictors explain the response

variable.

: : Wald
Variable | Estimate SE Chi-Square df o-value
Intercept | -2.0776 0.7040 8.7095 1 0.0032
age 0.00714 | 0.00956 0.5576 1 0.4552
school -0.1743 0.0962 3.2821 1 0.0700
smkyrs 0.0715 | 0.00412 | 301.5945 1 <0.0001
smkquit -0.0211 | 0.00885 5.6768 1 0.0172
wim20 0.00876 | 0.00970 0.8149 1 0.3667
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NOTE: Model diagnostics should always be undertaken when developing a
regression model.

18.2.1 QOutliers

An outlier is a data point that is located away from the majority of the data.
e Outliers frequently result from errors in collecting or entering the data.
¢ [t may or may not be desirable to exclude outliers from the regression analysis.

e Pearson and Deviance residuals are two types of standardized residuals that we
will use to identify outliers that are not well explained by the model.

e Delta-Beta plots will be used to identify influential outliers.

18.2.2 Pearson and Deviance (Standardized) Residuals

In multiple logistic regression we will continue to use residuals, but they will be defined

differently than in linear regression. The logistic regression model for the i subject has
the form

In{ d }: By + BXy + BoXoi + oo+ BuX,

1-r,
such that the dichotomous response variable y. is distributed as

y;, ~ Binomial (1,7, ).

430



Note that
e E(y)=n andvar(y,)=x(1-7)

for which estimates are obtained by substituting in the predicted probability

Bo+PrXaj ..+ P X

" e
T =

' eﬁ’o +:leli +~--+Bpxpi +1 )

The Pearson residual is defined as

These play a similar role as the Pearson residuals in multiple linear regression.
Deviance residuals are another type of residual commonly used in logistic regression
analysis.
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Notes
¢ A more useful diagnostic is the standardized residual, defined as

Isi :ri/\/ﬁ

where h, = 7; (1- 7, )var(fi’xi ) The h, are diagonal entries of the so-called “hat
matrix” and are referred to as leverage values.

¢ If the model provides an adequate fit to the data, the standardized residuals will
have variance equal to one.

e \We would expect that
o There are very few extreme positive or negative residuals.
o About 95% of the residuals fall between -1.96 and +1.96.

o About 99% of values fall between -2.32 and 2.32. Values substantially outside
of this range should be investigated as potential outliers.

e Pearson and Deviance residuals are used analogously to identify outliers.
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SAS Program for Pearson and Deviance Residuals

proc logistic data=radon descending;
model case = age school smkyrs smkquit wlm20 / influence iplots;
output out=temp reschi=pearson resdev=deviance h=leverage;

data resid;
set temp;
stpearson = pearson / sqrt(1 - leverage);
stdeviance = deviance / sqrt(1 - leverage);
run;

Syntax

e The influence option produces regression diagnostics, including the Pearson and
Deviance residuals

¢ iplots generates plots for the results from the influence option.

e The output statement saves the Pearson residuals (reschi) and the Deviance
residuals (resdev) in the SAS data set resid under the variables names pearson
and deviance, respectively. Leverage values are produced with the h option and
saved under the variable name leverage. Residuals in the data set may be plotted
in an appropriate graphing program.
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The LOGISTIC Procedure

Case
Number

o ~NOoO O WND =

[N ST S T LS T A T S T 1 T G G G G G U G G G §
O ON—-+ 0 000N D»WDN-—=OO0O

65.
59.
75.
66.
.0376

81

65.
67.
75.
58.
66.
67.
74.
72.
75.
73.
73.
79.
69.
66.
62.
63.
73.
64.
72.
59.

AGE

4784
1595
2580
1793

9110
9452
0500
5352
8309
2991
6064
6680
1869
1253
4073
6167
2320
5927
8994
9754
8097
6352
4709
8905

SCHOOL

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

NN OWWNWMNMDNMWMNWMNMNMNNDMNDMNDNDMONDONNDDND O =

Covariates

Regression Diagnostics

SMKYRS

46.
3.

43.
64.
45.

58.
35.

46.
43.
49.

14.
55.

21

0000
0000
0
0000
0000
0000
0
0000
0000
0
0
0
0000
0000
0000

0000
0000

.0000
17.
37.

0000
0000

.0000

SMKQUIT

37.

[e)]

24.

43.
14.
10.

19.

WLM20

.6608
.6913
. 1445
.6886
.1764
. 8831
.4349
.1280
.4134
.3804
.6352
.8309
.0448
L7479
.5812
.0475
.3264
.4048
.5858
.6503
.3045
.7403
. 1496
.1663
.5200
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Pearson Residual

Value

.4618
.2440
.3144
.5862
.2499
.5463
.3914
. 3437
.4228
.3949
. 3841
.3980
.5283
.5661
.4934
.4163
.4678
.3545
.3847
.3574
.2749
.7113
.2049
.4115
.5422

(1 unit = 0.45)
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All that is need to compute the Pearson residual is the case status, predictor values, and
parameter estimates.

case | intercept| age school | smkyrs | smkquit | wim20
Estimate | - | -2.0776 |0.00714 |-0.1743| 0.0715 | -0.0211 | 0.00876
Subject1l| 1 1 65.48 1 46 0 4.66

For Subject 1
m= p,+ page+ B,school + f,smkyrs + 4,smkquit + Swim20
= —2.0776+0.00714(65.48)—0.1743(1)+0.0715(46)
-0.0211(0) +0.00876(4.66)
= 1.5455

giving an estimated probability of

e’ e1.5455

7T, = oh 1 = 5 L =0.8243.
Thus, the Pearson residual evaluates to

V.= 7% 1-0.8243

r, = =0.4617.

b Ja(-%)  (J0.8243(0.1757)

which corresponds to the value returned by SAS.
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The Pearson and Deviance residuals are summarized in Figure 2 and Figure 3. None of
the values here appear to be too extreme. Nevertheless, this is an exploratory process,
subject to interpretation.
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Standardized Pearson Residuals

O p—
=
o
M — o o
° o
o [o]
o
I I I I I I
0 200 400 600 800 1000

Observation Number

Figure 2. Pearson residuals for the logistic regression model in the lowa Radon
Example.

437



o o ° ) o o
o o o o o % o0®p 0° 0o
o o o
N — o °® ) 060 @ %9 © 0y 00 oo °9, o
o
° o ° o o o °
o o
00 o
o o %0
o (o) (o)
o0
o o
° o ° o ° °o o oo & %o o° °
o o o o o oo
— — O o oo%) o00 %o Oo 00% c88c9 o © o%oo
0%, o’ o Qo o o2%8 ° oL 8§ °o
o o o [¢] %0 &
o ©0 0 60 g, S @ ©0
9@00@0 oo°®°oo8°o o%)%o o ® PP @ 0oGo o @Om 050
o°% @980 0o 0% o © o ©c ocué) 0°
cpog% 0(9%0 80 o O ©O ® &) o o o 8 QQ @8 % O oo O@
o o o 050 0%
o o & o g ° o ° ° o o o o
o p—

Standardized Deviance Residuals

0 200 400 600 800 1000

Observation Number

Figure 3. Deviance residuals for the logistic regression model in the lowa Radon
Example.
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18.2.3 Delta-Beta Plots for Influential Observations

Delta-Beta plots are a method of checking the influence of each observation on the
estimated model parameters.

e The idea is to compare the estimate B for a given parameter, with all observations
in the analysis, to the estimate ﬁ’(j) that results by excluding the j™ observation.

[?_'8(1)

Op

e This is done for every observation in the data set and the changes A, = are

reported as standardized delta-beta values.

e Observations that exert undue influence on the parameter estimates have large
delta-betas.

e A delta-beta plot may be constructed for each parameter in the regression model,
including the intercept.
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SAS Program for Delta-Beta Statistics

proc logistic data=radonmod descending;
model case = age school smkyrs smkquit wlm20 / influence iplots;
output out=influence dfbetas=d _int d_age d_school d _smkyrs d_smkquit d_wlm20;

proc gplot data=influence;

plot
plot
plot
plot
plot
plot
run;

d_int*studyid;
d_age*studyid;
d_school*studyid;
d_smkyrs*studyid;
d_smkquit*studyid;
d wlm20*studyid;

Syntax

e Delta-beta values are included in the output specified by the influence and iplots
options.

e Delta-betas are generated for each parameter in the model, including the intercept.

¢ The output statement saves the delta-betas in the SAS data set influence. Note
that variable names must be given to the values for the intercept (d_int) as well as
the terms listed to the right of the equal sign in the model statement.

e Abbreviated SAS output is given on the following pages.
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The LOGISTIC Procedure

Regression Diagnostics

Intercept AGE
Case DfBeta (1 unit = 0.02) DfBeta (1 unit = 0.02)
Number Value -8 -4 02468 Value -8 -4 02468

1 0.00926 | * | -0.00025 | *

2 -0.00444 | * | 0.00737 | *

3 0.0128 | * | -0.00842 | *

4 0.00456 | * | -0.00071 | *

5 -0.00802 | * | 0.00928 | *

6 -0.00670 | * | 0.000700 | *

7 -0.00451 | * | -0.00147 | *

8 -0.0122 | * | | 0.0109 | | *

9 -0.0495 | * | 0.0639 | | =
10 -0.00564 | * | 0.000291 | *

11 -0.00541 | * | -0.00105 | *

12 0.00318 | * | -0.0104 | *|

13 -0.00848 | * | 0.0114 | | *
14 -0.0150 | *| | 0.0193 | | *
15 -0.0172 | *| | 0.0124 | | *
16 0.00297 | * | -0.00815 | *

17 0.0151 | | * | -0.0173 | *|

18 -0.00303 | * | 0.00437 | *

19 -0.00614 | * | -0.00007 | *
20 -0.00450 | * | 0.00397 | *

21 -0.00804 | * | 0.00774 | *
22 -0.0393 | * | 0.0382 | | *
23 -0.00294 | * | 0.0137 | | *
24 0.00154 | * | -0.00692 | *
25 0.0789 | * | -0.0638 | *
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The LOGISTIC Procedure

Regression Diagnostics

SCHOOL SMKYRS
Case DfBeta (1 unit = 0.03) DfBeta (1 unit = 0.02)
Number Value -8 -4 02468 Value -8 -4 02468

1 -0.0232 | *| | 0.0153 | | *
2 -0.00718 | * | 0.00646 | *
3 -0.0229 | *| | 0.00748 | *
4 -0.00985 | * | 0.0190 | | *
5 -0.00147 | * | 0.0103 | | *
6 0.0138 | * | 0.0211 | | *
7 0.00527 | * | 0.0130 | | *
8 0.00716 | * | 0.0158 | | *
9 0.0305 | * | -0.0304 | *
10 0.00548 | * | 0.0131 | | *
11 0.00508 | * | 0.0127 | | *
12 0.00494 | * | 0.0128 | | *
13 -0.00812 | * | 0.0194 | | *
14 -0.00850 | * | 0.0196 | | *
15 0.0119 | * | 0.0212 | | *
16 0.00565 | * | 0.0134 | | *
17 -0.00928 | * | 0.00898 | *
18 -0.00362 | * | 0.0146 | | *
19 0.00515 | * | 0.0128 | | *
20 -0.00609 | * | 0.0110 | | *
21 0.00477 | * | 0.00878 | *
22 0.0399 | | * | -0.0234 | *|
23 -0.0318 | * | | -0.0285 | * |
24 0.00557 | * | 0.0133 | | *
25 -0.0366 | * | | -0.0234 | * |
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The LOGISTIC Procedure

Regression Diagnostics

SMKQUIT WLM20
Case DfBeta (1 unit = 0.04) DfBeta (1 unit = 0.03)
Number Value -8 -4 02468 Value -8 -4 02468
1 -0.00775 | * | -0.00933 | *
2 -0.0170 | * | -0.00162 | *
3 0.00612 | * | 0.000824 | *
4 0.000207 | * | -0.00630 | *
5 -0.00501 | * | -0.00354 | *
6 -0.0117 | * | 0.0100 | *
7 0.00488 | * | 0.00465 | *
8 -0.00825 | * | -0.00507 | *
9 0.000377 | * | -0.1429 | *
10 0.00459 | * | 0.000731 | *
11 0.00467 | * | 0.00919 | *
12 0.00674 | * | 0.00770 | *
13 0.00421 | * | -0.00134 | *
14  -0.00148 | * | -0.00056 | *
15 -0.00205 | * | 0.00709 | *
16 0.00660 | * | -0.00796 | *
17 -0.0259 | * | 0.0162 | *
18 -0.00665 | * | -0.00222 | *
19 0.00449 | * | 0.00794 | *
20 0.00373 | * | 0.000089 | *
21 -0.0253 | * | | -0.00586 | *
22 0.0504 | | * | -0.0104 | *
23 -0.0235 | * | | 0.00610 | *
24 0.00628 | * | -0.00527 | *
25 0.1002 | | * | -0.0355 | *
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The delta-betas are summarized in the plots of Figure 4.
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Figure 4. Delta-Beta plots for the logistic regression model in the lowa Radon Example
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18.2.4 Dealing with Outliers

If a subject appears to be an outlier, there are several steps that should be taken.
1. Verify that the data were collected and entered correctly for the subject in question.

2. Examine the covariate values for the subject. If the covariate pattern falls within the
population to which the results will be generalized, then the subject is often included
in the analysis. On the other hand, if there is no interest in generalizing the results
to individuals with similar covariate patterns, then the subject is often excluded.

3. Assess the influence of this subject on the parameter estimates. If an influential
outlier is to be retained in the analysis, modifications to the model may be needed.

18.2.5 Hosmer and Lemeshow Goodness-of-Fit
Hosmer and Lemeshow proposed a statistic for testing if a given logistic regression
model provides an adequate fit to the data. Their null and alternative hypotheses are

H, : model provides an adequate fit
H, : model does not fit the data

The test is commonly referred to as a “goodness-of-fit” or “lack-of-fit” test.
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It has the following interpretation:

¢ If the null hypothesis is rejected, then the model does not fit the data, and a better
model should be sought.

e [f the null is not rejected, then the test provides no evidence that the model does not
fit the data.

The test statistic is computed by first grouping the subjects into 10 categories. Fewer
categories are used for small sample sizes. The categories are based on the predicted

probabilities

Do+ PiXqi+-- P Xpi

" e
. =

[ eﬁ’0+ﬁ1xli Jr...+ﬁ’pxpi 41

from the fitted model.

There are two common methods for defining the categories:

1. Subjects are partitioning into deciles. The result is an equal number of subjects
within each category.

2. Equal width categories based on the values of the predicted probabilities. For
instance, cutpoints of (0.10.2,...,0.9) would be used to define the 10 categories if

the predicted probabilities range from O to 1.
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A general summary of the number of subjects within each category is given in the table

below.

Category Cases Controls Totals
1 n, Ny n,
2 r]2,1 I"]2,0 r]2
lo r]10,1 n10,0 nlO

The expected number of subjects ﬁi,j within each cell of the table is calculated from the
sum of the predicted probabilities over the corresponding row,

where 7, ;, is the predicted probability for the k™ subject within the (i, j) cell.
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The test statistic is given by

Z():( ) ~ 5

i=1
for which the p-value is p = Pr[;(j > X,ﬁL].

In the general case of g categories, the Hosmer and Lemeshow test statistic is

Xi :Zg:i( il )2"7(5—2'

i=1 j=0 i,j
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SAS Program for Hosmer and Lemeshow Test

proc logistic data=radon descending;
model case = age school smkyrs smkquit wlm20 / lackfit;
run;

Syntax

e The lackfit option requests the Hosmer and Lemeshow goodness-of-fit test. SAS
groups the subjects into deciles.

The LOGISTIC Procedure
Partition for the Hosmer and Lemeshow Test
CASE = 1 CASE = 0
Group Total Observed Expected Observed Expected
1 103 6 9.26 97 93.74
2 103 15 11.89 88 91.11
3 103 8 13.08 95 89.92
4 104 13 14.32 91 89.68
5 103 18 16.07 85 86.93
6 103 45 38.56 58 64.44
7 103 64 63.80 39 39.20
8 103 77 75.00 26 28.00
9 103 84 82.93 19 20.07
10 99 83 88.07 16 10.93
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Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

9.4888 8 0.3028

At the 5% level of significance, the Hosmer and Lemeshow test does not provide
evidence of a lack of fit to the data (p = 0.3028).

18.2.6 R? Statistic

Several authors have proposed methods for computing an R? statistic for generalized
linear regression models. One method due to Nagelkerke (1991) defines the R statistic
as

n

R2_1_ exp{_ﬁ(ml_(ﬁ) - InL(O))}

where InL(,@) and InL(0) denote the likelihoods for the regression models with and

without covariates, respectively. The R? given by this definition has the following
properties:
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1. It has the same interpretation as the R? in linear regression. Specifically, it
measures the proportion of variation explained by the model, or rather, 1 — R? is the
proportion of unexplained variation.

2. For a given model, it achieves the largest value at the maximum likelihood
estimates.

3. It is independent of the sample size n.
4. It is independent of the units used for the response and predictor variables.

SAS Program for R? Statistic

proc logistic data=bios241.irlcs descending;
model case = age school smkyrs smkquit wlm20 / rsquare;
run;

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates
AIC 1386.130 954.345
SC 1391.065 983.951
-2 Log L 1384.130 942.345

R-Square 0.3496 Max-rescaled R-Square 0.4723

451




18.2.7 Predictive Ability

SAS provides three statistics
e Somer's D
e Goodman-Kruskal Gamma

e Kendall's Tau-a

that measure the correlation between the predicted probabilities and the observed
dichotomous response variable. A value of -1 or +1 indicates perfect agreement; zero
indicates no agreement.

Technical Notes
e Let n be the total number of subjects in the data set. There are n(n —1)/2 distinct
pairs of subjects that can be formed.

e Lett denote the number of pairs with different values for the response variable
(case/control pairs).

e A given pair is said to be tied if the two predicted probabilities are within 0.002 of
one-another.

e A pair is concordant if the subject with the higher predicted probability has the
higher value for the response variable.

e A pair is discordant if the subject with the higher predicted probability has the lower
value for the response variable.
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e Let n, denote the number of concordant pairs and n, the number of discordant
pairs.
e The three correlation statistics are computed as
Sumer's D =(n, —n,)/t

Gamma =(n, —n,)/(n, +ny)

Tau-a =(n,—ny)/(n(n-1)/2)

e Kendall's Tau-a is the most conservative of the three and closest in spirit to the R?
statistic in linear regression.

SAS Program for Correlation Statistics

proc logistic data=radon descending;
model case = age school smkyrs smkquit wlm20;
run;

Syntax

e The correlation statistics are given in the standard output for the logistic regression
analysis.
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Association of Predicted Probabilities and Observed Responses

Percent Concordant 84.9 Somers' D 0.701
Percent Discordant 14.8 Gamma 0.704
Percent Tied 0.4 Tau-a 0.337
Pairs 253582 c 0.851
Conclusion

e 84.9% of the 253,582 case/control pairs are concordant.

e Kendall's Tau-a statistics is 0.337 indicating a moderate, positive association
between the predicted probabilities and the response variable.
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18.3 Points of Emphasis
1. Use PROC GENMOD to examine model diagnostics and goodness-of-fit statistics.
2. Computation of Pearson standardized residuals.
3. Interpretation of model diagnostics and goodness-of-fit statistics.
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19.1 Introduction

There are three main categories of variables to consider for inclusion in a regression
model:

1. Predictors — variables for which risk estimates are desired.
2. Confounders — variables that are confounded with the predictors.

3. Effect Modifiers — variables that interact or modify the effect of the predictors.

Goal: Select the set of covariates that results in the “best” model within the scientific
context of the problem.
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In our approach, we will try to strike a balance between the following two objectives:
1. Traditional — Seek the most parsimonious model that “explains” the data.

e Smaller models are more likely to be numerically stable. The standard errors for
the parameter estimates tend to increase as additional variables are added to the
model.

e The dependence of the model on the data set increases with the number of
variables. Consequently, large models are less generalizable.

e Parsimonious models are easier to interpret.
2. Biological — Include all scientifically relevant variables in the model.

¢ \We want to ensure that confounding and interaction are accounted for in the
model; e.g. covariates may not show confounding individually, but do so when
analyzed together.

Advise: Beware of over-fitting, especially when there are a large number of covariates
relative to the number of cases and controls. Also, think about the interpretation of the
variables in the models that you are fitting.

lowa Radon Example

Table 1 lists several of the variables collected on the 1027 subjects in the lowa Radon
Lung Cancer Study. Suppose that we would like to select among these variables to
produce a lung cancer risk model.
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Table 1. lowa Radon Study variables.

Variable Description Values
case Lung cancer indicator 1 = case, 0 = control
age Age at enroliment (control) or continuous
diagnosis (case)
bmi Body mass index continuous
children Number of children 0 = none
1 =one
2 = two or more
city Subject lived within city limits 1=yes,0=n0
pyr Cigarette pack-years continuous
pyrrate Cigarette pack-year rate continuous
school Attained education level 1 = grade school
2 = high school
3 = some college
4 = college degree
5 = beyond college
smkcur Current smoker 1=vyes,0=no0
smkever Ever-smoker 1=yes,0=no0
smkex Ex-smoker 1=yes,0=n0
smkquit Years since smoking cessation continuous
smkyrs Years of cigarette smoking continuous
wim20 20-year radon exposure continuous
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19.2 Variable Selection Routines

The same variable selection methods used for linear regression are applicable to the
logistic regression setting. The three most common automated selection algorithms are:

1. Forward variable selection

Variables are added to the model one-at-a-time, provided that their p-value is
smaller than some prespecified cutoff.

The variable with the smallest univariate p-value is the first to be added.

At each step, the remaining variable with the smallest p-value is added to the
model.

This process iterates until all of the p-values for the remaining variables are
greater than the prespecified cutoff.

2. Backward variable selection

Variables are removed from the model one-at-a-time, provided that their p-value
is larger than some prespecified cutoff.

An initial model is fit with all of the variables.
At each step, the variable in the model with the largest p-value is removed.

This process iterates until all of the p-values for the variables in the model are
less than the prespecified cutoff.
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3. Stepwise variable selection
e Starts like forward selection.
e At each subsequent step, variables may either enter or leave the model.

e p-value cutoffs for variable entry into the model and variable removal from the
model must be specified.

e Common choices of p-value cutoffs are 0.20, 0.15, 0.10, and 0.05. A larger
value for the cutoff to enter or the cutoff to remove will result in more variables in
the model. The same cutoff is typically used for both.
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SAS Programs for Automated Variable Selection

proc logistic data=radon descending;
class children (param=ref);
model case = wlm20 age bmi children city pyr pyrrate school smkcur smkever smkquit smkyrs
/ include=1 selection=forward slentry=0.15 details;

proc logistic data=radon descending;
class children (param=ref);
model case = wlm20 age bmi children city pyr pyrrate school smkcur smkever smkquit smkyrs
/ include=1 selection=backward slstay=0.15 details;

proc logistic data=radon descending;
class children (param=ref);
model case = wlm20 age bmi children city pyr pyrrate school smkcur smkever smkquit smkyrs
/ include=1 selection=stepwise slentry=0.15 slstay=0.15 details;

Syntax

e The three PROC LOGISTIC commands perform forward, backward, and stepwise
variable selection, respectively.

e Variables listed in the class statement will be treated as nominal categorical
variables in the analysis.

e The type of variable selection is specified with the selection option.

e slentry defines the p-value cutoff for variables to enter the model; slstay defines
the cutoff for variables to stay in the model.
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e The include=n option forces the first n predictors in the model statement to be
included in every model. By default, no variables are forced to be included.

e The parameter estimates at each step of the selection routine will be printed if the
details option is specified; otherwise, only the estimates for the final model are
given in the output.

Forward Variable Selection Output

Summary of Forward Selection
Effect Number Score
Step Entered DF In Chi-Square Pr > ChiSq
1 SMKYRS 1 2 377.3595 <.0001
2 PYRRATE 1 3 15.6466 <.0001
3 AGE 1 4 3.7119 0.0540
4 PYR 1 5 7.7404 0.0054
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -5.3689 1.0063 28.4679 <.0001
WLM20 1 0.0146 0.00999 2.1268 0.1447
AGE 1 0.0454 0.0142 10.1923 0.0014
PYR 1 -0.0813 0.0294 7.6579 0.0057
PYRRATE 1 6.3593 1.7867 12.6678 0.0004
SMKYRS 1 0.0538 0.00726 54.8003 <.0001

462



Backward Variable Selection Output

Step

a b~ ON =

Parameter

Intercept
WLM20

AGE
CHILDREN O
CHILDREN 1
PYR

PYRRATE
SMKQUIT
SMKYRS

Summary of Backward Elimination

Effect
Removed DF

BMI
SMKCUR
CITY
SCHOOL
SMKEVER

—_ A A g

Number
In

11
10
9
8
7

Wald
Chi-Square

0.0028
0.0514
0.2104
1.4896
1.5323

Analysis of Maximum Likelihood Estimates

DF Estimate

1 -5.1721
1 0.0136
1 0.0427
1 0.4847
1 0.4803
1 -0.0788
1 6.1381
1 -0.0149
1 0.0545

Standard
Error

1.0077
0.00996
0.0143
0.3257
0.2877
0.0296
1.7992
0.00885
0.00732

Wald

Chi-Square

26.
.8619
.9301
.2143
. 7866
.0911
.6384
.8264
55.

N = NDND DN o=

3450

4199

Pr > ChiSq

0.9579
0.8207
0.6465
0.2223
0.2158

Pr > ChiSq

.0001
L1724
.0028
.1367
.0951
.0077
.0006
.0927
.0001

AN OO OOOOOoOA
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Note

¢ An advantage of the backward selection method is that you can examine the
estimated effect for the predictor of interest WLM20 at each step of the routine (not
shown). A substantial change in the parameter estimate during the backward
elimination would suggest that the removed variable is an important confounder.

Stepwise Variable Selection Output

Summary of Stepwise Selection
Effect Number Score Wald
Step Entered Removed DF In Chi-Square Chi-Square Pr > ChiSq
1 SMKYRS 1 2 377.3595 . <.0001
2 PYRRATE 1 3 15.6466 . <.0001
3 AGE 1 4 3.7119 . 0.0540
4 PYR 1 5 7.7404 . 0.0054
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -5.3689 1.0063 28.4679 <.0001
WLM20 1 0.0146 0.00999 2.1268 0.1447
AGE 1 0.0454 0.0142 10.1923 0.0014
PYR 1 -0.0813 0.0294 7.6579 0.0057
PYRRATE 1 6.3593 1.7867 12.6678 0.0004
SMKYRS 1 0.0538 0.00726 54.8003 <.0001
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Notes

¢ In this example, the stepwise routine gives the same results as forward selection.
This will not always be the case. It happens here because all of the variables that
entered the model stayed in for the duration of the selection process. In general,
entered variables may be removed at later steps.

e These routines automate the task of selecting variables for inclusion in the model.

e However, they can lead to biologically implausible models that include irrelevant
variables.

e For example, the variable selection routines in the lowa Radon Example produced
final models that include effects for PYR that are negative. Hence, the models
imply that an increase in cigarette pack-years is associated with a decrease in lung
cancer risk; a nonsensical assertion.

e The analyst, not the computer, is responsible for the final model.

e Automated variable selection routines are tools to aid in model building. However,
you should not expect that these routines will produce scientifically valid models.
Care should be taken when developing a final model. Discussions with the
investigator about the research problem and the modeling process are important.

e Furthermore, automated selection routines may not address the issues of
confounding and interaction.
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19.3 Model Building
We will follow the following steps in our construction of the regression model:
Step 1. Descriptive summaries of the data.
Step 2. Univariate analyses.
Step 3. Variable selection.
Step 4. Consideration of interaction.
Step 5. Model Diagnostics

If problems with the model fit are identified in Step 5, then start back at Step 3 and iterate
through until the model diagnostics are satisfactory.

19.3.1 Descriptive Statistics

Summary statistics are provided in Table 2 and Table 3 for the categorical and
continuous variables in the lowa Radon Example.

Table 2. Summary of the categorical variables in the lowa Radon Example.

Variable Levels N Percents
case 1=yes 413 40.2%
0=no 614 59.8%
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Variable Levels N Percents
children 0 = none 83 8.1%
1=o0ne 94 9.2%
2 = two or more 850 82.7%
city 1=yes 780 76.0%
1=no 247 24.0%
school 1 = grade school 89 8.7%
2 = high school 535 52.1%
3 = some college 288 28.0%
4 = college degree 82 8.0%
5 = beyond college 33 3.2%
smkcur 1=yes 702 68.3%
0=no 325 31.7%
smkever 1 =yes 470 45.8%
0=no 557 54.2%
smkex 1=yes 232 22.6%
0=no 795 77.4%

Table 3. Summary of the continuous variables in the lowa Radon Example.

Variable Mean Std. Dev. Min Max

age 67.61 8.67 44.16 84.80
bmi 24.39 4.01 15.45 41.60
pyr 19.83 25.66 0 138.45
pyrrate 0.324 0.421 0 2.56

smkquit 4.60 9.98 0 57.35
smkyrs 20.70 21.59 0 67.00
wim20 10.64 8.89 1.42 91.54
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19.3.2 Univariate Analysis

The goal in model building is to identify a set of variables that offers a satisfactory
explanation of the disease occurrence in the study population.

e Our final model should be scientifically valid; that is, there should be a biologically
plausible explanation for the effect of our chosen variables on the disease.

e \We begin with a pool of variables that will be considered for inclusion in the final
model. Any of the variables in this pool could end up in the model.

e Therefore, it is at the beginning, before any statistical tests are performed, that we
should narrow our pool to only those variables for which an association with the
disease makes sense.

e Another way to frame this problem is to ask, “How will the effect of variable x be
explained if it ends up in the model?”

Once a pool of scientifically relevant variables has been identified, it is often helpful to
further narrow the pool by examining the effect of each variable individually in a
univariate logistic regression model.
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Table 4. Estimated effect for each variable based on separate univariate logistic

regression models.

Variable Estimate SE OR 95% CI p-value
age 0.00586 | 0.00735 1.006 (0.991,1.020) 0.4257
bmi -0.0499 0.0169 0.951 (0.920, 0.983) 0.0032
children’ * * * * 0.0002
children® -0.3213 0.1061 0.725 (0.589, 0.893) 0.0025
city 0.6106 0.1570 1.842 (1.354, 2.505) 0.0001
pyr 0.0640 0.00412 1.066 (1.058, 1.075) <0.0001
pyrrate 3.8535 0.2488 47.16 (28.96, 76.79) <0.0001
school’ * * * * 0.0029
school* -0.2988 0.0761 0.742 (0.639, 0.861) <0.0001
smkcur 2.4768 0.1610 11.90 (8.68, 16.32) <0.0001
smkever 2.5799 0.1676 13.20 (9.50, 18.33 <0.0001
smkex 0.2452 0.1507 1.278 (0.951, 1.717) 0.1038
smkquit -0.0114 0.0067 0.989 (0.976, 1.002) 0.0881
smkyrs 0.0716 0.0041 1.074 (1.066, 1.083) <0.0001
wim20 0.0085 0.0071 1.009 (0.995, 1.023) 0.2295

" Nominal categorical variable used in the model.
* Integer scores used for the variable in the model.
Separate estimates are available for each level of the categorical variables (not shown).
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At this stage, the issue of how to include categorical variables in the regression
analyses is often addressed.

e Recall that children and school are ordinal variables in the data set.

¢ We could include these as categorical (using indicator variables) or continuous
(using a single variable with integer scores for the categories) variables in the
analyses.

e To decide, we can compare the univariate models with both types of variables to
determine if there is a significant difference in their fit to the data.
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SAS Univariate Analysis of CHILDREN

proc logistic data=radon descending;
class children (param=ref);
model case = children;

proc logistic data=radon descending;
model case = children;
run;

_ Likelihood Ratio Test
children —2InL P X2 df p-value
Categorical | 1367.25 3 - - -
Continuous | 1374.95 2 7.7 1 0.0055

There is a significant difference between the categorical and continuous effects for
children (p = 0.0055). Therefore, it would be desirable to use the categorical effect.
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SAS Univariate Analysis of SCHOOL

proc logistic data=radon descending;
class school (param=ref);
model case = school;

proc logistic data=radon descending;
model case = school;
run;

Likelihood Ratio Test
school —2InL P X2 df p-value
Categorical | 1367.12 5 - - -
Continuous | 1368.03 2 0.91 3 0.8230

There is not a significant difference between the categorical and continuous effects for
school (p = 0.8230). Therefore, it would be desirable to use the continuous effect.
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Notes

Univariate analysis is a screening method used to reduce the number of variables
to be considered for the final model.

At this stage, we would be conservative in excluding variables; perhaps removing
variables whose univariate p-value is greater than 0.20 or 0.25. Based on this
criterion, we would exclude age (p = 0.4257) from the analysis. wim20 (p =
0.2295) would also be excluded if it was not the predictor of interest.

It is common practice to use the univariate models to determine the best form of the
categorical variables (e.g. nominal versus integer scores) to include in the analyses.
You may want to look at non-linear effects for the continuous variables as well.
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19.4 Variable Selection

There is no one right way to do variable selection, nor is there one method that is best in
all situations. A custom modeling strategy is often developed based on the biologic
understanding of the disease, the interests of the investigators, and the specific aims of
the study.

Suppose that the following information is available to help guide the model development
for the lowa Radon Example:

e The primary aim of the study is to determine if radon exposure has a significant
effect on lung cancer risk, after controlling for other important covariates.

e A secondary aim is to determine if radon exposure interacts with smoking in its
effect on lung cancer risk.

e Smoking is the leading risk factor for lung cancer. It is important to adequately
control for smoking in the regression analysis.

e Socio-economic status is a potential confounder and should be considered for
inclusion in the model.

e Cases and controls were frequency match within 5-year age strata. It may or may
not be necessary to control for age in the analysis.
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Consequently, our strategy will be to
1. Include wim20 in all multivariate models.

2. Determine the “best” set of smoking variables to add to the model.
3. Add any of the remaining variables that are significant, given that radon and

smoking are in the model.

19.4.1 Smoking

In section 17.2, we saw that the automated variable selection routines led to
unsatisfactory models for smoking. Thus, we need to take a more deliberate approach

with the smoking variables.

The smoking variables can be classified as either a measure of duration, intensity, or

cessation.
Duration Intensity Cessation
pyr pyrrate smkquit
smkyrs smkex
smkever smkcur

Experience with these variables and with logistic models for smoking suggests that no
more than one variable in each of the three categories be included in the same model.
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Thus, we might compare models with different combinations of the smoking duration,
intensity, and cessation variables to find the “best” fit.

wim20

Model Est SE AlC

wim20 0.00852 | 0.00709 | 1386.69
wim20+smkever+smkcur 0.0139 | 0.00928 | 1011.92
wim20+pyr+smkex 0.0148 | 0.00858 | 999.82
wim20+pyr+smkquit 0.0148 | 0.00857 | 999.85
wim20+pyr+pyrrate+smkex 0.0151 | 0.00862 | 1001.61
wim20+pyr+pyrrate+smkquit 0.0151 | 0.00860 | 1000.68
wim20+smkyrs+smkex 0.00894 | 0.00969 | 955.62
wim20+smkyrs+smkquit 0.00935 | 0.00963 | 954.38
wlm20+smkyrs+pyrrate+smkex 0.0115 | 0.00960 | 942.09
wim20+smkyrs+pyrrate+smkquit | 0.0118 | 0.00956 | 941.78

Among the smoking models listed in the previous table, the last one with smkyrs,
pyrrate, and smkquit provides the best fit based on the AIC statistic.
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The abbreviated model results from SAS are given below.

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -2.0927 0.1728 146.6536 <.0001
WLM20 1 0.0118 0.00956 1.5170 0.2181
SMKYRS 1 0.0523 0.00651 64.6556 <.0001
PYRRATE 1 1.2857 0.3563 13.0224 0.0003
SMKQUIT 1 -0.0155 0.00861 3.2272 0.0724
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
WLM20 1.012 0.993 1.031
SMKYRS 1.054 1.040 1.067
PYRRATE 3.617 1.799 7.272
SMKQUIT 0.985 0.968 1.001
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Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

7.1249 8 0.5232

At the 5% level of significance, the Hosmer and Lemeshow test does not indicate a lack
of fit to the data (p = 0.5232). The parameter estimates make biologic sense — positive
associations for smoking duration and intensity; negative for cessation. Therefore, we
will include these smoking variables in our subsequent models.

19.4.2 Socio-Economic Status

The remaining socio-economic variables are bmi, children, city, and school. If there is
no preference as to which ones should be included, then it is perfectly acceptable to use
one of the variable selection routines.

SAS Stepwise Selection of Socio-Economic Factors

proc logistic data=radon descending;
class children (param=ref);
model case = wlm20 smkyrs pyrrate smkquit bmi children city school
/ include=4 selection=stepwise slentry=0.10 slstay=0.10;
run;
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Note

¢ In the univariate analysis, it was decided to treat children as a categorical variable
and school as a continuous variable. Hence, children appears in the class
statement, but school does not.

e The p-value cutoff is set somewhat high at 0.10; thus, the included variables may
not be significant at the 5% level. This is often done to catch any important
confounders that might be marginally non-significant in the model.

e As the output shows, only the children variable is selected. The resulting change
in the radon estimate, 0.0118 to 0.0144, is not appreciable.

Summary of Stepwise Selection

Effect Number Score Wald
Step Entered Removed DF In Chi-Square Chi-Square Pr > ChiSq
1 CHILDREN 2 5 5.8381 . 0.0540

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -2.2323 0.1826 149.3933 <.0001
WLM20 1 0.0144 0.00973 2.1874 0.1391
SMKYRS 1 0.0515 0.00677 57.7907 <.0001
PYRRATE 1 1.3705 0.3714 13.6201 0.0002
SMKQUIT 1 -0.0151 0.00874 2.9687 0.0849
CHILDREN O 1 0.6116 0.3266 3.5063 0.0611
CHILDREN 1 1 0.4911 0.2877 2.9133 0.0879
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19.4.3 Age

Recall that in the univariate analysis, age was found to be non-significant (p = 0.4257).
This is not unusual since cases and controls were frequency match within 5-year age
strata. Frequency matching is not as effective as exact matching, so we may want to

add age to the model to check its significance.

Parameter DF Estimate
Intercept 1 -3.3791
WLM20 1 0.00959
SMKYRS 1 0.0490
PYRRATE 1 1.5315
SMKQUIT 1 -0.0205
CHILDREN O 1 0.5454
CHILDREN 1 1 0.5491
AGE 1 0.0184

Standard

Error

0.7133
0.00960
0.00677

0.3853
0.00886

0.3182

0.2866

0.0104

Analysis of Maximum Likelihood Estimates

Wald
Chi-Square

22.4399
0.9987
52.4123
15.7980
5.3290
2.9374
3.6720
3.1298

Pr > ChiSq

.0001
.3176
.0001
.0001
.0210
.0865
.0553
.0769

O OO O A ANO A

Age is marginally non-significant, which suggests that the frequency matching did not
remove the effects of age. At this point we may want to re-apply the stepwise selection

routine to the socio-economic factors and age.
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SAS Stepwise Selection with the Addition of AGE

proc logistic data=radon descending;
class children (param=ref);
model case = wlm20 smkyrs pyrrate smkquit age bmi children city
/ include=4 selection=stepwise slentry=0.10 slstay=0.10;

school

run;
Summary of Stepwise Selection
Effect Number Score Wald
Step Entered Removed DF In Chi-Square Chi-Square Pr > ChiSq
1 AGE 1 5 4.5153 . 0.0336
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -3.6541 0.7299 25.0607 <.0001
WLM20 1 0.0138 0.00979 1.9910 0.1582
SMKYRS 1 0.0486 0.00695 48.8403 <.0001
PYRRATE 1 1.6094 0.3984 16.3161 <.0001
SMKQUIT 1 -0.0146 0.00889 2.6799 0.1016
AGE 1 0.0225 0.0106 4.4891 0.0341

This time age is added to the model and children is not.

481




We have considered all of the variables of interest and will use as our tentative main
effects model

In{i} = [, + Awlm20 + B,smkyrs + g,pyrrate + S,smkquit + g.age.

1-»

19.5 Interaction

Ideally, you would work with the investigators to come up with a list of interactions that
make biologic sense. These would then be added to the model for significance testing.

A secondary aim of the Radon Study was to determine if radon interacts with smoking in
its effect on lung cancer risk. To address this aim, we would add radon-smoking
interaction terms.

SAS Program for Radon-Smoking Interaction

proc logistic data=radon descending;
model case = wlm20 smkyrs pyrrate smkquit age wlm20*smkyrs wlm20*pyrrate wlm20*smkquit;
run;
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -3.5454 0.7244 23.9531 <.0001
WLM20 1 0.000834 0.0153 0.0030 0.9566
SMKYRS 1 0.0408 0.0119 11.7968 0.0006
PYRRATE 1 1.5048 0.6759 4.9572 0.0260
SMKQUIT 1 0.00510 0.0157 0.1053 0.7456
AGE 1 0.0233 0.0103 5.1498 0.0232
WLM20*SMKYRS 1 0.000779 0.000939 0.6892 0.4064
WLM20*PYRRATE 1 0.00888 0.0554 0.0257 0.8727
WLM20*SMKQUIT 1 -0.00238 0.00140 2.9109 0.0880

The likelihood ratio test for the three interaction terms in the model is summarized in the
following table.

Likelihood Ratio Test
X2 df | p-value

Model —2InL P

(o)

Interaction 921.93 - -
No Interaction 927.07 6 5.14 3 |0.1618

At the 5% level of significance, radon does not interact with smoking in its effect on lung
cancer risk (p = 0.1618).
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19.6 Final Radon Model

Based on the previous results, the proposed lung cancer risk model for our Radon
Example would be

IHLL} = [, + Awlm20 + B,smkyrs + g,pyrrate + g,smkquit + g.age.
-7

There are other valid model building approaches that could lead to different final models.

Note that we are not done. The next step is to perform model diagnostics in order to
answer the gquestions:

e Are there outliers in the data set that need to be excluded from the analysis
(Pearson and Deviance Residual and Delta-Beta Plots)?

e Does the model fit the data (Hosmer and Lemeshow Goodness-of-fit Test)?

e |s there a reasonable degree of agreement between the predicted probabilities and
the disease response variable (Kendall's Tau-a)?

If subjects are excluded or problems are identified with the fit of the model at the
diagnostic stage, then the model building process will need to be repeated.
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19.7 Points of Emphasis

1.

w N

Model building aims to strike a balance between including scientifically plausible
variables and statistically significant variables. We seek the most parsimonious
model that adequately describes the risk of disease in the study population.
Five general steps for developing a final regression model were outlined.

. A variable selection strategy should be developed based on the biology of the

disease, information provided by the investigator, and the specific study aims to be
answered.

Understand when to force variables in the model, when to compare subsets of
models, and when to use variable selection routines.

Be able to apply variable selection routines (forward, backward, and stepwise
selection) in SAS. Know their advantages/disadvantages.
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20.1 Introduction

In a case-control study where subjects are matched on a covariate(s), the matching
should be accounted for in the logistic regression analysis. This is particularly important

in the analysis of 1:n or m:n matched studies.

Endometrial Cancer Example

Consider the study of estrogen usage on the risk of endometrial cancer reported by
Mack et al. (1976). Each of 63 incident endometrial cancer cases was matched to four
controls that were born within one year, had the same marital status, and were still at risk

for the disease. The following variables were collected:

Variable

Description

Levels

case

Endometrial cancer indicator

0 = Control, 1 = Case

set

Matched set index

1,2,...,63

age

Age in years

55-83

gall

Gallbladder disease

0=No, 1=Yes

hyp

Hypertension

0=No, 1=Yes

ob

Obesity

O0=No, 1=Yes

est

Estrogen usage

0=No, 1=Yes
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Variable | Description Levels
dose Dose of estrogen 0=0
1=0.3
2 =0.301-0.624
3=0.625
4 = 0.626-1.249
5=1.25
6 =1.26-2.50
dur Duration of estrogen usage 0-96 (96 = 96+)
non Non-estrogen drug usage 0=No,1=Yes

20.2 Mantel-Haenszel Method for Matching

Previously we used Mantel-Haenszel methods to analyze matched data. Suppose that
the disease odds ratio for estrogen usage is of interest in the Endometrial Cancer
Example. If no other covariates need be controlled for in the analysis, then the Mantel-
Haenszel method may be used.

SAS Mantel-Haenszel Analysis

proc freq data=endometrial;
tables set*est*case / cmh;
run;
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Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
Case-Control Mantel-Haenszel 8.4615 3.4115 20.9870
(0dds Ratio) Logit ** 2.6382 1.6149 4.3099
Cohort Mantel-Haenszel 1.5052 1.2992 1.7439
(Col1 Risk) Logit ** 1.3057 1.1790 1.4460
Cohort Mantel-Haenszel 0.1182 0.0480 0.2909
(Col2 Risk) Logit ** 0.5035 0.3487 0.7268

Breslow-Day Test for
Homogeneity of the 0dds Ratios

Chi-Square 61.9425
DF 57
Pr > ChiSq 0.3042

Total Sample Size = 315

The Mantel-Haenszel odds ratio, which controls for matching, is 8.46 with a 95%
confidence interval of (3.41, 20.99). The odds of endometrial cancer for women using
estrogen is an estimated 8.46 times that for women not using estrogen.
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20.3 Conditional Logistic Regression

A method analogous to that of Mantel-Haenszel is available for estimating the effect of
covariates in logistic regression. To control for matching in the logistic regression
setting, the model parameters are estimated by comparing the covariate values between
the matched cases and controls. In other words, the comparison of subjects is made

conditional on the matching set. This approach to estimating the model parameters is
referred to as conditional logistic regression.

20.3.1 Univariate Model

Conditional logistic regression provides a means of controlling for matching that is
analogous to the Mantel-Haenszel method. We could similarly use conditional logistic
regression to estimate the effect of estrogen usage on the risk of endometrial cancer.

SAS Conditional Logistic Regression

proc logistic descending data=endometrial;
strata set;
model case = est;

run;

Syntax

e PROC GENMOD will not perform conditional logistic regression, so LOGISTIC must
be used instead.

¢ The matching variable (set) must be given in the strata statement.
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The LOGISTIC Procedure

Conditional Analysis

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 35.3460 1 <.0001
Score 31.1556 1 <.0001
Wald 24.2837 1 <.0001
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square
EST 1 2.0738 0.4208 24,2837
Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
EST 7.955 3.487 18.148

Pr > ChiSq

<.0001
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Summary of Results

Variable | Estimate SE Chi-Square | df | p-value
est 2.0738 | 0.4208 24.28 1 |<0.0001

Note

e The parameter estimates are interpreted as in any other logistic regression
analysis.

e PROC LOGISTIC does not provide an estimate for the intercept.
e The regression model is

In{ i }: Lo + Sest

1-r,

where m indexes the matching sets.
e The estimated odds ratio for estrogen use is

(est=1) A1 ~
0" exp{ﬁl} = exp{2.0738} =7.95

(est=0)

OR = 9
g
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e The associated 95% Wald confidence interval is
exp{,BA1 + 1.963e(,81)}
exp{2.0738 +1.96(0.4208)}.
(3.49,18.15)

Note that these estimates are given in the SAS output.

Comparison to Unconditional Logistic Regression

Unconditional logistic regression refers to analyses for which there is no consideration of
matching when estimating the model parameters. For instance, we could use standard
logistic regression routines to fit an unconditional model in our Endometrial Cancer
Example.

SAS Unconditional Logistic Regression

proc logistic descending data=endometrial;
model case = est;
run;
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The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -2.8824 0.3884 55.0738 <.0001
EST 1 2.0636 0.4202 24.1143 <.0001

0Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits
EST 7.874 3.455 17.942

Note

¢ In this case, the unconditional risk estimate (2.0636) is similar to that from the
conditional logistic regression model (2.0738).

o The results will differ if the matching variables are confounders. It is not usually
possible to check this condition in practice, and so conditional logistic regression is
recommended if subjects are matched according to the study design.
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20.3.2 Multivariate Model

The following code shows how to fit a conditional logistic regression model with variables
for estrogen usage, gallbladder disease, and their interaction.

SAS Analysis
proc logistic descending data=endometrial;
strata set;
model case = est gall est*gall;
run;

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
EST 1 2.7001 0.6118 19.4804 <.0001
GALL 1 2.8943 0.8831 10.7430 0.0010
EST*GALL 1 -2.0527 0.9950 4.2564 0.0391
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Results

¢ The interaction term est*gall is significant (p = 0.0391). Thus, estrogen usage and
gallbladder disease interact in their effect on endometrial cancer.

e The logistic regression model is

In( " J: B + Best+ B,gall + p.est xgall

1-r,
where m indexes the matching set.

e Interaction implies that the cancer risk associated with estrogen usage differs
between subjects with and without gallbladder disease.

e Among subjects who have not had gallbladder disease, the odds ratio for estrogen
usage is
g(est=1gall =0)

OR =
g(est=0,gall =0)

= exp{Bl(l— O)} = exp{,@l} =exp{2.70014} =14.88

with a 95% confidence interval of
exp{,@’lil.%se(ﬁl)}
exp{2.70014 11.96(0.61177)} :
(4.49,49.36)
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e Among subjects who have had gallbladder disease, the odds ratio for estrogen
usage is

e~

o - gAj(est =1gall =1)
g

(est=0,gall =1)

= exp{4,(1-0)+ B, (1-1)+ 3, (1-0)}

exp{ B+ 5“3} = exp{2.70014 - 2.05275} = exp{0.64739)
1.91

with a 95% confidence interval of
exp{(ﬁ’l+,[§3)il.96se(ﬁl +B3)}.

The standard error must be obtained from SAS in order to compute this confidence
interval.
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SAS Standard Error Estimates

proc logistic descending data=endometrial;

strata set;

model case = est gall est*gall;

contrast 'esti1' est 1 est*gall 1 / estimate=parm;
run;

Syntax

e The contrast statement in PROC LOGISTIC may be used to obtain standard error
estimates for any linear combination of the model parameters.

¢ The statement begins with a label to appear in the SAS output, followed by the
parameters and the corresponding coefficients involved in the linear combination.

e estimate will display the estimate for the linear combination along with its standard
error.
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The LOGISTIC Procedure

Contrast Rows Estimation and Testing Results

Standard Wald
Contrast Type Row Estimate Error  Alpha Confidence Limits Chi-Square Pr > ChiSq
est1 PARM 1 0.6474 0.7942 0.05 -0.9093 2.2041 0.6644 0.4150

e The estimate for our linear combination is
B+ B, =0.6474
e The standard error is
se(, + B;)=0.7942
e Thus, the 95% confidence interval is
exp{(,ﬁ’l +B,)£1.96se(f,+ ,5’3)}
exp{0.6474+£1.96(0.7942)}
(0.40,9.06)

At the 5% level of significance, the odds ratio is not different from one (p = 0.4150).
Estrogen usage is not a significant risk factor among individuals who have had

gallbladder disease.
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20.4 Points of Emphasis

1. Difference between unconditional and conditional logistic regression.
2. Conditional logistic regression in SAS. Estimation of odds ratios and confidence
intervals.
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21.1 Introduction

Thus far, we have mainly discussed statistical methods for outcome measures that are
assumed to be independent. Specifically, each observed response is unrelated to the
other responses in the data set. There are, however, many study designs that give rise
to correlated or clustered data; i.e. data that can be grouped into clusters such that the
observed responses within clusters are more alike than the responses between clusters.
The following are examples of clustered data:

o A study of water-borne diseases in several African villages. We would expect a
positive correlation among the disease statuses of subjects using the same well.

e A study of high cholesterol in a community. We would expect correlation among
the cholesterol levels of subjects from the same family.

e A study of the flu in eighth grade classrooms across lowa. We would expect
correlation among the students from the same classroom.

e QOutcome variables measured on twins or husbands and wives are typically treated

as correlated data. In general, studies involving matching give rise to correlated
data.

Longitudinal data is a common type of clustered data in which subjects are repeatedly
measured at different points in time. For example,

e A cohort of ninth graders was identified and followed through high school. Subjects
were interviewed yearly to monitor marijuana usage and to collect data on potential
risk factors. We would expect correlation in the reported usage at grades 9, 10, 11,
and 12 for a given subject.
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Residential Fires Example

Consider the longitudinal study, reported by Keane et al. (1996), of post-traumatic stress
disorder among survivors of residential fires in the Philadelphia area. Each of 316
subjects was interviewed at month 3, 6, and 12 after surviving a residential fire. The

following variables were collected:

Table 1. Description of variables in the Residential Fire Example.

Variable Description Levels
ptsd Indicator for post-traumatic stress disorder 0=No, 1=Yes
subijid Subject study identifier
time Index for the interview time 1 = 3 months

2 = 6 months

3 =12 months
control Perceived control over several areas of life 1.83-4.00
problems | Problems reported in several areas of life 1.00-9.75
sevent Stressful events reported since last interview 0-5
cohes Family cohesion 0-9

The data for the first few subjects are displayed in the following table. Note that
e Data were collected at three time points (time: 1 = 3 months, 2 = 6 months, 3 =12

months).

e The variables ptsd, control, problems, and sevent were measured at each of the

time points and, thus, may vary over time.
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e The variable cohes was only measured at study enroliment (baseline) and does not
change over time.

e We are interested in modeling the risk of post-traumatic stress disorder as a
function of time, ptsd, control, problems, sevent, and cohes.

Table 2. Excerpt from the data set in the Residential Fire Example.

subjid | ptsd | control | problems | sevent | cohes | time
15 0 3.222 | 5.625 1 8 1
15 0 3.167 | 5.375 0 8 2
15 0 3.278 3.75 1 8 3
18 1 2.556 9.25 0 8 1
18 0 3.444 | 4.375 0 8 2
18 0 3.333 | 2.375 0 8 3
19 1 2.722 7.75 1 7 1
19 1 2.778 7.75 1 7 2
19 0 2.778 7.5 1 7 3
571 0 3.556 3 0 7 1
571 0 2.944 | 1.875 0 7 2
571 0 3.500 2.75 0 7 3
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21.1.1 Standard Logistic Regression

Suppose that we were to ignore the longitudinal nature of the data and use standard
logistic regression to model the risk of post-traumatic stress disorder.

data ptsdmod;
set bios241.ptsd;

timel = (time = 1);

time2 = (time = 2);

time3 = (time = 3);
Syntax

proc genmod data=ptsdmod descending;
model ptsd = timel1 time2 control problems sevent cohes /
dist=binomial;

proc genmod data=ptsdmod descending;
class time;
model ptsd = time control problems sevent cohes /
dist=binomial;

e The two calls to GENMOD vyield the same results. They are given here to illustrate
the use of the class statement.

o GENMOD will automatically create indicator variables for the variables given in the
class statement. The indicator variable for the last category is excluded from the
model. Thus, the time = 3 category will be excluded in this example.

e The class statement in PROC LOGISTIC works differently and will result in a
different set of parameter estimates.
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The GENMOD Procedure

Response Profile

Ordered Total
Value ptsd Frequency

1 1 294
2 0 654

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 1.4246 0.8287 -0.1996 3.0488 2.96 0.0856
time 1 1 0.3566 0.2055 -0.0461 0.7593 3.01 0.0827
time 2 1 0.2499 0.2041 -0.1501 0.6499 1.50 0.2208
time 3 0 0.0000 0.0000 0.0000 0.0000 . .
control 1 -0.9594 0.2047 -1.3605 -0.5583 21.98 <.0001
problems 1 0.2956 0.0505 0.1967 0.3945 34.31 <.0001
sevent 1 0.3557 0.0804 0.1982 0.5132 19.59 <.0001
cohes 1 -0.1782 0.0373 -0.2513 -0.1052 22.86 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

The problem with a standard logistic regression approach is that it assumes each of the
316 x 3 = 948 observed responses for the ptsd variable are independent. This is not
appropriate since we would expect the measured responses for a given subject to be
correlated over time.
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21.2 Correlation Structures

The key to analyzing clustered data is to characterize the correlation structure in the
measured response variable. We will assume the following:

1. The data can be arranged into clusters such that there is correlation among the
observed responses within clusters, but not between clusters. In the Residential
Fire Example, the clusters are defined by the individual subjects; i.e. the variable
subjid. We assume that observations from a given subject are correlated over
time, but that they are not correlated with the observations from other subjects.

2. The correlation structure is the same within each cluster. The correlations between
each of month 3 and 6, month 3 and 12, and month 6 and 12 are the same from
subject-to-subject.

In general, we can summarize all the pairwise correlations within a cluster using a
correlation matrix. For each subject in our example, we would have the following 3x3
correlation matrix:

1 py P
R=py 1 py
Pu P 1
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The correlation terms correspond to the following:

Notation Correlation between observations at...
1 The same month
Pir = P Months 3 (time 1) and 6 (time 2)

Pia = Pa; Months 3 (time 1) and 12 (time 3)
Poz = Pay Months 6 (time 2) and 12 (time 3)

Note that the correlation matrix is symmetric. Depending on the study design, we may
decide to make various assumptions about the structure of the correlation matrix. There
are many different types of correlation structures; we will discuss four of the more
popular choices.
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21.2.1 Independence Correlation Structure

An independence correlation assumption implies that there is no correlation within
clusters. This would led to a matrix with the form,

A

Il
© O
© » O
R O O

which is the usual assumption that all observations are independent. Useful when
o All observations truly are independent.

507



21.2.2 Exchangeable Correlation Structure

An exchangeable or compound symmetric structure implies a constant correlation within
clusters. That is, any given pair of observations is no more or less correlated than any
other pair. In terms of the example, this would imply that the correlations are equal
between all time points.

0

[l
AT ST T
N X
S TR

This is a rather strong assumption for longitudinal data. It essentially implies that the
correlation between observations taken at adjacent time points is the same as those
taken 2, 3, or more time points apart. Useful when

e There is no distinct ordering within clusters.
e Observations can be considered a random sample within a cluster.
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21.2.3 Auto-Regressive Correlation Structure

The auto-regressive structure allows the correlation to vary as a function of the
“distance” between the observations within a cluster. This is attractive for longitudinal
data since it allows for the correlation to decrease as observations are taken further
apart in time. For the Residential Fire Example,

1 pl p2
R=|p" 1 p|.
p* o1

In general, the correlation between the observation in the i row and | column is p“‘”.
Useful when

e There is a natural ordering to the observations within clusters.
e Assuming a constant correlation between adjacent observations.

e The correlation strictly decreases as a function of the “distance” between
observations.
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21.2.4 Unstructured Correlation Structure

An unstructured correlation assumption places no restrictions on the correlation matrix.

In essence, the correlation is allowed to vary between all observations in the cluster.
The correlation matrix has the form

1 p, P
R=1py 1 py
Pu Pp 1

Useful when

e There is a natural ordering to the observations within clusters.
¢ Do not want to assume a constant correlation between adjacent observations.

e Do not want to specify a functional form that relates the correlation to the “distance”
between observations.

Notes

Regardless of the structure, the correlation matrix and parameters are assumed to be
the same for each cluster.
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21.3 Statistical Models for Clustered Data

There are many different models that may be used to account for clustered data when
the response is dichotomous. Among the more popular choices are

e Conditional Logistic Regression (PROC LOGISTIC)

e Logistic Regression using the method of Generalized Estimating Equations (PROC
GEMMOD)

e Mixed-Effects Logistic Regression (PROC NLMIXED and GLIMMIX macro)
e Bayesian Hierarchical Logistic Regression (WinBUGS)

We will discuss the Generalized Estimating Equations approach for fitting logistic
regression models in the presence of clustered data.

21.3.1 Generalized Estimating Equations

Generalized Estimating Equations (GEE) is a general algorithm that may be used to
estimate regression parameters and standard errors for clustered data.

¢ Maximum likelihood may also be used for clustered data and, when feasible, is the
preferable method. However, maximum likelihood is difficult when the response
variable is not normally distributed, as in the case of a binary outcome.

e Fitting a logistic regression model to clustered data is most easily accomplished
using the method of GEE.
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SAS Logistic Regression using GEE (Unstructured)

proc genmod data=ptsdmod descending;
class subjid time;
model ptsd = time control problems sevent cohes / dist=binomial;
repeated subject=subjid / within=time type=un modelse corrw;

run;

Syntax

Clustering is indicated with the repeated statement. When this statement is given,
GENMOD will use GEE to fit the model.

The variable that defines the clusters (subjid) must be specified in the class
statement and as the argument to the subject option.

within is optional and may be used to enumerate the observations within the
clusters. This is typically used when there is a natural ordering to the observations.

The correlation structure is specified with the type options. Among the options are
the independence (ind), exchangeable (exch), auto-regressive (ar), and
unstructured (un) correlation structures.

By default, GENMOD generates robust estimates of the standard errors, that are
valid even if the wrong correlation structure is specified. Standard errors that are
based on the specified correlation structure may be obtained with the modelse
option.

corrw requests that the estimated correlation matrix be printed.
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The GENMOD Procedure

GEE Model Information

Correlation Structure
Within-Subject Effect

Subject Effect
Number of Clusters

Correlation Matrix Dimension

Maximum Cluster Size
Minimum Cluster Size

Working Correlation Matrix

Coli
Row1 1.0000
Row2 0.1891
Row3 0.2538

Col2

0.1891
1.0000
0.3878

0.2538
0.3878
1.0000

Unstructured
time (3 levels)
subjid (316 levels)

Col3

316
3
3
3

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Parameter Estimate
Intercept 1.6078
time 1 0.4164
time 2 0.2717
time 3 0.0000
control -0.9071
problems 0.2559
sevent 0.2740
cohes -0.1911

O OO O oooo

Standard

Error

.8689
.1781
.1664
.0000
.2159
.0501
.0867
.0455

95% Confidence
Limits

.0952
.0673
.0544
.0000
.3302
.1577
.1041
.2803

O OO O O0OO0OOo0O W

.3108
.7656
.5978
.0000
.4840
.3540
.4439
.1018

Z Pr > |Z|
1.85 0.0643
2.34 0.0194
1.63 0.1024

-4.20  <.0001
5.11  <.0001
3.16  0.0016
-4.20  <.0001
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Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates
Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept 1.6078 0.8502 -0.0585 3.2741 1.89 0.0586
time 1 0.4164 0.1815 0.0607 0.7721 2.29 0.0218
time 2 0.2717 0.1595 -0.0409 0.5844 1.70 0.0884
time 3 0.0000 0.0000 0.0000 0.0000 . .
control -0.9071 0.2082 -1.3150 -0.4991 -4.36 <.0001
problems 0.2559 0.0520 0.1540 0.3577 4.92 <.0001
sevent 0.2740 0.0777 0.1217 0.4263 3.53 0.0004
cohes -0.1911 0.0454 -0.2801 -0.1020 -4.21 <.0001
Scale 1.0000 . . . . .

Summary of Results

Table 3. Comparison of standard and GEE parameter estimates (standard errors).

- GEE (Unstructured Correlation)

Term Standard Logistic Robust Model-Based

time=1 0.3566 (0.2055) 0.4164 (0.1781) 0.4164 (0.1815)
time=2 0.2499 (0.2041) 0.2717 (0.1664) 0.2717 (0.1595)
control -0.9594 (0.2047) -0.9071 (0.2159) -0.9071 (0.2082)
problems 0.2956 (0.0505) 0.2559 (0.0501) 0.2559 (0.0520)
sevent 0.3557 (0.0804) 0.2740 (0.0867) 0.2740 (0.0777)
cohes -0.1782 (0.0373) -0.1911 (0.0455) -0.1911 (0.0454)
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In this example, the standard logistic regression model is similar to the model
obtained from GEE. In general, though, methods that ignore important clustering
tend to under-estimate the standard errors.

The GENMOD results labeled “Empirical Standard Error Estimates” are referred to
as robust estimates. These standard errors are valid even if the specified
correlation structure is not appropriate for the given data set.

The GENMOD results labeled “Model-Based Standard Error Estimates” are based
directly on the specified correlation structure. If the correlation structure is correct,
then the model-based standard errors will be smaller than the robust estimates.

The estimated correlations between time points are given in the working correlation
matrix. They are

Time Points Estimated Correlation
1and 2 0.1861
1 and 3 0.2500
2 and 3 0.3819
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SAS Logistic Regression using GEE (Auto-Regressive)

proc genmod data=ptsdmod descending;
class subjid time;
model ptsd = time control problems sevent cohes / dist=binomial;
repeated subject=subjid / within=time type=ar corrw modelse;
run;

The GENMOD Procedure

Working Correlation Matrix

Col1 Col2 Col3
Row1 1.0000 0.2840 0.0807
Row2 0.2840 1.0000 0.2840
Row3 0.0807 0.2840 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept 1.5982 0.8618 -0.0909 3.2872 1.85 0.0637
time 1 0.4103 0.1797 0.0581 0.7625 2.28 0.0224
time 2 0.2697 0.1666 -0.0567 0.5962 1.62 0.1054
time 3 0.0000 0.0000 0.0000 0.0000 . .

control -0.9200 0.2167 -1.3447 -0.4954 -4.25 <.0001
problems 0.2580 0.0489 0.1621 0.3538 5.27 <.0001
sevent 0.2780 0.0861 0.1092  0.4468 3.23 0.0013
cohes -0.1848 0.0455 -0.2739 -0.0957 -4.06 <.0001
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Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits

Intercept 1.5982 0.8579 -0.0832 3.2795 1
time 1 0.4103 0.1979 0.0224 0.7983 2.
time 2 0.2697 0.1719 -0.0672 0.6067 1
time 3 0.0000 0.0000 0.0000 0.0000 .
control -0.9200 0.2111 -1.3338 -0.5062 -4,
problems 0.2580 0.0523 0.1555 0.3605 4.
sevent 0.2780 0.0784 0.1244 0.4316 3.
cohes -0.1848 0.0438 -0.2706 -0.0990 -4,
Scale 1.0000

z

.86

07

.57

36
93
55
22

Pr > |Z|

0.0625
.0382
.1167

o o

.0001
.0001
.0004
.0001

AN O A A
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SAS Logistic Regression using GEE (Exchangeable)

proc genmod data=ptsdmod descending;
class subjid time;
model ptsd = time control problems sevent cohes / dist=binomial;
repeated subject=subjid / within=time type=exch corrw modelse;
run;

The GENMOD Procedure

Working Correlation Matrix

Col1 Col2 Col3
Row1 1.0000 0.2727 0.2727
Row2 0.2727 1.0000 0.2727
Row3 0.2727 0.2727 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence

Parameter  Estimate Error Limits Z Pr > |Z]
Intercept 1.7927 0.8619 0.1033  3.4820 2.08 0.0375
time 1 0.4100 0.1782 0.0607 0.7593 2.30 0.0214
time 2 0.2699 0.1662 -0.0558 0.5955 1.62 0.1043
time 3 0.0000 0.0000 0.0000 0.0000 . .

control -0.9601 0.2147 -1.3809 -0.5393 -4.47 <.0001
problems 0.2497 0.0497 0.1523 0.3471 5.02 <.0001
sevent 0.2810 0.0864 0.1116 0.4503 3.25 0.0011
cohes -0.1871 0.0451 -0.2755 -0.0987 -4.15 <.0001
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Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits

Intercept 1.7927 0.8622 0.1028 3.4825 2.
time 1 0.4100 0.1802 0.0568 0.7633 2.
time 2 0.2699 0.1732 -0.0696 0.6093 1
time 3 0.0000 0.0000 0.0000 0.0000 .
control -0.9601 0.2115 -1.3747 -0.5455 -4,
problems 0.2497 0.0521 0.1475 0.3519 4.
sevent 0.2810 0.0787 0.1268 0.4352 3.
cohes -0.1871 0.0454 -0.2762 -0.0981 -4.
Scale 1.0000

z

08
28

.56

54
79
57
12

Pr > |Z|

0.0376
.0229
.1192

o o

.0001
.0001
.0004
.0001

AN O A A
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SAS Logistic Regression using GEE (Independence)

proc genmod data=ptsdmod descending;
class subjid time;
model ptsd = time control problems sevent cohes / dist=binomial;
repeated subject=subjid / within=time type=ind corrw modelse;
run;

The GENMOD Procedure

Working Correlation Matrix

Col1 Col2 Col3
Row1 1.0000 0.0000 0.0000
Row2 0.0000 1.0000 0.0000
Row3 0.0000 0.0000 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|
Intercept 1.4246 0.9022 -0.3438 3.1929 1.58 0.1143
time 1 0.3566 0.1838 -0.0037 0.7169 1.94 0.0524
time 2 0.2499 0.1720 -0.0872 0.5870 1.45 0.1463
time 3 0.0000 0.0000 0.0000 0.0000 . .

control -0.9594 0.2270 -1.4044 -0.5144 -4.23 <.0001
problems 0.2956 0.0515 0.1947 0.3964 5.74  <.0001
sevent 0.3557 0.0900 0.1793 0.5321 3.95 <.0001
cohes -0.1782 0.0466 -0.2696 -0.0868 -3.82 0.0001
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Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates
Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept 1.4246 0.8287 -0.1996 3.0488 1.72 0.0856
time 1 0.3566 0.2055 -0.0461 0.7593 1.74 0.0827
time 2 0.2499 0.2041 -0.1501 0.6499 1.22 0.2208
time 3 0.0000 0.0000 0.0000 0.0000 . .
control -0.9594 0.2047 -1.3605 -0.5583 -4.69 <.0001
problems 0.2956 0.0505 0.1967 0.3945 5.86 <.0001
sevent 0.3557 0.0804 0.1982 0.5132 4.43 <.0001
cohes -0.1782 0.0373 -0.2513 -0.1052 -4.78 <.0001
Scale 1.0000 . . .
Notes

¢ In the presence of clustering, specification of the independence correlation structure
seems like a poor choice. Indeed, it is the least desirable option for describing
within-cluster correlation. However, when working with large or complex data sets,
it is not always possible to obtain GEE estimates for all of the correlation structures.
In practice, the independence structure may be the only structure for which GEE
estimates can be obtained.
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e GEE Advantages:

o The algorithm is easily accessible in PROC GENMOD and may be used with
any of the regression models available in the procedure (e.g. linear, logistic,
and Poisson).

o Estimates are valid even if the wrong correlation structure is specified.
e GEE Disadvantages
o The parameter estimates are population-averaged rather than subject-specific.

o Does not provide standard error estimates for the parameters in the correlation
matrix.

o The auto-regressive structure in GENMOD assumes that longitudinal
observations are made at fixed, equally-spaced time points.

e The disadvantages of GEE could be overcome by using a mixed-effects model.
Mixed models, however, are sensitive to the chosen correlation structure. Mixed
logistic regression parameters are also more difficult to estimate analytically.
Available software routines are not as reliable as those for GEE.
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21.4 Points of Emphasis
1. Why correlation or clustering should be accounted for in the regression analysis.

2. Know the form of the four correlation structures that were discussed and how to
select among them based on the study design.

3. Using GEE in PROC GENMOD.
4. The difference between robust and model-based standard error estimates.
5. Advantages and disadvantages of GEE.
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22.1 Diagnostic Tests

We will discuss “diagnostic tests” in a broad sense that includes any type of information
that might be used to determine a health outcome of interest. This includes medical
screening tests, such as mammography, PSA tests, and home pregnancy tests. It also

Includes the study of associations between a dichotomous risk factors and a health
outcome.

Goal

The purpose of a diagnostic test is to provide a means of classifying individuals as
diseased or non-diseased.

e We will discuss diagnostic tests as being either positive or negative.

¢ Individuals are classified as diseased if they have a positive test result. This does
not necessarily mean that they are truly diseased.

e Statistics are needed to measure the ability of a given diagnostic test to correctly
determine an individual’s disease status.
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Notation

2x2 tables will be used to summarize the relationship between the results of a diagnostic
test and the true disease status.

Diseased
Test Yes (D+) No (D-)
Positive (T+) True Positive False Positive
Negative (T-) False Negative True Negative

Thyroid Cancer Example

Allelotype studies suggest that chromosome 1qg and 1p are sites of frequent gains and
losses, respectively, in thyroid cancers. The purpose of this study was to assess the role
of cancer markers ECM1 (located on 1921) and RIZ1 (located on 1p36) in thyroid
carcinogenesis and their utility in distinguishing malignant from benign thyroid
neoplasms.

Fifty (50) patients with thyroid neoplasms were enrolled in a cross-sectional study of
cancer markers ECM1 and RIZ1. Neoplasms were identified as benign (19) or malignant
(31) based on surgical resection. Observed gene expression levels are summarized in
the plots below by marker and neoplasm type.
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Goal: Assess the performance of each marker as a screening tool for distinguishing
malignant from benign neoplasms. Determine the “best” threshold values (t) of ECM1
and RIZ1 for predicting neoplasm type.

Neoplasm
ECM1 Malignant (D+) | Benign (D-) Totals
> te (T+) a b a+b
<te (T-) C d c+d
Totals 31 19 50
Neoplasm
Riz1 Malignant (D+) | Benign (D-) Totals
<tg (TH) a b a+b
> tr (T-) C d c+d
Totals 31 19 50
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22.1.1 Performance Measures

Naturally, there is interest in measuring the agreement between the result from a
diagnostic test and the true disease status. The following are common statistics used in
diagnostic testing:

1. Sensitivity = Pr[T+|D+]

2. Specificity = Pr[T-|D-]

3. Predictive Value Positive = Pr[D+|T+]
4. Predictive Value Negative = Pr[D-|T-]

Larger values are indicative of better performance. In the Thyroid example, the
sensitivity and specificity are functions of the threshold value

sensitivity =Pr[T+|D +]=a/31
specificity =Pr[T—|D-]=d/19
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22.2 Receiver Operating Characteristics (ROC) Analysis

22.2.1 Introduction

The sensitivity and specificity of a diagnostic test often depend on more than just the
quality of the test; they can also depend on how one defines a “positive test”.

In the previous section, we noted that sensitivity and specificity depend on gene
expression threshold values. Consider a threshold value of 2.0 for ECM1 expression.

Neoplasm
ECM1 Malignant (D+) | Benign (D-) Totals
> 2.0 (T+) 23 4 27
<2.0(T-) 8 15 23
Totals 31 19 50

sensitivity =Pr|[T+|D +] =23/31=74.2%
specificity =Pr[T—|D -] =15/19 =78.9%
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Note that sensitivity and specificity are a function of the choice of cut-point to use for
ECML1 expression.

T ECM1 T+ Sensitivity Specificity
<05 > 0.5 96.8% 5.3%
<1.0 >1.0 90.3% 21.1%
<20 >2.0 74.2% 78.9%
<3.0 > 3.0 51.6% 84.2%
<4.0 > 4.0 41.9% 94.7%
<5.0 >5.0 38.7% 100%
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22.2.2 ROC Curves

The ROC curve is simply the true positive rate (sensitivity) plotted against the false
positive rate (1 - specificity).

1.0

0.8

0.6

True Positive Rate (Sensitivity)
0.4

25.2

0.2
|

T T T T T T
0.0 0.2 04 0.6 0.8 1.0

False Positive Rate (1 - Specificity)

Figure 2. ROC curve for ECML1 as a predictor of neoplasm type.
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Notes

1. The ROC curve shows the tradeoff between sensitivity and specificity (any increase
In sensitivity will be accompanied by a decrease in specificity).

2. The closer the curve follows the left-hand border and then the top border of the
ROC space, the better the test.

3. The closer the curve comes to the 45-degree diagonal of the ROC space, the worse
the test performs.

22.2.3 Area Under the ROC Curve

General Comments

e A good diagnostic test would produce an ROC curve that climbs rapidly towards
upper left hand corner of the graph. This means that the true positive rate is high
and the false positive rate is low.

¢ An uninformative diagnostic test would produce an ROC curve that follows a
diagonal path from the lower left hand corner to the upper right hand corner. This
means that every improvement in the false positive rate is matched by a
corresponding decline in the true positive rate.

e A common measure of how quickly the ROC curve rises to the upper left hand
corner is the area under the curve. The closer the area is to 1.0, the better the test
IS, and the closer the area is to 0.5, the worse the test is.
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Estimation
The Mann-Whitney U statistic provides an estimate of the area under the ROC curve:

Np, Np_

U= ZZS(Xm,i’XD—,j )

i=1 j=1
where
1 ifXp, > X5
S(Xp, Xp_)=40.5 if Xp, =Xp_.
0 ifXy, <Xp_

The area is then estimated as

Example

For the comparison of ECM1 expression between malignant and benign patients, the
Mann-Whitney U statistic is 459. Since there are 31 malignant and 19 benign patients,
AUC =459/(31x19)=0.779 =77.9%.

534



Interpretation
e 1.0 =Ideal Test: 100% sensitivity and 100% specificity.
e 0.50 = Chance Results: 50% sensitivity and 50% specificity.
e General Guideline:
o 0.97 to 1.00 = excellent
o 0.92 to 0.97 = very good
o 0.751t00.92 = good
o 0.50t0 0.75 = fair.

o If you take a random healthy patient with a score of x, and a random diseased
patient with a score of x,,, then the area under the curve is an estimate of
Pr[xD+ > xD_] (assuming that large values of the test are indicative of disease).

Reference

Hanley, JA and McNeil, BJ. (1982) The Meaning and Use of the Area under a Receiver
Operating Characteristic (ROC) Curve. Radiology 143(1):29-36.

DelLong, ER, DeLong, DM, and Clarke-Pearson, DL. (1988) Comparing the Areas under
Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric
Approach. Biometrics 44(3):837-845.
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22.3 Logistic Regression ¢ Statistic

Recall that the following logistic regression model was fit in Section 18 to the Radon
data:

In{1 7[()8()} = [, + page + p,school + g,smkyrs + g,smkquit + Swlim20.
- 7T

Somer’s D, Goodman-Kruskal Gamma, and Kendall's Tau-a statistics were introduced
as measures of the predictive ability of the logistic regression model. In this section we
will discuss another, related measure of predictive ability — the c statistic.

Predicted Probabilities

The c statistic is computed as the area under the ROC curve using the predicted
probabilities 7 from the logistic regression model to predict disease status.

Subject 1 2 3 1024
Case 1 0 0 1
V1 0.824 0.056 0.090 0.456
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Given a cut-point for the predicted probabilities, subjects can be cross-classified by
disease status. For example,

Predicted Lung Cancer Totals
Probability Yes (D+) No (D-)

7>0.20 (T+) 352 151 503
7 <0.20 (T-) 61 463 524
Totals 413 614 1027

sensitivity =Pr[T+|D +] =352/413 = 85.2%
specificity = Pr[T—| D -] = 463/614 = 75.4%

Definition

In logistic regression, the c statistic is the area under the ROC curve constructed using
the predicted probabilities to predict the observed values of the response variable.

As usual, the area under the ROC curve provides a measure of the likelihood of a correct
classification from the diagnostic test (predicted probabilities). In the radon example, the
area under the ROC curve, shown in Figure 3, is 0.85. Thus, the predicted probabilities
from the logistic regression model are a “good” indicator of disease status.
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Figure 3. Lung cancer ROC curve for the predicted probability of lung cancer.
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SAS Program for the ¢ Statistic

proc logistic descending data=irlcs;
model case = age school smkyrs smkquit wlm20 / outroc=roc;

proc print data=roc;

Syntax

e The c statistics is included in the standard output from the logistic regression
analysis.

Association of Predicted Probabilities and Observed Responses

Percent Concordant 84.9 Somers' D 0.701
Percent Discordant 14.8 Gamma 0.704
Percent Tied 0.4 Tau-a 0.337
Pairs 253582 c 0.851

¢ The sensitivity and specificity values for each predicted probability needed to
construct the ROC curve can be saved to a SAS dataset with the outroc option. In
this example, the values are saved to “roc” and printed. The first page from the
SAS output is given below. SAS assigns the labels of PROB , SENSIT , and
_1IMSPEC _to the predicted probability, sensitivity, and 1 — specificity in the
dataset.
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Obs _PROB_  _POS_  _NEG_  _FALPOS_  _FALNEG_  _SENSIT_  _1MSPEC_

1 0.95661 1 614 0 412 0.00242 0.000000
2 0.95128 2 614 0 411 0.00484 0.000000
3 0.94289 3 614 0 410 0.00726 0.000000
4 0.94122 4 614 0 409 0.00969 0.000000
5 0.94052 5 614 0 408 0.01211 0.000000
6 0.93357 6 614 0 407 0.01453 0.000000
7 0.93326 7 614 0 406 0.01695 0.000000
8 0.93277 8 614 0 405 0.01937 0.000000
9 0.93144 9 614 0 404 0.02179 0.000000
10 0.92749 9 613 1 404 0.02179 0.001629
11 0.92685 10 613 1 403 0.02421 0.001629
12 0.92383 11 613 1 402 0.02663 0.001629
13 0.92132 12 613 1 401 0.02906 0.001629
14 0.92019 13 612 2 400 0.03148 0.003257
15 0.91859 13 611 3 400 0.03148 0.004886
16 0.91776 14 611 3 399 0.03390 0.004886
17 0.91675 15 611 3 398 0.03632 0.004886
18 0.91518 17 611 3 396 0.04116 0.004886
19 0.91503 19 611 3 394 0.04600 0.004886
20 0.91462 20 611 3 393 0.04843 0.004886
21 0.91420 21 611 3 392 0.05085 0.004886
22 0.91242 21 610 4 392 0.05085 0.006515
23 0.91097 22 610 4 391 0.05327 0.006515
24 0.90997 23 610 4 390 0.05569 0.006515
25 0.90909 24 610 4 389 0.05811 0.006515
26 0.90898 25 610 4 388 0.06053 0.006515
27 0.90782 25 609 5 388 0.06053 0.008143
28 0.90186 26 609 5 387 0.06295 0.008143
29 0.90119 27 609 5 386 0.06538 0.008143
30 0.90070 28 609 5 385 0.06780 0.008143
31 0.90055 29 609 5 384 0.07022 0.008143
32 0.89978 29 608 6 384 0.07022 0.009772
33 0.89934 29 607 7 384 0.07022 0.011401
34 0.89836 30 607 7 383 0.07264 0.011401
35 0.89789 31 607 7 382 0.07506 0.011401

540



22.4 Points of Emphasis
1. Understand the definitions for sensitivity, specificity, PV+, and PV-.
2. Interpretation of the ROC curve and c-statistic.
3. Use SAS to obtain the values needed to construct an ROC curve.
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