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1.1 Introduction 

1.1.1 Role of Statistics in Biomedical Studies 
In this class, our focus will be on statistical methods for the analysis of categorical data.  
Examples from epidemiologic studies will be used to illustrate many of the methods. 

• Summarize and describe data. 
• Use data from samples of subjects to make inference about larger populations. 
• Estimate associations between disease outcomes and select risk factors. 
• Quantify the level of uncertainty in sample estimates. 
• Control for the interplay between multiple factors in characterizing the risk of 

disease. 
• Provide evidence (not proof) to support or refute causality. 
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1.1.2 Principles of Causality 
Sir Bradford Hill outlined seven criteria by which to evaluate the strength of evidence in 
favor of causation.  Six of his most relevant criteria are given below. 
 

1. Strength of association – clinical significance vs. statistical significance 
2. Time sequencing of exposure and disease onset – ecologic study vs. prospective 

cohort study 
3. Biologic plausibility – collaboration with subject-matter experts 
4. Consistency with other investigations – literature review 
5. Dose-response relationship – variation in exposures 
6. Lack of more compelling explanations - consideration of bias, confounding, and 

interaction 
 

1.1.3 Epidemiology 
The study of the distribution and determinants of disease frequency in human 
populations. 
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Steps for Conducting an Epidemiologic Study 
1. Identify the disease and risk factors of interest 
2. Specify the questions (hypotheses) to be addressed 
3. Design the study 

a. Select an appropriate design 
• Descriptive: Ecological 
• Observational: Case-Control, Cohort, Cross-Sectional 
• Experimental: Clinical and Intervention Trials 

b. Specify the data to be collected 
• Inclusion/Exclusion Criteria 
• Variables to be measured 

c. Determine the appropriate statistical methods for describing and analyzing the 
data 

• Number of Subjects 
4. Carry out the study and collect the data 
5. Analyze the data 
6. Assess the validity of any observed statistical results with respect to chance, bias, 

and confounding 
7. Draw conclusions about the subject population 
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Factors to Consider when Selecting a Statistical Method 
• Scientific questions to be addressed 
• Study design 
• Type of data to be analyzed (nominal, ordinal, discrete, continuous) 

 

1.2 Disease Prevalence 

1.2.1 Definition 

• The number of individuals in a population that are diseased at a given point in time. 
• Often expressed as a rate or percentage 

=
number of diseased individuals

total number at risk
p . 

• Denominator includes subjects appearing in the numerator. 
• Value lies between zero and one. 
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1.2.2 Example: Undergraduate Binge Drinking at UI 
A cross-sectional study of 1,468 University of Iowa students was conducted in order to 
assess the nature of alcohol consumption on campus. 
 
Analysis Goals: 

• Estimate the prevalence of binge drinking at Iowa. 
• Test for an association between binge drinking and fraternity/sorority (Greek) 

membership. 
 

Table 1. Summary of binge drinking study data. 
Binge 
Drinking 

Greek Total Yes No 
Yes 398 624 1022 
No 83 363 446 
Total 481 987 1468 
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Estimated Prevalence 
• Prevalence is estimated with the usual binomial proportion: 

1022/1468 69.7%p = =  

95% Confidence Interval 
• If the sample size is sufficiently large, say − ≥(1 ) 5np p , then Normal theory 

methods can be used to construct the confidence interval: 
 

( )
0.975

(1 ) (0.696)(0.304)0.696 1.96
1468

67.3%,72.0%

p pp z
n
−

± = ±
 

 
• If the Normal theory method is not appropriate, then an exact confidence interval 

must be constructed directly using the binomial distribution. 
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SAS Program and Output 
 
data uialcohol; 
   input Binge $ Greek $ N; 
   cards; 
   Yes Yes 398 
   Yes No  624 
   No  Yes  83 
   No  No  363 
; 
 
proc freq order=data data=uialcohol; 
   weight N; 
   table Binge / binomial; 
 
run; 
 

data uialcohol; 
   input ID Binge $ Greek $; 
   cards; 
   1    Yes Yes 
      
   398  Yes Yes 
   399  Yes No 
      
   1022 Yes No 
   1023 No  Yes 
      
   1105 No  Yes 
   1106 No  No 
      
   1468 No  No 
; 
 
proc freq order=data data=uialcohol; 
   table Binge / binomial; 
 
run; 



The FREQ Procedure 
 
                                  Cumulative    Cumulative 
Binge    Frequency     Percent     Frequency      Percent 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Yes          1022       69.62          1022        69.62 
No            446       30.38          1468       100.00 
 
 
      Binomial Proportion 
        for Binge = Yes 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Proportion                0.6962 
ASE                       0.0120 
95% Lower Conf Limit      0.6727 
95% Upper Conf Limit      0.7197 
 
Exact Conf Limits 
95% Lower Conf Limit      0.6719 
95% Upper Conf Limit      0.7196 
 
  Test of H0: Proportion = 0.5 
 
ASE under H0              0.0130 
Z                        15.0335 
One-sided Pr >  Z         <.0001 
Two-sided Pr > |Z|        <.0001 
 
Sample Size = 1468 
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Test for an Association: Binge Drinking and Greek Membership 
Recall the factors to consider in choosing a statistical method 

• Question to be addressed: 
Is there an association between the two variables. 

• Study design: 
Cross-sectional study of 1,468 subjects randomly selected from the UI student 
population, independent of their drinking or Greek status.  Note that the proportion 
of students who binge drink or who belong to Greek organizations can be estimated 
from these data. 

• Type of variables to be analyzed: 
Both variables are nominal categorical variables with two levels (Yes/No); i.e. 
dichotomous variables. 

Two common choices 
1. Pearson chi-square test for an association: appropriate if no more than 20% of the 

expected cell counts are less then 5 and none is less than 1. 
2. Fisher’s exact test: nonparameteric analog to the Pearson test.  Useful when the 

sample size is small. 
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SAS Program and Output 
 

proc freq data=uialcohol; 
 weight N; 
 table Binge*Greek / chisq; 
 
run; 
 
The FREQ Procedure 
 
Table of Binge by Greek 
 
Binge     Greek 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚No      ‚Yes     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚    363 ‚     83 ‚    446 
         ‚  24.73 ‚   5.65 ‚  30.38 
         ‚  81.39 ‚  18.61 ‚ 
         ‚  36.78 ‚  17.26 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚    624 ‚    398 ‚   1022 
         ‚  42.51 ‚  27.11 ‚  69.62 
         ‚  61.06 ‚  38.94 ‚ 
         ‚  63.22 ‚  82.74 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         987      481     1468 
            67.23    32.77   100.00 

Statistics for Table of Binge by Greek 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     1     58.2732    <.0001 
Likelihood Ratio Chi-Square    1     62.0183    <.0001 
Continuity Adj. Chi-Square     1     57.3539    <.0001 
Mantel-Haenszel Chi-Square     1     58.2335    <.0001 
Phi Coefficient                       0.1992 
Contingency Coefficient               0.1954 
Cramer's V                            0.1992 
 
 
       Fisher's Exact Test 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Cell (1,1) Frequency (F)       363 
Left-sided Pr <= F          1.0000 
Right-sided Pr >= F      2.949E-15 
 
Table Probability (P)    1.998E-15 
Two-sided Pr <= P        4.174E-15 
 
Sample Size = 1468 



Interpretation 
• The null and alternative hypotheses are 

H0: no association 
HA: association 

• The sample size is large enough to satisfy the assumptions of the Pearson test.  
SAS will print a warning if too many of the expected cell counts are less than 5. 

• Pearson’s test gives a chi-square statistic of 58.3 with a p-value < 0.0001.  At the 
5% level of significance, there is a significant association between Binge Drinking 
and Greek membership. 

• Note that, in this case, Fisher’s exact test gives the same conclusion.  This is not 
necessarily always the case.  The advantage of Fisher’s test is that it is appropriate 
regardless of the sample size. 

Questions 
• Are Greeks more or less likely to binge drink? 
• How would the analysis differ if the study design were case-control or cohort? 
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2.1 Introduction 

2.1.1 Data Management 
Data management refers to the creation, storage, and manipulation of data.  The 
popularity of the SAS Software Environment is due in large part to its extensive collection 
of powerful data management procedures.  In this class, we will rely primarily on the SAS 
DATA step procedure for data processing.  This procedure provides a general-purpose 
programming language for data management and will be used to perform the following 
tasks: 

• Entering raw data to create SAS datasets 
• Importing data into SAS datasets 
• Creating new SAS datasets by subsetting, merging, modifying, or updating existing 

datasets 
• Constructing new variables from existing datasets 
• Exporting SAS data and results for use in external software programs 

 
In addition to these tasks, we will also use SAS as our primary data analysis software.  
Plotting, however, will be performed in the R software environment (http://www.r-
project.org) due to its superior graphics capabilities.  Thus, we will cover the basics of 
data management in R. 
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2.1.2 Iowa Radon Study Example 
Four-hundred thirteen lung cancer cases and six-hundred fourteen population-based 
controls were enrolled in the Iowa Radon Lung Cancer case-control study.  The 
investigators were interested in assessing the effect of radon exposure on lung cancer 
risk.  Listed below is a subset of the variables collected in the study. 
 

Variable Description Values 
case Lung cancer indicator 1 = case 

0 = control 
age Age at enrollment (control) or 

diagnosis (case) 
continuous 

pyr Cigarette pack-years continuous: 44-85 
school Attained education level 1 = grade school 

2 = high school 
3 = some college 
4 = college degree 
5 = beyond college 

wlm20 20-year radon exposure continuous: 1-92 

 
We will consider a few basic techniques for creating and manipulating datasets for the 
radon data in SAS. 
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2.1.3 Entering Data 
SAS Program 

data radon; 
 input case age pyr school wlm20; 
 cards; 
 1 65.478439425 60.699691992 1 4.6608462927 
 0 59.159479808 0.5   4 12.691266326 
 0 75.258042437 0                5 11.14448953 
 1 66.179329227 29.75   2 7.688580114 
 1 81.037645448 115.02659138 2 5.1763967405 
          
 1 52.405201916 20.109548255 3 5.6601141221 
; 
run; 

 
Syntax 

• This DATA step defines a new SAS dataset named irlcs. 
• input defines the variables in the dataset.  By default, variables are assumed to be 

numerical.  To designate a variable as a character variable, insert a “$” after the 
name in the input statement. 

• The cards statement precedes the data that will comprise the dataset. 
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2.1.4 Importing Data 
SAS Program 

proc import datafile="L:\Bios203\irlcs.txt" out=irlcs dbms="TAB" replace; 

 
Syntax 

• The IMPORT procedure reads data from an external file into a SAS dataset. 
• datafile is the external file name. 
• out specifies the name of the SAS dataset to be created. 
• dbms specifies the type of data to be imported.  Here, “TAB” indicates that the data 

are stored in a tab-delimited text file.  Other file types are available including 
“EXCEL2002” for importing data from a Microsoft Excel spreadsheet. 

 

R Program 
irlcs <- read.delim("L:/Bios203/irlcs.txt") 
 

Syntax 
• ‘read.delim’ reads a tab-delimited text file and creates a data frame from it.  See 

‘read.table’ for a more general R import function. 
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2.1.5 Exporting Data 
SAS Program 

proc export outfile="L:\Temp\irlcs.txt" data=irlcs dbms="TAB" replace; 

 
Syntax 

• The EXPORT procedure saves a SAS dataset to an external file. 
• outfile is the external file name. 
• data specifies the name of the SAS dataset. 
• dbms specifies the type of data to be exported.  The file type options are the same 

as those for the IMPORT procedure 
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R Program 
write.table(irlcs, "L:/Temp/irlcs.txt", quote=F, sep="\t", row.names=F) 
 

Syntax 
• ‘write.table’ saves the specified data frame to an external text file. 
• quote is a logical argument indicating whether values of character variables should 

be enclosed in quotation makes. 
• sep is a character string giving the delimiter; “\t” indicates a tab. 
•  row.names is a logical argument indicating whether the row names in the data 

frame are to be outputted. 
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2.1.6 Modifying Existing Datasets 
SAS Program 

data newirlcs; 
 set irlcs; 
 smk_ever = (pyr > 0); 
 college = (school = 3) or (school = 4) or (school = 5); 
 ln_wlm20 = log(wlm20); 
run; 

 
Syntax 

• A new SAS dataset, newirlcs, is created from an existing one, irlcs, in this DATA 
step. 

• set allows for the inclusion of data from an existing SAS dataset. 
• New variables may be defined in the DATA step.   
• smk_ever is created from the pyr variable.  It will take on a value of 1 if pyr is 

positive and 0 otherwise. 
• college is created from the school variable.  It will take on a value of 1 if school 

equal 3, 4, or 5 and a value of 0 otherwise. 
• ln_wlm20 is the result of applying the natural log transformation to wlm20. 
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2.2 Descriptive Summaries for Numerical Data 

2.2.1 Univariate Statistics 
The UNIVARIATE procedure in SAS provides data summarization methods that produce 
univariate statistics and information on the distribution of numerical variables.  PROC 
UNIVARIATE provides: 
 

• Descriptive statistics based on moments, such as the mean, standard deviation, 
and standard error 

• Median, mode, range, and quantiles 
• Plots of the data distribution 
• Shapiro-Wilk tests of normality 
• Paired t-test, sign test, and Wilcoxon signed rank test for use with differenced data 

 19
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SAS Program and Output 
proc univariate normal data=newirlcs; 
 class case; 
 var wlm20; 
run; 

 
Syntax 

• The normal option specifies that tests of Normality be performed. 
• class specify that the results be generated separately for each level of the given 

variable.  In this example, summary statistics are calculated separately for the 
cases and controls in the radon study. 
 



The UNIVARIATE Procedure 
Variable:  WLM20 
CASE =            0 
 
                            Moments 
 
N                         614    Sum Weights                614 
Mean               10.3672855    Sum Observations    6365.51331 
Std Deviation      8.35364296    Variance            69.7833507 
Skewness           3.09058311    Kurtosis            14.6680267 
Uncorrected SS     108770.288    Corrected SS         42777.194 
Coeff Variation    80.5769547    Std Error Mean      0.33712559 
 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean     10.36729     Std Deviation            8.35364 
Median    7.87101     Variance                69.78335 
Mode       .          Range                   68.23687 
                      Interquartile Range      8.03331 
 
 
           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t    30.752    Pr > |t|    <.0001 
Sign           M       307    Pr >= |M|   <.0001 
Signed Rank    S   94402.5    Pr >= |S|   <.0001 
 
 
                   Tests for Normality 
 
Test                  --Statistic---    -----p Value------ 
 
Shapiro-Wilk          W     0.732898    Pr < W     <0.0001 
Kolmogorov-Smirnov    D     0.159199    Pr > D     <0.0100 
Cramer-von Mises      W-Sq  5.396563    Pr > W-Sq  <0.0050 
Anderson-Darling      A-Sq  31.99803    Pr > A-Sq  <0.0050 

 
 
Quantiles (Definition 5) 
 
Quantile       Estimate 
 
100% Max       69.65952 
99%            52.91604 
95%            24.10922 
90%            18.59181 
75% Q3         13.38010 
50% Median      7.87101 
25% Q1          5.34678 
10%             3.36676 
5%              2.78499 
1%              2.31351 
0% Min          1.42265 
 
 
           Extreme Observations 
 
------Lowest-----        -----Highest----- 
 
   Value      Obs           Value      Obs 
 
 1.42265      151         57.3208      959 
 1.89906     1022         57.4753      402 
 2.08609      931         63.5324      649 
 2.14718      963         64.6272      990 
 2.20491      962         69.6595      987 
 
 
               Missing Values 
 
                       -----Percent Of----- 
Missing                             Missing 
  Value       Count     All Obs         Obs 
 
      .           5        0.81      100.00 
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Normality Test Result 
The Shapiro-Wilk test can be used to assess whether the data are normally distributed.  
The null and alternative hypotheses for this test are: 
 

H0: Data are normally distributed 
HA: Data are not normally distributed 
 

Conclusion:  At the 5% level of significance, the WLM20 measurements are not normally 
distributed (p < 0.0001). 
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2.2.2 Plots 
R Program and Output 

# Histogram Plots 
windows(9,5) 
par(mar=c(5,4,4,1), mfrow=c(1,2)) 
hist(irlcs$WLM20[irlcs$CASE==0], main="Controls", xlab="WLM Radon Exposure") 
hist(irlcs$WLM20[irlcs$CASE==1], main="Cases", xlab="WLM Radon Exposure") 
 
# Box Plots 
windows(7,6) 
par(mar=c(3,4,1,1)) 
boxplot(WLM20 ~ CASE, data=irlcs, xlab="", ylab="WLM Radon Exposure", axes=F) 
axis(1, at=c(1, 2), labels=c("Controls", "Cases")) 
axis(2) 
box() 

 
Syntax 

• ‘windows’ opens a new graphics window of the specified (or default) size. 
• ‘par’ sets or queries graphics parameters for the active window: mar is vector giving 

the bottom, left, top, and right margin sizes, respectively; mfrow is a vector setting 
the number of rows and columns of plots to display. 
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Figure 1.  Histogram plots of radon exposures among Iowa Radon Study cases and 

controls. 
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Figure 2.  Box plots of radon exposures among Iowa Radon Study cases and controls. 
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Guidelines for Formatting Plots 
• Plots provide graphical summaries of data.  They should be self-explanatory and 

understandable to all other researchers involved in the project. 
• Use descriptive labels for the axes.  If a qualitative variable is plotted, use the 

category names as labels rather than any arbitrary numeric values that may be 
used to code the variable in the dataset.  Labels for quantitative variables should 
describe the variable and give the units of measurement; avoid using variable 
names from the dataset as labels. 

• Plots should be interpretable if displayed as a grayscale image.  Be careful about 
using color in analysis reports and manuscripts, since readers may want to print out 
a black-and-white copy. 

• Include captions with your plots.  Descriptive captions often indicate the type of plot, 
the data being plotted, the source of the data, and any other features that are being 
highlighted by the plot. 

• Be consistent with capitalization and punctuation.  Decide whether to capitalize the 
first letter of all words in the caption and whether to end captions with a period do 
so for all plots. 

• Use plot titles sparingly.  Captions are the best place to describe the plot; an 
additional plot title is generally not needed. 
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2.3 Descriptive Summaries for Tabular Data 

2.3.1 Frequency Tables 
The FREQ procedure in SAS provides tabular summaries for categorical data.  For one-
way tables, PROC FREQ can compute binomial-based test statistics for proportions.  For 
two-way tables, PROC FREQ computes chi-square test statistics and measures of 
association.  For n-way tables, PROC FREQ does stratified analysis, including the 
calculation of stratum-specific and pooled summary statistics.  

 27
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SAS Program and Output 
proc freq data=newirlcs; 
 tables school; 
 tables college / binomial; 
 tables case*school / chisq; 
run; 

 
Syntax 

• A frequency table will be provided for variables that are individually listed in the 
tables statement; contingency tables for variables that are listed together with the * 
symbol. 

• Estimated proportions, exact and approximate 95% confidence intervals may be 
obtained for dichotomous variables using the binomial option. 

• The chi-square test for an association may be applied to contingency tables via the 
chisq option. 

 



The FREQ Procedure 
 
                                   Cumulative    Cumulative 
SCHOOL    Frequency     Percent     Frequency      Percent 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
     1          89        8.67            89         8.67 
     2         535       52.09           624        60.76 
     3         288       28.04           912        88.80 
     4          82        7.98           994        96.79 
     5          33        3.21          1027       100.00 
 
 
                                    Cumulative    Cumulative 
college    Frequency     Percent     Frequency      Percent 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
      0         624       60.76           624        60.76 
      1         403       39.24          1027       100.00 
 
 
      Binomial Proportion 
        for college = 0 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Proportion                0.6076 
ASE                       0.0152 
95% Lower Conf Limit      0.5777 
95% Upper Conf Limit      0.6375 
 
Exact Conf Limits 
95% Lower Conf Limit      0.5770 
95% Upper Conf Limit      0.6376 
 
  Test of H0: Proportion = 0.5 
 
ASE under H0              0.0156 
Z                         6.8962 
One-sided Pr >  Z         <.0001 
Two-sided Pr > |Z|        <.0001 
 
Sample Size = 1027 

Table of CASE by SCHOOL 
 
CASE      SCHOOL 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚       1‚       2‚       3‚       4‚       5‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       0 ‚     47 ‚    299 ‚    183 ‚     60 ‚     25 ‚    614 
         ‚   4.58 ‚  29.11 ‚  17.82 ‚   5.84 ‚   2.43 ‚  59.79 
         ‚   7.65 ‚  48.70 ‚  29.80 ‚   9.77 ‚   4.07 ‚ 
         ‚  52.81 ‚  55.89 ‚  63.54 ‚  73.17 ‚  75.76 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       1 ‚     42 ‚    236 ‚    105 ‚     22 ‚      8 ‚    413 
         ‚   4.09 ‚  22.98 ‚  10.22 ‚   2.14 ‚   0.78 ‚  40.21 
         ‚  10.17 ‚  57.14 ‚  25.42 ‚   5.33 ‚   1.94 ‚ 
         ‚  47.19 ‚  44.11 ‚  36.46 ‚  26.83 ‚  24.24 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          89      535      288       82       33     1027 
             8.67    52.09    28.04     7.98     3.21   100.00 
 
 
Statistics for Table of CASE by SCHOOL 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     4     16.4845    0.0024 
Likelihood Ratio Chi-Square    4     17.0087    0.0019 
Mantel-Haenszel Chi-Square     1     15.7067    <.0001 
Phi Coefficient                       0.1267 
Contingency Coefficient               0.1257 
Cramer's V                            0.1267 
 
Sample Size = 1027 
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Association Test Result 
The chi-square test can be used to assess whether there is an association between two 
categorical variables.  The null and alternative hypotheses for this test are: 
 

H0: There is no association 
HA: There is an association 
 

Conclusion:  At the 5% level of significance, there is an association between case-control 
status and education (p = 0.0024). 
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2.4 Pairwise Association for Numerical Data 

2.4.1 Correlation Analysis 
The CORR procedure in SAS is a statistical procedure for numerical random variables 
that computes correlation coefficients, including: 

• Pearson correlation 
• Spearman rank-order correlation 
• Pearson, Spearman, and Kendall partial correlation 

 

SAS Program and Output 
proc corr pearson spearman data=newirlcs; 
 var pyr wlm20; 
run; 

 
Syntax 

• spearman requests the Spearman rank-order correlation coefficients; pearson 
requests the Pearson correlation coefficients.  Pearson is the default, unless 
otherwise specified. 
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The CORR Procedure 
 
   2  Variables:    PYR      WLM20 
 
 
                                    Simple Statistics 
 
Variable           N          Mean       Std Dev        Median       Minimum       Maximum 
 
PYR             1027      19.82656      25.65853       3.85000             0     138.45175 
WLM20           1027      10.64205       8.89201       8.17985       1.42265      91.53930 
 
 
Pearson Correlation Coefficients, N = 1027 
        Prob > |r| under H0: Rho=0 
 
                PYR         WLM20 
 
PYR         1.00000      -0.01254 
                           0.6882 
 
WLM20      -0.01254       1.00000 
             0.6882 
 
 

Spearman Correlation Coefficients, N = 1027 
         Prob > |r| under H0: Rho=0 
 
                PYR         WLM20 
 
PYR         1.00000      -0.01560 
                           0.6175 
 
WLM20      -0.01560       1.00000 
             0.6175 



Iowa Radon Study Results 
The correlation coefficient may be used to assess whether there is an association 
between two quantitative variables.  The null and alternative hypotheses for this test are: 
 

H0: The two variables are not correlated 
HA: They are correlated 
 

Conclusion:  At the 5% level of significance, pack-years is not correlated with radon 
exposure (p = 0.6175). 
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2.5 Two-Sample Parametric Test for Numerical Data 

2.5.1 Two-Sample T-Test 
The TTEST procedure in SAS performs t tests for one sample, two samples, and paired 
observations. The one-sample t-test compares the mean of the sample to a given 
number. The two-sample t-test compares the mean of the first sample minus the mean of 
the second sample to a given number. The paired observations t-test compares the 
mean of the differences in the observations to a given number. 
 

SAS Program and Output 
proc ttest data=newirlcs; 
 class case; 
 var wlm20; 
run; 

 
Syntax 

• Grouping variables are listed in the class statement. 
• Analysis variables are listed in the var statement. 
• The paired statement may be used in place of the class and var statement to 

perform a paired t-test.  It has the general form: paired <variable 1>*<variable 2>; 
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The TTEST Procedure 
 
                                      Statistics 
 
                               Lower CL          Upper CL  Lower CL           Upper CL 
Variable  CASE              N      Mean    Mean      Mean   Std Dev  Std Dev   Std Dev 
 
WLM20                0    614    9.7052  10.367    11.029    7.9111   8.3536     8.849 
WLM20                1    413    10.119  11.051    11.982    9.0178    9.633    10.339 
WLM20     Diff (1-2)             -1.793  -0.683    0.4269    8.5213     8.89    9.2923 
 
                     Statistics 
 
Variable  CASE          Std Err    Minimum    Maximum 
 
WLM20                0   0.3371     1.4227      69.66 
WLM20                1    0.474     2.0461     91.539 
WLM20     Diff (1-2)     0.5658 
 
 
                               T-Tests 
 
Variable    Method           Variances      DF    t Value    Pr > |t| 
 
WLM20       Pooled           Equal        1025      -1.21      0.2274 
WLM20       Satterthwaite    Unequal       797      -1.17      0.2405 
 
 
                    Equality of Variances 
 
Variable    Method      Num DF    Den DF    F Value    Pr > F 
 
WLM20       Folded F       412       613       1.33    0.0014 
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Iowa Radon Study Result 
The two-sample t-test may be used to asses the difference in means between two 
independent groups.  The test assumes that the mean difference has a t-distribution.  
This assumption is appropriate if 1) the variable is normally distributed, or 2) the sample 
sizes are “large” (rule of thumb: ≥ 30n n ).  The associated null and alternative 
hypotheses are: 

1 2,

 
H0: The group means are equal 
HA: The mean for group 1 is (less than/not equal to/greater than) that for group 2 
 

Conclusion:  At the 5% level of significance, there is no evidence of a difference in mean 
radon exposures between cases and controls (p = 0.2405). 
 

 36



2.6 Two-Sample Non-Parametric Test for Numerical Data 

2.6.1 Rank-Based Tests 
The NPAR1WAY procedure in SAS performs nonparametric tests for location and scale 
differences for a one-way classification of subjects, including: 

• the Wilcoxon rank-sum test 
• the Kruskal-Wallis test 

 

SAS Program and Output 
proc npar1way wilcoxon data=newirlcs; 
 class case; 
 var wlm20; 
run; 

 
Syntax 

• The wilcoxon option will request the Wilcoxon rank-sum test (in the case of two 
groups) and the Kruskal-Wallis test. 

• Grouping variables are listed in the class statement. 
• Analysis variables are listed in the var statement. 
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The NPAR1WAY Procedure 
 
           Wilcoxon Scores (Rank Sums) for Variable WLM20 
                    Classified by Variable CASE 
 
                    Sum of      Expected       Std Dev          Mean 
CASE       N        Scores      Under H0      Under H0         Score 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
1        413      217342.0      212282.0    4660.85021    526.251816 
0        614      310536.0      315596.0    4660.85021    505.758958 
 
 
    Wilcoxon Two-Sample Test 
 
Statistic             217342.0000 
 
Normal Approximation 
Z                          1.0855 
One-Sided Pr >  Z          0.1388 
Two-Sided Pr > |Z|         0.2777 
 
t Approximation 
One-Sided Pr >  Z          0.1390 
Two-Sided Pr > |Z|         0.2779 
 
Z includes a continuity correction of 0.5. 
 
 
       Kruskal-Wallis Test 
 
Chi-Square                 1.1786 
DF                              1 
Pr > Chi-Square            0.2776 
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Iowa Radon Study Results 
The Wilcoxon rank-sum test may be used to compare the distribution of a given variable 
between two independent groups.  This test is a non-parametric analog to the two-
sample t-test. The associated null and alternative hypotheses are: 
 

H0: The variable is equally distributed in the two groups 
HA: The distribution in group 1 is shifted to the (left/left or right/right) of that in group 2 
 

Conclusion:  At the 5% level of significance, there is no evidence that the radon 
exposures differ systematically between cases and controls (p = 0.2777). 
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3.1 Overview 
For now, we will concentrate on categorical measures of exposure. 

• Measures of association involve a direct comparison of frequency counts across 
different values or categories of a risk factor. 

• These measures rely on the selection of an appropriate reference population. 
o Exposed vs. non-exposed 
o Female vs. male 
o Older age group vs. youngest age group 
o Current or previous smokers vs. nonsmokers 

• We will cover the following categorical measures of association: 
1. Relative Risk 
2. Odds Ratio 
3. Correlation 
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3.2 Data Layouts 

3.2.1 Total Number of Cases and Non-cases 
Multiple Exposure Categories 

Our focus in this section will be on the number of observed diseased/non-diseased and 
exposed/unexposed subjects in the study.  Such data could be derived from any study 
design (cohort, case-control, cross-sectional, etc.). 
 

Diseased Exposure Levels Totals x1 x2 … xl 
Yes a1 a2 … al n1
No b1 b2 … bl n2 
Totals m1 m2 … ml n 

 
where 

• ai and bi are the number of diseased and non-diseased subjects at exposure level i. 
• n1 and n2 are the total number of diseased and non-diseased subjects, respectively. 
• mi is the total number of subjects at exposure level i. 
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Two Exposure Levels 
The situation of two-exposure levels which often arises in practice will be given a slightly 
different notation. 
 

Exposed Diseased Totals Yes No 
Yes a b a + b 
No c d c + d 
Totals a + c b + d n 
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3.3 Relative Risk 

3.3.1 Estimation 
A ratio comparison of two risk estimates is called a risk ratio or Relative Risk (RR).  The 
relative risk of disease for the jth exposure category, relative to the ith exposure category, 
may be calculated directly as 
 

[ ]
Pr |
Pr |

j j j j

i i i i

D E a m
RR

D E a m
π
π

⎡ ⎤⎣ ⎦= =  

 
where 

 are the probability of disease for the ith and jth exposure categories, •  and jπiπ

• ai and aj are the number of diseased subjects within each exposure category. 
• mi and mj are the total number of subjects (diseased plus non-diseased) within each 

exposure category. 

• For 2 x 2 tables the relative risk formula may be written as ( )
( )

a a b
RR

c c d
+
+

. 
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Notes 
• This estimator assumes that all subjects are followed for the duration of the study; 

i.e. no loss to follow-up. 
• It is only appropriate if subjects are not enrolled conditional on their disease status.  

In other words, subjects must be a sampled independent of their disease status. 

3.3.2 Confidence Interval 
Approximate Method 

The 95% confidence interval is based on a normal theory approximation for relative risk 
on the natural-log scale (Katz et al. 1978) 
 

0.975
1 1 1 1lnRR z
a a b c c d

± − + −
+ +

. 

 
Exponentiation of this result yields the desired confidence interval for the relative risk on 
the original scale 
 

0.975
1 1 1 1expRR z
a a b c c d

⎧ ⎫
× ± − + −⎨ ⎬+ +⎩ ⎭

. 
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Example 
Consider the following data from a cohort study 
 

Exposed Diseased Totals Yes No 
Yes 40 80 120 
No 60 320 380 
Totals 100 400 500 

 
The relative risk of disease for subjects who are exposed versus those unexposed is 
 

40 120 2.11
60 380

RR = =  

 
The 95% confidence interval for the relative risk estimate of 2.11 is 
 

{ }
( )

( )

2.11 exp 1.96 1 40 1120 1 60 1 380

2.11 0.709,2.11 1.410

1.50,2.97

× ± − + −

× × . 
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Conclusions 
• Exposed individuals are 2.11 times as likely to develop disease as those who are 

unexposed.  The risk of disease for exposed individuals is 2.11 times the risk for the 
unexposed. 

• We are 95% confident that the interval (1.50, 2.97) contains the true risk of disease 
for exposed versus unexposed individuals.* 

• Exposure has a statistically significant positive effect on the risk of disease. 
• Why would we not be able to make this statement if the study had used a case-

control design? 
 
* The explicit interpretation is that if the study was repeatedly carried out on the same 

population, 95% of the resulting confidence intervals would contain the true parameter 
(the relative risk). 
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SAS Code and Output 
 
data rrexample; 
   input Case $ Exposed $ N; 
   cards; 
   Yes Yes  40 
   Yes No   60 
   No  Yes  80 
   No  No  320 
; 

proc freq order=data data=rrexample; 
   weight N; 
   tables Exposed*Case / relrisk; 
run; 

 

 
Syntax 

• SAS expects the exposure reference cell to be given in the second column of the 
table.  To ensure that this happens, the following steps were taken: 
1. The exposed subjects are entered first in the data set. 
2. The order=data option was specified in PROC FREQ. 
3. A table with exposure as the row variable and case status as the column variable 

is requested via the tables Exposure*Case statement. 
• The relrisk option generates relative-risk estimates for the specified frequency 

tables. 
 
 



The FREQ Procedure 
 
Table of Exposed by Case 
 
Exposed     Case 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚Yes     ‚No      ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     40 ‚     80 ‚    120 
         ‚   8.00 ‚  16.00 ‚  24.00 
         ‚  33.33 ‚  66.67 ‚ 
         ‚  40.00 ‚  20.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚     60 ‚    320 ‚    380 
         ‚  12.00 ‚  64.00 ‚  76.00 
         ‚  15.79 ‚  84.21 ‚ 
         ‚  60.00 ‚  80.00 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         100      400      500 
            20.00    80.00   100.00 
 
 
Statistics for Table of Exposed by Case 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      2.6667        1.6681        4.2629 
Cohort (Col1 Risk)             2.1111        1.4975        2.9762 
Cohort (Col2 Risk)             0.7917        0.6925        0.9050 
 
Sample Size = 500 
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3.4 Odds Ratio 
In a case-control study, where subjects are enrolled conditional on their disease status, 
we cannot estimate exposure-specific rates, risks, or relative risks without additional 
information.  Unfortunately, the relative risk is often the population parameter of interest. 

3.4.1 Estimation 
Recall the general notation used in the table 
 

Exposed Diseased Totals Yes No 
Yes a b a + b 
No c d c + d 
Totals a + c b + d n 

 
The odds of exposure among the diseased is 
 

[ ] ( )
( )

Pr E|D
Pr E|D

a a c a
c a c c

+
=

+⎡ ⎤⎣ ⎦
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whereas, the odds among the non-diseased is 
 

( )
( )

Pr E|D
Pr E|D

b b d b
d b d d

⎡ ⎤ +⎣ ⎦ =
+⎡ ⎤⎣ ⎦

. 

 
The ratio of these two odds is 
 

a c adOR
b d bc

= . 

 
Notes 

• The ratio of these two odds is known as the Odds Ratio (OR). 
• The numerator is the odds of exposure among diseased subjects; the denominator 

is the odds of exposure among non-diseased subjects. 
• The odds ratio is symmetric with respect to disease and exposure status.  

Specifically, the formula for the disease odds ratio is the same as that for the 
exposure odds ratio (given above).  Hence, the odds ratio is often interpreted as the 
odds of disease for the exposed, relative to the unexposed subject. 

• The odds ratio can be estimated regardless of the study design. 
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3.4.2 Confidence Intervals 
Approximate Method 

The 95% confidence interval for the odds ratio (Woolf 1955) is 
 

0.975
1 1 1 1expOR z
a b c d

⎧ ⎫
× ± + + +⎨ ⎬

⎩ ⎭
 

 

Example 
From the example data used to compute the relative risk 
 

Exposed Diseased Totals Yes No 
Yes 40 80 120 
No 60 320 380 
Totals 100 400 500 

 

the odds ratio is found to be ( )( )
( )( )
40 320

2.67
80 60

adOR
bc

= = = . 
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The 95% confidence interval for the odds ratio of 2.67 is 
 

( )
( )

1 1 1 12.67 exp 1.96
40 80 60 320

2.67 0.626,2.67 1.599

1.67,4.27

⎧ ⎫
× ± + + +⎨ ⎬

⎩ ⎭
× × . 

 
Conclusions 

• The odds of disease for exposed individuals is 2.67 times the odds for the 
unexposed.  The disease odds ratio for exposed individuals, relative to those who 
are unexposed, is 2.67. 

• We are 95% confident that the interval (1.67, 4.27) contains the true odds of 
disease for exposed versus unexposed individuals. 

• There is a statistically significant positive association between exposure and 
disease. 
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3.4.3 Relationship between the Relative Risk and Odds Ratio 
Note that the relative risk is defined as 

[ ]
[ ]

[ ]Pr Disease|Exposed Pr D|E
Pr Disease|Unexposed Pr D|E

RR = =
⎡ ⎤⎣ ⎦

. 

This can be rewritten as 
[ ] [ ] [ ]

[ ]
[ ]

[ ]

Pr D|E Pr DE Pr E
Pr D|E Pr DE Pr E

Pr DE Pr DE Pr E Pr DE
Pr EPr DE Pr DE Pr DE

Pr D|E 1 Pr D|E
Pr D|E 1 Pr D|E

RR

OR OR

= =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤ −⎪ ⎪⎣ ⎦= = ⎨ ⎬
⎡ ⎤ − ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

If the overall probability of disease is low in the exposed and unexposed populations, so 
that [ ]Pr D|E  and Pr D|E⎡ ⎤⎦  are near zero, then ⎣
 

[ ]Pr E|D Pr E|D
Pr E|D Pr E|D

RR OR
⎡ ⎤⎣ ⎦≈ ≡

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
. 
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The qualification that the overall disease risk is low is referred to as the rare disease 
assumption.  Under the rare disease assumption, the odds ratio is an approximation to 
the relative risk of disease. 
 

Comments on the Odds Ratio 
• The odds ratio is a useful measure of association in its own right.  In the special 

situation where the disease of interest is rare, the odds ratio is also an 
approximation to the relative risk.  

• The odds ratio is equally valid for data from case-control, cohort, or cross-sectional 
studies.  In all of these designs, the calculated odds ratios are estimating the same 
population parameter. 

• It can be interpreted either as the odds of disease for exposed versus unexposed 
individuals, or the odds of exposure for diseased versus non-diseased individuals. 

• When computing the odds ratio from tabular data, pay attention to the order of the 
categories in the table. 

• Odds ratios can be produced in SAS using the same PROC FREQ statement used 
to obtain relative risk estimates (see SAS code and output starting on page 47). 
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3.5 Pearson Correlation 
Recall that, in the case of normally distributed data, the correlation coefficient is defined 
as 

( )
( ) ( )

cov ,
var var

X Y
X Y

ρ =  

and has the following properties: 
• Its value ranges from -1 to 1. 
• It measures the extent of the linear association between variables X and Y. 
• Values of 1 and -1 indicate a positive and negative linear association, respectively, 

with all points lying on a straight line. 
• A value of 0 indicates no linear association. 
• r2 is the amount of variability in X and Y explained by the linear association between 

the two. 
The Pearson correlation coefficient is an estimate of the population correlation and is 
computed as 

( )( )

( ) ( )2 2

i i
i

i i
i i

x x y y
r

x x y y

− −
=

− −

∑

∑ ∑
. 
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If both variables are dichotomous, say, X is the exposure status (0 = unexposed; 1 = 
exposed) and Y is the disease status (0 = non-case; 1 = case), then the Pearson formula 
simplifies to 

( )
1 2 1 2

ad bc
r

m m n n
−

=  

Notes 

• A value of 1 indicates that all diseased subjects are exposed and all non-disease 
subjects are unexposed; a perfect positive association 

• Can be obtained in SAS PROC FREQ by including the measures option in the 
tables statement. 

• A value of -1 indicates that all disease subjects are unexposed and all non-
diseased subjects are exposed; a perfect negative association 

( )40 320 80 60
0.1873

380 120 400 100
r

× − ×
= =

× × ×
. 

• This measure of association is appropriate for any study design. 

• A value of 0 is equivalent to an odds ratio of 1; no association. 

The Pearson correlation coefficient for the relative risk example is 
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4.1 Overview 
Statistical inference provides a means for using sampling data to draw conclusions about 
a larger population.  It involves the estimation of population parameters, the 
quantification of uncertainty, and the testing of hypotheses.  In this section, we will 
extend our discussion of measures of association to include inferential methods for 

• Testing for an association between exposure and disease. 
 

4.2 Relative Risk 
Example 

Recall the cohort data used previously to illustrate the relative risk and odds ratio. 
 

Exposed Diseased Totals Yes No 
Yes 40 80 120 
No 60 320 380 
Totals 100 400 500 
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The estimates were 
( )
( )

40 120 2.11
60 380

a a b
RR

c c d
+

= = =
+

 

( )( )
( )( )
40 320

2.67
80 60

adOR
bc

= = = . 

4.2.1 Hypothesis Testing 
For now, let us focus on the comparison of disease risk across two exposure levels.  We 
will eventually address the general problem of making comparisons across 2 or more 
levels of an exposure variable.  Suppose that we are interested in testing the hypotheses 
 

0 : 1
: 1A

H RR
H RR

=

≠
. 

 
This is something that we already know how to do.  Remember that the relative risk is 
computed as the ratio of two probabilities 

[ ]
[ ]

2

1

Pr Disease|Exposed
Pr Disease|Unexposed

RR π
π

= ≡ . 
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Thus, the hypotheses can be rewritten as a comparison of the probabilities between two 
independent groups.   

0 1 2

1 2

:
:A

H
H

π π
π π

=

≠
, 

Two potential options are 
• Pearson chi-square test for an association, or 
• Fisher’s exact test. 

Pearson Chi-Square Test 
The Pearson test can be used to test for an association between the levels of two 
categorical variables.  Since it is based on normal theory methods, it is only appropriate 
if the sample size is large enough.  Our specific interest is in using the test to compare 
the probability of disease between an exposed and unexposed group of subjects. 
Comments on the Pearson test when the two variables are dichotomous (a 2×2 table): 

• The sample size is deemed large enough if none of the expected cell counts 5ije < , 
where ij i je m n n . =

• The Person chi-square test is equivalent to the two-sample test for binomial 
proportions. 

• The null hypothesis is one of no association between the two variables; the 
alternative is that there is an association. 
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• The test statistic is 

( )22 2
1

1 2 1 2

~
n ad bc

X
m m n n

χ
−

=  

for which the 2-sided p-value is 
2 2
1Prp Xχ⎡ ⎤= ≥⎣ ⎦ . 

 
Example 
The Pearson chi-square test statistic evaluates to 

( )22 500 40 320 80 60
17.54

380 120 400 100
X

× − ×
= =

× × ×
 

which gives a p-value of 

.  There is a statistically 
significant positive association between exposure and disease. 

2Pr 17.54 0.00003p χ⎡ ⎤= ≥ = . 1⎣ ⎦

Therefore, the relative risk is significantly different from one (p < 0.0001).  In particularly, 
the relative risk estimate of 2.11 is significantly greater than one
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Fisher’s Exact Test 
Fisher’s test is a non-parametric analog to the Pearson chi-square test.  The test is 
always appropriate and is particularly useful if the sample size is not large enough to use 
the Pearson test.  The hypotheses and conclusions are the same as before.  We will rely 
on SAS to carry out the test. 

SAS Program and Output 
data rrexample; 
   input Case $ Exposed $ N; 
   cards; 
   Yes Yes  40 
   Yes No   60 
   No  Yes  80 
   No  No  320 
; 
 
proc freq order=data data=rrexample; 
   weight N; 
   tables Exposed*Case / relrisk chisq nopercent nocol expected; 
run; 

 
Syntax 

• nopercent and nocol suppress the printing of the overall and column percentages, 
respectively, in the outputted table. 

• expected adds the expected cell counts to the table. 
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The FREQ Procedure 
 
Table of Exposed by Case 
 
Exposed     Case 
 
Frequency‚ 
Expected ‚ 
Row Pct  ‚Yes     ‚No      ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     40 ‚     80 ‚    120 
         ‚     24 ‚     96 ‚ 
         ‚  33.33 ‚  66.67 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚     60 ‚    320 ‚    380 
         ‚     76 ‚    304 ‚ 
         ‚  15.79 ‚  84.21 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         100      400      500 
 
 

Statistics for Table of Exposed by Case 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     1     17.5439    <.0001 
Likelihood Ratio Chi-Square    1     16.1557    <.0001 
Continuity Adj. Chi-Square     1     16.4645    <.0001 
Mantel-Haenszel Chi-Square     1     17.5088    <.0001 
Phi Coefficient                       0.1873 
Contingency Coefficient               0.1841 
Cramer's V                            0.1873 
 
 
       Fisher's Exact Test 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Cell (1,1) Frequency (F)        40 
Left-sided Pr <= F          1.0000 
Right-sided Pr >= F      4.659E-05 
 
Table Probability (P)    3.008E-05 
Two-sided Pr <= P        6.928E-05

 
 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      2.6667        1.6681        4.2629 
Cohort (Col1 Risk)             2.1111        1.4975        2.9762 
Cohort (Col2 Risk)             0.7917        0.6925        0.9050 
 
Sample Size = 500 



 

4.3 Odds Ratio 

4.3.1 Hypothesis Testing 
The hypotheses of interest are 
 

0 : 1
: 1A

H OR
H OR

=

≠
 

 
which can be addressed with the same tests used for the relative risk; namely, the 
Pearson chi-square and Fisher’s exact tests. 
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4.3.2 Relationship between Confidence Intervals and Hypothesis Testing 
Our hypotheses 
 

0 : 1
: 1A

H RR
H RR

=

≠
  and  0 : 1

: 1A

H OR
H OR

=

≠

 
can be tested using either confidence intervals or test statistics.  Say we are interested in 
conducting tests at the 5% level of significance. 
 
The two options are for hypothesis testing are: 
 

1. Confidence Interval Approach:  If the 95% confidence interval does not contain 1, 
then the null hypothesis is rejected in favor of the alternative. 

 
2. Test Statistic Approach:  If the p-value computed from the test statistic is less than 

0.05, then the null hypothesis is rejected in favor of the alternative. 
 

It would be nice if the two approaches always led to the same conclusion; that is, if they 
were equivalent methods for testing the hypotheses. 
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Counter-Example 
Consider the SAS output, given on the following page, from the analysis of a hypothetical 
dataset. 
 
Notes 

• Based on the 95% confidence interval of (0.9126, 22.1893) for the odds ratio, we 
would fail to conclude that : 1H OR ≠ . A

• Based on the 95% confidence interval of (0.8364, 13.2842) for the relative risk, we 
would fail to conclude that : 1H RR ≠ . A

• Of course, the conclusion based on the confidence interval for the odds ratio may 
differ from that for the relative risk.  This is relevant for studies in which either 
measure of association is appropriate (e.g. cohort studies). 

• Based on the Pearson chi-square statistic, we would reject the null hypothesis and 
conclude that there is an association between exposure and disease (p = 0.0497). 

• Based on Fisher’s exact test, we would fail to conclude that there is an association 
(p = 0.0653). 

 
The confidence intervals and test statistics do not necessarily give equivalent results. 
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The FREQ Procedure 
 
Table of Exposed by Case 
 
Exposed     Case 
 
Frequency‚Yes     ‚No      ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     14 ‚     28 ‚     42 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚      2 ‚     18 ‚     20 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          16       46       62 
 
 

Statistics for Table of Exposed by Case 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     1      3.8525    0.0497 
Likelihood Ratio Chi-Square    1      4.3363    0.0373 
Continuity Adj. Chi-Square     1      2.7303    0.0985 
Mantel-Haenszel Chi-Square     1      3.7904    0.0515 
Phi Coefficient                       0.2493 
Contingency Coefficient               0.2419 
Cramer's V                            0.2493 
 
 
       Fisher's Exact Test 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Cell (1,1) Frequency (F)        14 
Left-sided Pr <= F          0.9922 
Right-sided Pr >= F         0.0446 
 
Table Probability (P)       0.0367 
Two-sided Pr <= P           0.0653

 
 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      4.5000        0.9126       22.1893 
Cohort (Col1 Risk)             3.3333        0.8364       13.2842 
Cohort (Col2 Risk)             0.7407        0.5717        0.9597 
 
Sample Size = 62



 

 

4.4 Multi-Level Exposures 
Our main focus has been on statistical tests for an association between a dichotomous 
exposure (exposed versus unexposed) and disease.  We now turn to methods for 
assessing the effect of a categorical exposure with 2 or more levels.  The notation in this 
more general situation is 
 

Diseased Exposure Levels Totals x1 x2 … xl 
Yes a1 a2 … al n1
No b1 b2 … bl n2 
Totals m1 m2 … ml n 

 
That is, interest lies in the association between a dichotomous disease variable and a 
categorical exposure variable with l levels.  The null hypotheses to be addressed are 

0 2 3: 1lH RR RR RR= = = =…  

and 

0 2 3: 1lH OR OR OR= = = =…  

where the first exposure category x1 is taken as the reference group.  As we will see, the 
choice of a statistical test will depend on our specified alternative hypothesis. 
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SHHS Example 
The following data present subjects from the Scottish Heart Health cohort Study 
(Tunstall-Pedoe et al., 1997) classified by cholesterol and coronary heart disease (CHD) 
status. 
 

CHD Cholesterol Status Totals 1 (low) 2 3 4 5 (high)
Yes 15 20 26 41 48 150 
No 798 794 791 785 777 3945 
Totals 813 814 817 826 825 4095 

 
Analysis Goal:  Test for an association between cholesterol and risk of coronary heart 
disease. 

4.4.1 General Test for an Association 
Suppose that we would like to address the following hypotheses: 

0 2 3: 1
: 1, for some 

l

A i

H RR RR RR
H RR i

= = = =

≠

…
 

In other words, the null hypothesis is one of equal risk across all exposure levels, versus 
the alternative that the risk differs between at least two of the levels. 
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The hypotheses can be written equivalently as 

0 1 2 3:
: , for some  and 

l

A i j

H
H i j

π π π π
π π

= = = =

≠

…
 

where πi is the probability of disease at exposure i.  This is precisely the situation for 
which the Pearson chi-square test of homogeneity is appropriate. 

Pearson Chi-Square Test 
The Pearson chi-square test statistic is calculated as 

( )
( )( )χ − −= ∑ ∑

2
2 2

1 1
observed-expected

~
expected r c

rows columns

X  

which, in our case, is 

( )22
2 2

1
1 1

~
l

ij ij
l

iji j

n e
X

e
χ −

= =

−
=∑∑  

where the expected number of subjects is computed as 

i j
ij

m n
e

n
= . 

The 2-sided p-value is 
2 2

1Pr lp Xχ −⎡ ⎤= ≥⎣ ⎦ . 
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Notes 
• The test is appropriate if no more than 20% of the expected cell counts are less 

than 5, and no expected count is less than 1.  SAS will print a warning if this is the 
case.  Fisher’s exact test can be used if this criterion is not satisfied; however, SAS 
may not be able to carry out the exact test for large sample sizes. 

• Note that we may reject the null hypothesis in favor of the alternative if any of the 
relative risks is significantly different from one.  There is no assumed ordering of the 
relative risks or the exposure levels.  Hence, this test is appropriate for nominal, 
ordinal, or discrete exposure variables. 

• May be used for the analogous test of equality across odds ratios. 
 
SHHS Example 

The first step is to calculate the expected cell counts.  For instance, the expected 
count in the first cell (CHD = No; Cholesterol Status = 1) is 
 

( )( )1 1
11

813 150
29.78

4095
m ne

n
= = = . 

 
The complete set of calculations for the Pearson chi-square test statistic are given in 
the following worksheet. 
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i j nij eij ( )2

ij ijn e−  ( )2

ij ij ijn e e−

1 1 15 29.78 218.45 7.34 
1 2 20 29.82 96.37 3.23 
1 3 26 29.93 15.42 0.52 
1 4 41 30.26 115.42 3.81 
1 5 48 30.22 316.14 10.46 
2 1 798 783.22 218.45 0.28 
2 2 794 784.18 96.37 0.12 
2 3 791 787.07 15.42 0.02 
2 4 785 795.74 115.42 0.15 
2 5 777 794.78 316.14 0.40 
Test Statistic (X2) 26.32 

 

The resulting p-value is .  Therefore, there is a significant 
association between cholesterol and CHD risk.  The risk of disease is not equal across 
the cholesterol categories. 

2
4Pr 26.32 0.00003χ⎡ ⎤≥ =⎣ ⎦

 
An obvious follow-up question to ask is where do the cholesterol categories differ with 
respect to the risk of CHD, and what is the direction of the association. 
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SAS Program and Output 
data shhs; 
 input Case $ Exposure N; 
 cards; 
 Yes 1  15 
 No  1 798 
 Yes 2  20 
 No  2 794 
 Yes 3  26 
 No  3 791 
 Yes 4  41 
 No  4 785 
 Yes 5  48 
 No  5 777 
; 
 
proc freq order=data data=shhs; 
 weight N; 
 tables Case*Exposure / chisq exact; 
run; 

 
Syntax 

• For 2x2 tables, Fisher’s exact test is automatically performed when the chisq 
option is given.  For tables with more than two columns or rows, Fisher’s exact test 
must be requested explicitly via the exact option. 
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The FREQ Procedure 
 
Table of Case by Exposure 
 
Case      Exposure 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚       1‚       2‚       3‚       4‚       5‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     15 ‚     20 ‚     26 ‚     41 ‚     48 ‚    150 
         ‚   0.37 ‚   0.49 ‚   0.63 ‚   1.00 ‚   1.17 ‚   3.66 
         ‚  10.00 ‚  13.33 ‚  17.33 ‚  27.33 ‚  32.00 ‚ 
         ‚   1.85 ‚   2.46 ‚   3.18 ‚   4.96 ‚   5.82 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚    798 ‚    794 ‚    791 ‚    785 ‚    777 ‚   3945 
         ‚  19.49 ‚  19.39 ‚  19.32 ‚  19.17 ‚  18.97 ‚  96.34 
         ‚  20.23 ‚  20.13 ‚  20.05 ‚  19.90 ‚  19.70 ‚ 
         ‚  98.15 ‚  97.54 ‚  96.82 ‚  95.04 ‚  94.18 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         813      814      817      826      825     4095 
            19.85    19.88    19.95    20.17    20.15   100.00 
 
 
 
Statistics for Table of Case by Exposure 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     4     26.3232    <.0001 
Likelihood Ratio Chi-Square    4     26.4405    <.0001 
Mantel-Haenszel Chi-Square     1     25.3900    <.0001 
Phi Coefficient                       0.0802 
Contingency Coefficient               0.0799 
Cramer's V                            0.0802 

       Fisher's Exact Test 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Table Probability (P)    1.523E-10 
Pr <= P                  2.813E-05 
 
Sample Size = 4095



 

Pairwise Comparisons 
In our example we rejected the null hypothesis and concluded that the risk of CHD was 
not equal across all cholesterol levels.  This global test of equality does not identify 
specific difference in the relative risks.  One method for doing so is to look at all pairwise 
comparisons of the exposure levels. 

• If there are l levels for the exposure variable, there will be ( )1 2l l −  pairwise 
comparisons to be made. 

• If we use an α′ level of significance for each of the pairwise comparisons, the 
overall significance level will be ( ) ( )1 21 1 l lα α −′= − − .  A significance level of α = 0.05 
is typically used in hypothesis testing.  Thus, α′ should be adjusted to ensure that 
the desired overall level of significance is maintained. 

• Two conservative methods for determining the significance level to be used in the 
individual pairwise comparisons are 

1. Bonferroni Method:  
( )1 2l l
αα′ =
−

 

( ) ( )2. Probability Method:  ( )1 1 21 1 l lα α −′ = − −  

The Bonferroni method is used more often; however, the probability method is 
slightly less conservative (see Table 1). 
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• Pairs of exposure categories can be compared individually using the Pearson chi-
square or Fisher’s exact test, as usual. 

 
Table 1.  Adjusted significance level for use in statistical tests of multiple pairwise 

comparisons. 

Exposure 
Levels 
l 

Pairwise 
Comparisons

( )1 2l l −  

Overall 
Significance

α 

Individual Test 
Significance α′ 

Bonferroni Probability
3 3 0.05 0.01667 0.01695 
4 6 0.05 0.00833 0.00851 
5 10 0.05 0.00500 0.00512 

 
SHHS Example 
In the test of global equality, we rejected the null hypothesis that the relative risks were 
all equal to one (p < 0.0001).  To determine where the cholesterol categories differ with 
respect to CHD, we can perform pairwise comparisons of the exposure levels.  For each 
pair of exposure levels, the relative risk is computed and its significance tested using the 
Pearson chi-square test. 
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Cholesterol Status RR p-value 
2 vs. 1  1.33 0.3949 
3 vs. 1 1.72 0.0847 
4 vs. 1 2.69 0.0005 
5 vs. 1 3.15 <0.0001 
3 vs. 2 1.30 0.3763 
4 vs. 2 2.02 0.0073 
5 vs. 2 2.37 0.0006 
4 vs. 3 1.56 0.0680 
5 vs. 3 1.83 0.0100 
5 vs. 4 1.17 0.4421 

 
The Bonferroni method suggests a significance level of 0.005 for the individual pairwise 
comparisons.  Comparisons for which the p-value is less than the Bonferroni value are 
deemed to be significant.  Specifically, the relative risks are significant for the cholesterol 
levels 4 vs. 1 (p = 0.0005), 5 vs. 1 (p < 0.0001), and 5 vs. 2 (p = 0.0006).  The 
associated relative risks indicate a positive association between elevated cholesterol and 
disease risk. 
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SAS Program and Output 
proc freq order=data data=shhs; 
 where Exposure in (1,2); 
 weight N; 
 tables Exposure*Case / nopercent nocol norow relrisk chisq; 
run; 

 
Syntax 

• The where statement can be used in any SAS procedure to restrict the analysis to 
a subset of the original data.  The statement here specifies that the analysis be 
limited to the data for which the Exposure variable equals 1 or 2. 
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The FREQ Procedure 
 
Table of Exposure by Case 
 
Exposure     Case 
 
Frequency‚Yes     ‚No      ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       1 ‚     15 ‚    798 ‚    813 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       2 ‚     20 ‚    794 ‚    814 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          35     1592     1627 
 
 

Statistics for Table of Exposure by Case 
 
Statistic                     DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square                     1      0.7237    0.3949 
Likelihood Ratio Chi-Square    1      0.7262    0.3941 
Continuity Adj. Chi-Square     1      0.4622    0.4966 
Mantel-Haenszel Chi-Square     1      0.7233    0.3951 
Phi Coefficient                      -0.0211 
Contingency Coefficient               0.0211 
Cramer's V                           -0.0211 
 
 
       Fisher's Exact Test 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Cell (1,1) Frequency (F)        15 
Left-sided Pr <= F          0.2486 
Right-sided Pr >= F         0.8465 
 
Table Probability (P)       0.0951 
Two-sided Pr <= P           0.4949 

 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      0.7462        0.3793        1.4680 
Cohort (Col1 Risk)             0.7509        0.3872        1.4563 
Cohort (Col2 Risk)             1.0063        0.9919        1.0209 
 
Sample Size = 1627 
 



4.4.2 Tests for Trend 
In the Scottish Heart Health Study, as is often the case, the levels of the exposure 
variable are ordered.  Rather than testing for a general association between exposure 
and disease, interest commonly lies in testing for a consistent trend in the risk of disease 
across the exposure levels.  Such a trend is also known as a dose-response effect.  We 
now focus on tests to address the hypotheses 
 

= = = =
< < < < > > > >
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Specifically, the alternative hypothesis is that disease risk is increasing or decreasing 
across the levels of the exposure variable. An examination of the relative risk estimates 
can be used to determine the actual direction of the association. 
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Cochran-Mantel-Haenszel Test 
One popular statistic for performing a test of trend is 
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 is the user-specified weight, the numeric value, for the jth exposure category. and jx

• This is referred to as the Cochran-Mantel-Haenszel row mean scores test statistic. 
• The choices of weights that we will consider are 

1. Integer Weights:  Assigns integer values, say, 1,...,l to the exposure levels.  This 
assumes that the rate of increases/decreases is constant across the levels. 

2. Ranks:  Column ranks are defined as 
( )

( )
1 1
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i.e. the column rank based on the cumulative number of exposed individuals. 
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• Other choices that may be of interest are the mean, median, and midpoint values of 
the exposure variable within each category. 

• The Cochran-Mantel-Haenszel test is more powerful for detecting positive/negative 
trends in the data than the Pearson chi-square test for a general association.  Tests 
for trend also provide stronger evidence of a causal relationship. 

 
SHHS Example 
SAS was used to carry out the Cochran-Mantel-Haenszel test using integer weights for 
the cholesterol categories.  The test statistic value was 25.39 with a p-value <0.0001.  
Thus, at the 5% level of significance, it can be concluded that there is a significant dose-
response effect of cholesterol on the risk of CHD.  The estimated relative risks from our 
multiple comparisons example are 
 

 Cholesterol Status 
 1 2 3 4 5 
RR 1.00 1.33 1.72 2.69 3.15 

 
which indicate a positive association between elevated cholesterol and risk of CHD. 
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SAS Program and Output 
proc freq order=data data=shhs; 
 weight N; 
 tables Case*Exposure / cmh scores=table; 
run; 

 
Syntax 

• The cmh option request that the Cochran-Mantel-Haenszel test be performed. 
• scores is used to select the weights to be used in computing the row mean scores 

test statistic. 
o scores=table is the default and uses the values of the column variables as the 

weights. 
o scores=rank requests that the ranks be used. 

• Disease must be given as the row variable and Exposure as the column variable. 
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The FREQ Procedure 
 
Table of Case by Exposure 
 
Case      Exposure 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚       1‚       2‚       3‚       4‚       5‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     15 ‚     20 ‚     26 ‚     41 ‚     48 ‚    150 
         ‚   0.37 ‚   0.49 ‚   0.63 ‚   1.00 ‚   1.17 ‚   3.66 
         ‚  10.00 ‚  13.33 ‚  17.33 ‚  27.33 ‚  32.00 ‚ 
         ‚   1.85 ‚   2.46 ‚   3.18 ‚   4.96 ‚   5.82 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚    798 ‚    794 ‚    791 ‚    785 ‚    777 ‚   3945 
         ‚  19.49 ‚  19.39 ‚  19.32 ‚  19.17 ‚  18.97 ‚  96.34 
         ‚  20.23 ‚  20.13 ‚  20.05 ‚  19.90 ‚  19.70 ‚ 
         ‚  98.15 ‚  97.54 ‚  96.82 ‚  95.04 ‚  94.18 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         813      814      817      826      825     4095 
            19.85    19.88    19.95    20.17    20.15   100.00 
 
 
Summary Statistics for Case by Exposure 
 
  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1     25.3900    <.0001 
    2        Row Mean Scores Differ     1     25.3900    <.0001 
    3        General Association        4     26.3168    <.0001 
 
 
Total Sample Size = 4095 
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Iowa Radon Example 
Subjects from the Iowa Radon Lung Cancer case-control Study are classified by disease 
and radon exposure status in the table below. 
 

Lung Cancer Radon Exposure Totals 0-4.23 4.24-8.47 8.48-12.70 12.71-16.94 >16.95
Yes 56 147 87 56 67 413 
No 104 229 118 75 88 614 
Totals 160 376 205 131 155 1027 
       
Median Exposure 3.16 6.18 10.50 14.58 21.16  

 
If the medians are to be used as weights in the Cochran-Mantel-Haenszel test, we can 
use those as the numeric values for the exposure variable in our dataset or compute the 
statistic by hand.



Table 2.  Worksheet calculation of the Cochran-Mantel-Haenszel statistic for the Iowa 
Radon Lung Cancer Study data. 

Exposure Cases Controls Totals jx  
1

j
j

a
x

n
 j

j j

m
x

n
μ = ( )2 j

j

m
x

n
μ−

0-4.23 56 104 160 3.16 0.4285 0.4923 7.0860 
4.24-8.47 147 229 376 6.18 2.1996 2.2626 5.0777 
8.48-12.70 87 118 205 10.5 2.2119 2.0959 0.0709 
12.71-16.94 56 75 131 14.58 1.9769 1.8598 2.7888 
16.95+ 67 88 155 21.16 3.4327 3.1936 19.1213 
Totals 413 614 1027  10.2510 9.9041 34.1448 
        
Chi-square 2.4132       
p-value 0.1203       
 
At the 5% level of significance, we do not have evidence of a dose-response effect of 
radon exposure on lung cancer risk (p = 0.1203). 
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5.1 Introduction 
When designing a study it is important to consider the sample size needed to provide a 
reasonable opportunity to address the research questions of interest.  We will examine 
methods for estimating sample size requirements in the context of 

1. Parameter Estimation 
2. Hypothesis Testing. 

 
Recall the following definitions related to hypothesis testing: 
Significance Level – Probability of rejecting the null hypothesis when it is true; also 

referred to as the Type I error rate (α ). 
Power – Probability of rejecting the null hypothesis when it is false; 1 minus the Type II 

error rate (1 β− ). 
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5.1.1 Notation 
We will primarily consider sample size estimation in cases where the outcome of interest 
is dichotomous (i.e. diseased versus non-diseased) and comparisons are between two 
groups (i.e. exposed versus unexposed). 
 
Let  index the two groups of exposed and unexposed individuals, respectively, 
such that 

1,2i =

iπ  Probability of disease (cohort) or exposure (case-control) in Group i 

in  Number of subjects in Group i 

2 1r n n=  Number of subjects in Group 2 relative to Group 1 

 

5.1.2 Confidence Interval 

In general, if a population parameter θ  can be estimated with a sample statistic θ̂  that is 
approximately normally distributed, then the associated confidence interval has the 
general form 

1 2
ˆ z

nα
σθ −± . 
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The parameters of interest in our sample size discussion are the disease probability, 
odds ratio, and relative risk.  The table below summarizes the forms of these parameters 
for which the normal assumption is typically used in constructing confidence intervals. 
 
Table 1.  Common parameters and approximate standard errors 

Parameter θ  nσ  
Disease Probability π  ( )1 nπ π−  

Difference 1 2π π−  ( ) ( )1
1 1 2 21 1r nπ π π π−− + −  

Log-Odds Ratio 
( )
( )

2 2

1 1

1
ln

1
π π
π π

⎛ ⎞−
⎜ ⎟−⎝ ⎠

 
( ) ( )1 1 2 2

1 1
1 1

n
rπ π π π

+
− −

 

Log-Relative Risk 2

1

ln π
π

⎛ ⎞
⎜ ⎟
⎝ ⎠

 1 2

1 2

1 1 n
r

π π
π π
− −

+  

 
Where, in the two-group comparison, n1n =  is the sample size for Group 1 and n2n r=  is 
the sample size for Group 2. 
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5.2 Parameter Estimation 
The sample size required to obtain a ( )100 1 %α−  confidence interval of width W is 

 

( )21 22n z Wα σ−= . 

 
Note that we could write the confidence interval of interest in terms of W such that 
 

1 2
ˆ ˆ

2
Wz

nα
σθ θ−± = ± . 

 
 

Proportion Example 
A particular gene polymorphism has been identified as a cancer risk factor.  Public health 
officials would like to obtain 95% confidence intervals that are within 5% points of the 
estimated prevalence of this particular gene.  How many subjects should be sampled for 
the estimation? 
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Odds Ratio Example 
A case-control study is being designed to study the effects of residential radon on the 
risk of leukemia cancer.  The study will enroll twice as many controls as cases, and the 
investigators would like the confidence interval to be within 25% of the estimated odds 
ratio.  Approximately half of the control subjects are expected to have high radon 
exposure. 
 

5.3 Hypothesis Testing 
The sample size needed for testing the two-sided hypothesis 

0 0

0

:
:A

H
H

θ θ
θ θ
=

≠
 

with significance level α  and power 1 β− , under the assumption that the true value of 
the parameter is Aθ θ= , is 

2
1 2 0 1

0

A

A

z z
n α βσ σ

θ θ
− −+⎛ ⎞

= ⎜ ⎟−⎝ ⎠
. 

If this is for a two-group comparison, then n1n =  is the sample size for Group 1 and 
n  is the sample size for Group 2.  For one-sided alternatives, 2n r= α  is substituted 

for 2α  in the sample size formula. 
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Sample Size Algorithm 
1. Express the null and alternative hypotheses of interest in terms of the appropriate 

population parameter in Table 1. 
2. Compute the probabilities under the alternative hypothesis that the population 

parameter Aθ θ= .  Use these in the standard deviation formula to calculate Aσ . 

3. Compute the probabilities under the null hypothesis that the population parameter 
0θ θ= .  Use these in the standard deviation formula to calculate 0σ . 

4. Insert Aθ , 0θ , Aσ , and 0σ  into the sample size formula. 

 

Proportion Example 
A clinical trial is planned to study the efficacy of a new cancer treatment.  Efficacy will be 
measured as the proportion of patients that respond to the treatment.  The investigators 
would like to perform a 5% level test of the null hypothesis that the response rate is less 
than or equal to 20% versus the alternative that it is greater than 20%.  How many 
subjects should be enrolled to have 80% power to detect a true response rate of 35%? 
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SAS Program and Output 
proc power; 
 onesamplefreq test=z 
  alpha=0.05 
  power=0.80 
  sides=U 
  nullproportion=0.20 
  proportion=0.35 
  ntotal=. 
  method=normal; 
run; 

 
Syntax 

• test indicates whether the test statistic is z, adjz, or exact.  method specifies the 
computational method: exact = binomial distribution, normal = approximation to the 
binomial.  The later must be used obtain sample size estimates. 

• alpha gives the significance level of the test and power the test power.  sides 
indicates whether the alternative hypothesis is one-sided with the alternative in the 
direction of the effect (1), two-sided (2), one-sided with the effect greater than the 
null value (U), or one-sided with the effect less than the null value (L). 

• nullproportion sets the proportion for the null hypothesis; proportion sets the 
alternative value at which the study is powered. 

• ntotal=. requests sample size estimates; alternatively, the sample size can be 
given and power estimated with the option power=.. 
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The POWER Procedure 
Z Test for Binomial Proportion 
 
          Fixed Scenario Elements 
 
Method                 Normal approximation 
Number of Sides                           U 
Null Proportion                         0.2 
Alpha                                  0.05 
Binomial Proportion                    0.35 
Nominal Power                           0.8 
 
 
Computed N Total 
 
Actual        N 
 Power    Total 
 
 0.801       50 
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Odds Ratio Example 
For the leukemia case-control study described previously, suppose that a 5% level test is 
planed to determine if the odds ratio for radon is significantly different from unity.  As 
before, it is expected that 50% of control subjects will have high radon exposure.  How 
many subjects should be enrolled to ensure 80% power to detect a true odds ratio of 
1.50? 
 

SAS Program and Output 
proc power; 
 twosamplefreq test=pchi 
  alpha=0.05 
  power=0.80 
  sides=2 
  oddsratio=1.5 
  refproportion=0.5 
  groupweights=(2 1) 
  ntotal=.; 
run; 

 
Syntax 

• test can be either pchi, lrchi, or fisher. 
• oddsratio is the value at which the test is powered; refproportion is the proportion 

in the reference group; groupweights specifies the relative number of subjects in 
each group. 
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The POWER Procedure 
Pearson Chi-square Test for Two Proportions 
 
               Fixed Scenario Elements 
 
Distribution                         Asymptotic normal 
Method                            Normal approximation 
Number of Sides                                      2 
Alpha                                             0.05 
Reference (Group 1) Proportion                     0.5 
Odds Ratio                                         1.5 
Group 1 Weight                                       2 
Group 2 Weight                                       1 
Nominal Power                                      0.8 
Null Odds Ratio                                      1 
 
 
Computed N Total 
 
Actual        N 
 Power    Total 
 
 0.801      876 
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5.4 Multivariate Analyses 
The statistical methodology for determining sample size when there are multiple 
predictor variables is beyond the scope of this class.  The two most commonly used 
methods are based on: 
 

1. Chi-square tests and the non-centrality parameter associated with the alternative 
hypothesis. 

2. Simulations 
 
Popular software programs for computing sample size: 

• NCSS PASS (www.ncss.com) 
• Power and Precision (www.powerandprecision.com) 
• nQuery (http://www.statsol.ie) 

http://www.ncss.com/
http://www.powerandprecision.com/
http://www.statsol.ie/
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6.1 Overview 
Thus far, we have limited our discussion to the relationship between only two variables.  
However, there are often other variables, or factors, that have an important influence on 
the apparent relationship between the exposure and disease of interest. 
Whenever an epidemiologic study is designed or analyzed, you need to consider the 
issues of 

• Confounding 
• Interaction 

6.1.1 Confounding 
Confounding is the bias in the risk estimate that can result when the exposure-disease 
relationship under study is partially or wholly explained by the effects of an extraneous 
variable. 
For example, a relationship between the number of children and prevalent breast 
cancers for a sample of mothers may be explained by the ages of the mothers. 

• Older mothers tend to have more children and also have a greater chance of 
developing breast cancer. 

• Age is the extraneous variable which explains the relationship between number of 
children and breast cancer. 

• The effect of number of children is confounded with the effect of age.  In this case, 
age is called a confounding variable or a confounder. 
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Definition 
A confounder is an extraneous variable that partially or wholly accounts for the observed 
effect of the exposure on disease risk. 

• In order for a variable to be a confounder it must 
1. be related to the disease, 
2. be related to the risk factor, and 
3. not be a consequence of the risk factor. 

• The effects of the confounder must be “controlled” for in the analysis in order to 
correctly measure the relationship between exposure and disease.  In the case of 
categorical data, “control” means assessing the relationship across different levels, 
or strata, of the confounder. 

• Controlling for the confounder requires a consideration of both causal and data-
based associations.  That is, confounders may arise due to biologic relationships or 
simply due to patterns that exist in the sampled data. 

• There may be multiple confounders that need to be accounted for in the analysis.  
Indeed, potential confounders should be identified during the design of the study so 
that the appropriate data is collected. 
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Example 1 
Table 1 presents disease and exposure data for a hypothetical group of study subjects.  
Based solely on this data, the crude odds ratio is 18.16. 
 

Table 1.  Cross-classification of exposure and disease. 
 Diseased Non-diseased 
Exposed 81 29 
Unexposed 28 182 
Odds Ratio 18.16 

 
Suppose that the presence or absence of a potential confounder (C) was recorded for 
each subject.  One way to assess the impact of C is to calculate separately the odds 
ratios within each level of the confounder.  The separate estimates are illustrated in the 
following table. 
 

Table 2.  Cross-classification of exposure and disease by levels of a confounder. 
 Confounder Present Confounder Absent 
 Diseased Non-diseased Diseased Non-diseased
Exposed 80 20 1 9 
Unexposed 8 2 20 180 
OR 1.00 1.00 
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Thus, when considered within levels of the confounder, the exposure has absolutely no 
effect on the disease.  The apparent relationship (crude odds ratio of 18.16) is explained 
by the confounding variable.  Why is this?  If we examine the confounder and its 
relationship with disease and exposure, we see that there is a strong association with 
both.  The odds ratio between disease status and the confounder is 36, while the odds 
ratio between exposure status and the confounder is 200. 
 

Table 3.  Cross-classification of disease and the confounder. 
 Confounder Present Confounder Absent 
Diseased 88 21 
Non-diseased 22 189 
Odds Ratio 36 

 
Table 4.  Cross-classification of exposure and the confounder 
 Confounder Present Confounder Absent 
Exposed 100 10 
Unexposed 10 200 
Odds Ratio 200 

 
Therefore, when we think we are seeing the effect of exposure, we may really be seeing 
the effect of the confounder. 
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Example 2 
Consider the following data for which there appears to be no association between 
exposure and disease. 
 

 Diseased Non-diseased 
Exposed 240 420 
Unexposed 200 350 
Odds Ratio 1.00 

 
However, it could happen that the risk estimates indicate an association within the levels 
of a confounder. 
 

 Confounder Present Confounder Absent 
 Diseased Non-diseased Diseased Non-diseased
Exposed 120 378 120 42 
Unexposed 20 175 180 175 
OR 2.78 2.78 

 
Thus, we have the reverse scenario to Example 1.  Here there is an association within 
the levels of the confounder, but no overall association when the confounder is ignored. 
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Example 3 (SHHS) 
In the Scottish Health Heart Study information was collected on whether subjects owned 
or rented their place of residence.  Residence was thought to be a surrogate measure of 
socio-economic status, and investigators were interested in looking at its effect on 
disease. 
 

 CHD Totals Residence Yes No 
Rented 85 1821 1906 
Owner-occupied 77 2400 2477 
Relative Risk 1.43 (1.06, 1.94) 

 
Thus, there appears to be an association, but care must be taken to account for potential 
confounders, such as smoking. 
 

 Smokers Non-smokers 
Residence CHD No CHD CHD No CHD 
Rented 52 898 33 923 
Owner 29 678 48 1722 
RR 1.33 1.27 

 

 102



Notice that the stratum-specific estimates are lower than the crude estimate of 1.43.  The 
reduced estimates indicate that a portion of the crude estimate is due to smoking.  
However, there does appear to be an additional effect of residence after controlling for 
smoking. 
 

Notes 
• Examples 1 and 2 both illustrate perfect confounding.  That is, the risk estimates 

are equal across the levels of the confounder, but different from the crude risk 
estimate. 

• If the stratum-specific risk estimates are all very similar to one-another as well as to 
the crude estimate, then confounding is not an important issue. 

• Confounding is characterized by stratum-specific risk estimates that are 
consistently higher or lower than the crude estimate. 

• May need to control for multiple confounding variables (see Table 5). 
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Table 5.  Odds ratios for myocardial infarction by cigarette smoking habits amongst men 
aged 30-54 living in the north-east USA (Kaufman et al., 1983). 

Smoking Unadjusted Age-adjusted Multiply-adjusted* 
Never 1 1 1 
Ex 1.5 1.1 1.2 
< 25 / day 2.1 2.1 2.5 
25-34 2.5 2.4 2.9 
35-44 4.1 3.9 4.4 
≥ 45 4.4 4.0 5.0 
* Adjusted for age, geographic region, drug treatment for hypertension, history of 
elevated cholesterol, drug treatment for diabetes, family history of myocardial infarction 
or stroke, personality score, alcohol consumption, religion, and marital status. 

 

Mantel-Haenszel Methods 
We need a method to estimate the disease risk for an exposure variable in the presence 
of confounding.  The first method we will discuss is that of Mantel-Haenszel.  This is 
appropriate if the disease, exposure, and confounding variable are categorical or can be 
categorized.  We start by partitioning our data into strata defined by the q levels of the 
confounder(s).  For strata 1, ,i q= …  we will extend our previous notation to 
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 Diseased Non-diseased Totals 
Exposed ai bi ai + bi
Unexposed ci di ci + di 
Totals ai + ci bi + di ni

 
The Mantel-Haenszel method  

• assumes that there is a true odds ratio which is consistent across all strata, and 
• provides a pooled estimate of the common odds ratio.  In essence, it is a weighted 

average of the odds ratios from the individual strata. 
Note that it only makes sense to report the Mantel-Haenszel estimate if the exposure-
disease relationship is consistent across the strata. 
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Odds Ratio 
The Mantel-Haenszel estimate of the odds ratio is 
 

1 1

q q
i i i i

MH
i ii i

a d b cOR
n n= =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  

 
with estimated standard error computed on the log-scale as 
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( ) ( )2 2ln

22 2
i i i i i i i i
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i ii i
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+
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where 
 

( )i i i iP a d n , = + ( )i i i iQ b c n= + , 

i i i iR a d n , = i i i inS b c= . 
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Relative Risk 
The Mantel-Haenszel estimate of the relative risk is 
 

( ) ( )
1 1

q q
i i i i i i
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i ii i
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+ +⎛ ⎞ ⎛ ⎞
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with estimated standard error computed on the log-scale as 
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i i i i i i i i
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Mantel-Haenszel estimates can be obtained in SAS. 
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6.1.2 Test of Homogeneity 
It is important to keep in mind that these pooled risk estimates should only be reported if 
the risk is consistent (homogeneous) across the levels of the confounder.  There are 
several test statistics that address the hypothesis of homogeneity.  We will discuss the 
Breslow-Day statistic which is formulated as 

( )( )
( )

2

2 2
1

1
~

var

q
i i

BD q
i i

a E a
X

a
χ −

=

−
= ∑ . 

This is of the same form as the Pearson chi-square test statistic.  The difference is in the 
calculation of the expected value.  In the Pearson test, the expected value was 
computed under the null hypothesis of no association between disease and exposure.  
Here, our null hypothesis is one of homogeneity; that the odds ratios are equal across 
the levels of our confounder, 
 

0 1:

:
q

A i j

H OR OR OR

H OR OR

= = =

≠

…
. 

 
In other words, the null hypothesis of homogeneity implies that the stratum-specific odds 
ratios are all equal to a common odds ratio, OR.  Thus, the expected value is the number 
of subjects we would expect to observe in the stratum-specific tables if there was a 
common odds ratio. 
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If we define 
( )i iA E a≡  

then the expected cell counts in stratum i are as follows 
 

 Diseased Non-diseased Totals
Exposed Ai i i ia b A+ −  ai + bi 

Unexposed i i ia c A+ −  i i i i i in a b a c A− − − − +  ci + di 
Totals ai + ci bi + di ni

 
We find i  by noting that, under the null hypothesis, ( )iA E a=

( )
( )( )
i i i i i i i

i i i i i i

A n a b a c A
OR

a b A a c A
− − − − +

=
+ − + −

 

which can be rewritten as 

( ) ( )( )( )
( )( )

21 1

0
i i i i i i i

i i i i

OR A OR a b a c n A

a b a c OR

− − − + + + +

+ + + =
. 
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We then solve (left as an exercise for those interested) for Ai to get an expression for the 
expected value; i.e. 

( ) ( )( )( )
( )

2 4 1
2 1

i i i i i i
i i

P P OR a b a c OR
E a A

OR
± − − + +

= =
−

 

where 
( )( )1i i i i iP OR a b a ci n= − + + + + . 

To evaluate this formula, we need a value for the odds ratio, OR.  The most common 
choice in practice is the Mantel-Haenszel estimate of the odds ratio, ORMH.  The variance 
terms in the Breslow-Day test statistic are computed as  

( ) ( ) ( ) ( ) ( )

1

1

1 1 1 1var

1 1 1

1
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i i i i

i i i i i i i

i i i i i i
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−

−

⎛ ⎞
= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞+ +⎜ ⎟+ − + −⎜ ⎟=
⎜ ⎟
+⎜ ⎟− − − − +⎝ ⎠

. 

Finally, the two-sided p-value is 
2 2

1Pr q Bp Xχ − D⎡ ⎤= ≥⎣ ⎦ . 
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If the p-value is significant, then the null hypothesis is rejected, and it is concluded that 
the odds ratios are not homogeneous across strata.  Specifically, it is not appropriate to 
report the Mantel-Haenszel pooled estimate of the odds ratio (a similar test statistic can 
be formulated for the relative risk).  The test of homogeneity should be performed before 
deciding to report the pooled odds ratio. 

6.1.3 Hypothesis Testing 
The null hypotheses 10 : MHH OR =  can be tested against the alternative : 1A MHH OR ≠  
with the following Mantel-Haenszel statistic 

( )

( )

2

12 2
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i i
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∑
 

where 

( ) ( )( )

( ) ( )( )( )( )
( )2ar

1

i i i i
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i

i i i i i i i i
i

i i

a b a c
E a

n
a b c d a c b d

v a
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+ +
=

+ + + +
=

−

. 

The 2-sided p-value is 2 2
1Pr MHp Xχ⎡ ⎤= ≥⎣ ⎦ . 

 111



Example 3 (SHHS) 
The next few pages display the SAS analysis of the effect of residence on CHD risk, 
controlling for smoking status.  An interpretation of the results proceeds as follows: 

1. The Breslow-Day test does not provide evidence against homogeneity of the risk 
ratios (p = 0.8701).  Consequently, it is decided that the Mantel-Haenszel pooled 
estimate is appropriate to report. 

2. The Mantel-Haenszel estimate of the common relative risk is 1.30 with a 95% 
confidence interval of (0.96, 1.78). 

3. The Mantel-Haenszel test statistic indicates that the adjusted relative risk is not 
significantly different from one (p = 0.0940).  Therefore, the association between 
residence and CHD is not significant after controlling for smoking status. 
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SAS Program and Output 
 
data shhs; 
 input CHD $ Residence $ Smoker $ N; 
 cards; 
 Yes Rented Yes 52 
 Yes Rented No  33 
 No  Rented Yes 898 
 No  Rented No  923 
 Yes Owner  Yes 29 
 Yes Owner  No  48 
 No  Owner  Yes 678 
 No  Owner  No  1722 
; 

proc freq order=data data=shhs; 
 weight N; 
 tables Smoker*Residence*CHD / relrisk cmh; 
run;

 
Syntax 

• In the tables Smoker*Residence*CHD statement the confounding variable(s) is 
positioned first.  Conversely, the measures and test of association will focus on the 
association between the last two variables. 

• It is a good idea to request the stratum-specific risk estimates via the relrisk option 
in order to check that the desired relative risks are being computed. 

• cmh will produce the Mantel-Haenzel odds ratios and relative risks and carry out 
the Breslow-Day test of homogeneity. 



The FREQ Procedure 
 
Table 1 of Residence by CHD 
Controlling for Smoker=Yes 
 
Residence     CHD 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚Yes     ‚No      ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Rented   ‚     52 ‚    898 ‚    950 
         ‚   3.14 ‚  54.19 ‚  57.33 
         ‚   5.47 ‚  94.53 ‚ 
         ‚  64.20 ‚  56.98 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Owner    ‚     29 ‚    678 ‚    707 
         ‚   1.75 ‚  40.92 ‚  42.67 
         ‚   4.10 ‚  95.90 ‚ 
         ‚  35.80 ‚  43.02 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          81     1576     1657 
             4.89    95.11   100.00 
 
 
Statistics for Table 1 of Residence by CHD 
Controlling for Smoker=Yes 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      1.3538        0.8503        2.1554 
Cohort (Col1 Risk)             1.3344        0.8563        2.0797 
Cohort (Col2 Risk)             0.9857        0.9646        1.0072 
 
Sample Size = 1657 
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The FREQ Procedure 
 
Table 2 of Residence by CHD 
Controlling for Smoker=No 
 
Residence     CHD 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚Yes     ‚No      ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Rented   ‚     33 ‚    923 ‚    956 
         ‚   1.21 ‚  33.86 ‚  35.07 
         ‚   3.45 ‚  96.55 ‚ 
         ‚  40.74 ‚  34.90 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Owner    ‚     48 ‚   1722 ‚   1770 
         ‚   1.76 ‚  63.17 ‚  64.93 
         ‚   2.71 ‚  97.29 ‚ 
         ‚  59.26 ‚  65.10 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          81     2645     2726 
             2.97    97.03   100.00 
 
 
Statistics for Table 2 of Residence by CHD 
Controlling for Smoker=No 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      1.2826        0.8175        2.0123 
Cohort (Col1 Risk)             1.2729        0.8229        1.9689 
Cohort (Col2 Risk)             0.9924        0.9783        1.0067 
 
Sample Size = 2726 
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The FREQ Procedure 
 
Summary Statistics for Residence by CHD 
Controlling for Smoker 
 
  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1      2.8049    0.0940 
    2        Row Mean Scores Differ     1      2.8049    0.0940 
    3        General Association        1      2.8049    0.0940 
 
 
            Estimates of the Common Relative Risk (Row1/Row2) 
 
Type of Study     Method                  Value     95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control      Mantel-Haenszel        1.3176       0.9538       1.8203 
  (Odds Ratio)    Logit                  1.3166       0.9527       1.8195 
 
Cohort            Mantel-Haenszel        1.3035       0.9550       1.7792 
  (Col1 Risk)     Logit                  1.3028       0.9545       1.7781 
 
Cohort            Mantel-Haenszel        0.9898       0.9778       1.0018 
  (Col2 Risk)     Logit                  0.9903       0.9786       1.0022 
 
 
     Breslow-Day Test for 
Homogeneity of the Odds Ratios 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square              0.0268 
DF                           1 
Pr > ChiSq              0.8701 
 
 
Total Sample Size = 4383 
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6.1.4 Interaction 
Definition 

Interaction, also known as effect modification, occurs when the risk of disease for a 
select exposure varies across the levels of another variable. 

Gene Example 
Suppose that we are interested in studying the effects on disease of a specific gene 
(expressed/not expressed) and an environmental exposure (exposed/unexposed).  
Assume that we obtain the following data. 
 

 Gene Expressed Gene Not Expressed 
 Diseased Non-diseased Diseased Non-diseased
Exposed 20 5 5 20 
Unexposed 5 20 5 20 
OR 16.0 1.0 

 
We see that there is a strong gene-environment interaction with respect to disease risk.  
In fact, the risk of disease only increases for those subjects who both express the gene 
and have the environmental exposure.  Having the gene alone does not increase one’s 
risk; nor does only having the environmental exposure. 

 117



The risk of disease differs across the levels of the gene variable.  Thus, the gene and 
exposure variable interact in their effect on disease risk. 
 

Types of Interaction 
Consider the interaction diagrams which illustrate three potential effects of interaction 
between variables A and B. 

a) No Interaction between A and B 
b) Unilaterism:  exposure to A has no effect in the absence of exposure to B, but a 

considerable effect when B is present. 
c) Synergism:  the effect of A is in the same direction, but stronger in the presence of 

B 
d) Antagonism:  the effect of A works in the opposite direction in the presence of B. 
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Testing for Interaction 
Suppose that we are interested in testing for interaction between two variables A and B.  
If A has 2 levels and B has q levels then the hypotheses can be expressed as 
 

0 2:
:

q

A i j

H OR OR

H OR OR

= =

≠

…
 

 
where ORi is the odds ratio between disease and variable A, within the ith level of B.  In 
particular, we are simply performing a test of homogeneity across the levels of variable 
B.  The Breslow-Day test is appropriate for this situation.  If the test of homogeneity is 
rejected, then it can be concluded that the two variables interact in their effect on 
disease. 
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Gene Example 
 
data gene; 
 input Gene $ Exposed $ 
Disease $ N; 
 cards; 
 Yes Yes Yes 20 
 Yes Yes No  5 
 Yes No  Yes 5 
 Yes No  No  20 
 No  Yes Yes 5 
 No  Yes No  20 
 No  No  Yes 5 
 No  No  No  20 
; 

proc freq data=gene; 
 weight N; 
 tables Gene*Exposed*Disease / cmh; 
run; 
 
     Breslow-Day Test for 
Homogeneity of the Odds Ratios 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square              8.2058 
DF                           1 
Pr > ChiSq              0.0042 
 
 
Total Sample Size = 100 



6.1.5 Confounding versus Interaction 
 

Ex. Stratum OR Crude 
OR Confounding Interaction 1 2 

1 1.02 1.86 4.00 Yes Yes 
2 1.74 3.00 1.00 Yes Yes 
3 0.96 0.45 1.83 Yes Yes 
4 1.83 1.83 1.83 No No 
5 1.03 1.03 4.00 Yes No 
6 3.00 3.00 1.00 Yes No 
7 0.83 0.83 1.83 Yes No 
8 1.07 9.40 4.00 - Yes 
9 3.00 0.33 1.00 - Yes 
10 0.36 6.00 1.83 - Yes 

 

Notes 
• Our goal was to estimate the effect on disease risk of a select exposure variable, 

while controlling for the effects of other extraneous variables. 
• An exposure-disease relationship that varies across levels of the extraneous 

variables is evidence of interaction.  In the presence of interaction, measures of 
association are often reported separately for each level of the extraneous variables. 
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• The Breslow-Day statistic can be used to test for interaction.  However, this test 
may have low power.  Oftentimes, the stratum-specific odds ratios (or relative risks) 
are reported, instead of a pooled estimate, based on a subjective assessment of 
the observed differences.  Two rules-of-thumb: 
1. If the individual odds ratios are quite different from one-another, then we will 

likely not want to pool the data. 
2. If the effects are all in the same direction and the differences among the 

individual estimates are moderate, then it is okay to pool. 
• The Mantel-Haenszel estimator provides a measure of association between 

exposure and disease, controlling for the effects of one or more extraneous 
variables.  The Mantel-Haenszel statistic can be used to assess the significance of 
the association.  This statistic is appropriate if 
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• Confounding is present in the data if the Mantel-Haenszel odds ratio is substantially 
different from the crude estimate of the odds ratio. 
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Evans County Heart Study (ECHS) Example 
A follow-up study was conducted to look at the association between endogenous 
catecholamine levels (CAT) and the subsequent seven-year incidence of coronary heart 
disease (CHD) in white males.  Suppose that age and ECG status are potential 
confounders.  The crude and stratified relative risk estimates (95% CI) are given below. 
 

Table 6.  Estimates stratified by age (<55/55+) and ECG status (Normal/Abnormal). 
 <55, Normal <55, Abnormal 
CAT CHD No CHD CHD No CHD 
High 1 7 3 14 
Low 17 257 7 52 
RR 2.01 (0.30, 13.34) 1.49 (0.43, 5.14) 
   
 55+, Normal 55+, Abnormal 
CAT CHD No CHD CHD No CHD 
High 9 30 14 44 
Low 15 107 5 27 
RR 1.88 (0.89, 3.95) 1.54 (0.61, 3.90) 
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Table 7.  Crude Estimate 
CAT CHD No CHD Totals 
High 27 95 122 
Low 44 443 487 
RR 2.45 (1.58, 3.79) 

 
Conclusions 

• The Breslow-Day test does not indicate significant heterogeneity across the levels 
of the confounders (p = 0.9831). 

• Furthermore, the individual associations are all positive and relatively similar.  Thus, 
it seems appropriate to report the pooled, Mantel-Haenszel estimate. 

• A Mantel-Haenszel estimate of 1.70, with a 95% confidence interval of (1.02, 2.82), 
was obtained for the overall relative risk of CHD for males with high versus low 
levels of CAT, after controlling for the effects of age and ECG status.  There is a 
significant positive association between CHD and elevated levels of CAT (p = 
0.0416). 

• Notice that the adjusted relative risk (1.70) is less than the crude estimate (2.45).  
Age and ECG status account for a portion of the apparent relationship in the crude 
estimate. 
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Esophageal Cancer Example 
Investigators were interested in studying the effects of alcohol consumption and tobacco 
use on the risk of esophageal cancer.  The following data were collected in a case-
control study: 
 

Tobacco Alcohol Cases Controls 
0-9 0-39 

40-79 
80-119 
120+ 

9 
34 
19 
16 

252 
145 
42 
8 

10-19 0-39 
40-79 
80-119 
120+ 

10 
17 
19 
12 

74 
68 
30 
8 

20-29 0-39 
40-79 
80-119 
120+ 

5 
15 
6 
7 

37 
47 
10 
5 

30+ 0-39 
40-79 
80-119 
120+ 

5 
9 
7 
10 

23 
20 
5 
3 

Totals  200 775 
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Analysis Goals: 

1. Test for an association between tobacco use and esophageal cancer while 
controlling for alcohol consumption. 

2. Test for an association between alcohol consumption and esophageal cancer while 
controlling for tobacco use. 

 
This is essentially the problem of testing for an association between disease and an 
exposure with multiple levels.  We had discussed previously the Cochran-Mantel-
Haenszel statistic for testing for a dose-response effect.  This statistic is quite general 
and can be used to test for a general association or trend between exposure and 
disease across the levels of a confounder(s). 
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SAS Program 
data esophageal; 
 input Tobacco $ Alcohol $ Cancer $ N; 
 cards; 
 0-9   0-39   No  252 
 0-9   0-39   Yes 9 
 0-9   40-79  No  145 
 0-9   40-79  Yes 34 
 0-9   80-119 No  42 
 0-9   80-119 Yes 19 
 0-9   120+   No  8 
 0-9   120+   Yes 16 
 10-19 0-39   No  74 
 10-19 0-39   Yes 10 
 10-19 40-79  No  68 
 10-19 40-79  Yes 17 
 10-19 80-119 No  30 
 10-19 80-119 Yes 19 
 10-19 120+   No  8 
 10-19 120+   Yes 12 
 20-29 0-39   No  37 
 20-29 0-39   Yes 5 
 20-29 40-79  No  47 

 20-29 40-79  Yes 15 
 20-29 80-119 No  10 
 20-29 80-119 Yes 6 
 20-29 120+   No  5 
 20-29 120+   Yes 7 
 30+   0-39   No  23 
 30+   0-39   Yes 5 
 30+   40-79  No  20 
 30+   40-79  Yes 9 
 30+   80-119 No  5 
 30+   80-119 Yes 7 
 30+   120+   No  3 
 30+   120+   Yes 10 
; 
 
proc freq data=esophageal; 
 weight N; 
 tables Alcohol*Cancer*Tobacco 
          Tobacco*Cancer*Alcohol 
          / cmh nocol norow nopercent; 
run;

 
Syntax 

• The first argument in the tables statement requests an analysis of tobacco and 
cancer adjusted for alcohol; the second of alcohol and cancer adjusted for tobacco. 



SAS Output: Tobacco-Cancer adjusted for Alcohol 
 

The FREQ Procedure 
 
Table 1 of Cancer by Tobacco 
Controlling for Alcohol=0-39 
 
Cancer     Tobacco 
 
Frequency‚0-9     ‚10-19   ‚20-29   ‚30+     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚    252 ‚     74 ‚     37 ‚     23 ‚    386 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚      9 ‚     10 ‚      5 ‚      5 ‚     29 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         261       84       42       28      415 
 
 
Table 2 of Cancer by Tobacco 
Controlling for Alcohol=40-79 
 
Cancer     Tobacco 
 
Frequency‚0-9     ‚10-19   ‚20-29   ‚30+     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚    145 ‚     68 ‚     47 ‚     20 ‚    280 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     34 ‚     17 ‚     15 ‚      9 ‚     75 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         179       85       62       29      355 

The FREQ Procedure 
 
Table 3 of Cancer by Tobacco 
Controlling for Alcohol=80-119 
 
Cancer     Tobacco 
 
Frequency‚0-9     ‚10-19   ‚20-29   ‚30+     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚     42 ‚     30 ‚     10 ‚      5 ‚     87 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     19 ‚     19 ‚      6 ‚      7 ‚     51 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          61       49       16       12      138 
 
 
Table 4 of Cancer by Tobacco 
Controlling for Alcohol=120+ 
 
Cancer     Tobacco 
 
Frequency‚0-9     ‚10-19   ‚20-29   ‚30+     ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚      8 ‚      8 ‚      5 ‚      3 ‚     24 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     16 ‚     12 ‚      7 ‚     10 ‚     45 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          24       20       12       13       69 
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Summary Statistics for Cancer by Tobacco 
Controlling for Alcohol 
 
  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1     12.0793    0.0005 
    2        Row Mean Scores Differ     1     12.0793    0.0005 
    3        General Association        3     13.1219    0.0044 
 
 
Total Sample Size = 977 
 

Notes 
• Statistic 1 - HA is that there is a correlation between the row and column scores.  A 

test for correlation. 
• Statistic 2 - HA is that the mean scores for the rows differ.  A test for trend. 
• Statistic 3 - HA is that there is a general association between the row and column 

variables. 
• There is a significant linear effect of tobacco use on the risk of esophageal cancer 

(p = 0.0005) after adjusting for alcohol consumption. 
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SAS Output: Alcohol-Cancer adjusted for Tobacco 
 

The FREQ Procedure 
 
Table 1 of Cancer by Alcohol 
Controlling for Tobacco=0-9 
 
Cancer     Alcohol 
 
Frequency‚0-39    ‚40-79   ‚80-119  ‚120+    ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚    252 ‚    145 ‚     42 ‚      8 ‚    447 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚      9 ‚     34 ‚     19 ‚     16 ‚     78 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         261      179       61       24      525 
 
 
Table 2 of Cancer by Alcohol 
Controlling for Tobacco=10-19 
 
Cancer     Alcohol 
 
Frequency‚0-39    ‚40-79   ‚80-119  ‚120+    ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚     74 ‚     68 ‚     30 ‚      8 ‚    180 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚     10 ‚     17 ‚     19 ‚     12 ‚     58 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          84       85       49       20      238 

The FREQ Procedure 
 
Table 3 of Cancer by Alcohol 
Controlling for Tobacco=20-29 
 
Cancer     Alcohol 
 
Frequency‚0-39    ‚40-79   ‚80-119  ‚120+    ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚     37 ‚     47 ‚     10 ‚      5 ‚     99 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚      5 ‚     15 ‚      6 ‚      7 ‚     33 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          42       62       16       12      132 
 
 
Table 4 of Cancer by Alcohol 
Controlling for Tobacco=30+ 
 
Cancer     Alcohol 
 
Frequency‚0-39    ‚40-79   ‚80-119  ‚120+    ‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
No       ‚     23 ‚     20 ‚      5 ‚      3 ‚     51 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Yes      ‚      5 ‚      9 ‚      7 ‚     10 ‚     31 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          28       29       12       13       82 



Summary Statistics for Cancer by Alcohol 
Controlling for Tobacco 
 
  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1    131.7559    <.0001 
    2        Row Mean Scores Differ     1    131.7559    <.0001 
    3        General Association        3    133.9499    <.0001 
 
 
Total Sample Size = 977 

 
Notes 

• There is a significant linear effect of alcohol consumption on the risk of esophageal 
cancer (p < 0.0001) after controlling for tobacco use. 
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6.1.6 Application to Matched Data 
Adjustments for confounding may be implemented at the study design stage through 
matching.  Matching is the process of selecting, for each case, a fixed number of 
controls who have the same values for a given set of confounding variables.  Age is a 
common matching variable. 

Advantages of Matching 
1. Direct control of the confounders. 
2. Ensures that adjustment is possible. 
3. May improve the efficiency (more precise risk estimates) of the investigation. 

Disadvantages of Matching 
1. Data collection is more complex. 
2. Data analysis must account for the matching. 
3. The effect on disease of the matching variable cannot be estimated. 
4. Adjustment can not be removed. 
5. There may be overmatching.  The matching variable may not be a true confounder, 

but related to the disease or exposure of interest. 
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D-Dimer Example 
A synthetic study of D-dimer (exposure) and myocardial infarction (disease) was carried 
out using cases and controls identified from the Scottish Health Heart Study.  Controls 
were matched to cases by baseline coronary disease status, 5-year age groups, gender, 
district of residence, and time of recruitment to the cohort study.  A subset of the 
matched data is given in the table below. 
 

Confounder Level Totals Exposed 
Cases:Controls Cases Controls 

1 1:2 0 1 
2 1:3 0 0 
3 1:3 1 1 
4 1:3 1 3 
5 1:4 0 1 
6 1:4 0 1 
7 1:4 0 1 
8 1:4 0 2 
9 1:4 0 3 
10 1:4 1 1 
11 1:4 1 1 
12 1:4 1 2 
13 1:4 1 3 
14 1:7 1 3 
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Confounder Level Totals Exposed 
Cases:Controls Cases Controls 

15 2:7 1 2 
16 2:7 1 5 
17 2:8 1 7 
18 2:8 2 3 
19 3:11 1 4 
20 3:12 2 8 

 
Twenty different levels of the confounders are listed in the table.  Matching was 
performed within each of the unique levels.  We could alternatively present the data in 20 
separate 2x2 tables; for example, the data at levels 19 and 20 can be summarized as 
 

 Level 19 Level 20 
 Cases Controls Cases Controls 
Exposed 1 4 2 8 
Unexposed 2 7 1 4 
OR 0.875 1.00 
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Analysis Goal:  Estimate the overall odds ratio between exposure and disease, while 
controlling for the matching variables (confounders). 
 
In looking at the resulting data, we see that this is the same situation that was covered in 
the introduction of the Mantel-Haenszel methods.  In other words, we can apply the 
same methods to this matched data problem.  Furthermore, the Mantel-Haenszel 
methods are appropriate for any degree of matching (1:1, 1:n, m:n, or any combination 
thereof). 
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SAS Program and Output 
data matching; 
 input Set $ Diseased $ Exposed $ N; 
 cards; 
 1  No  No  1 
 1  No  Yes 1 
 1  Yes No  1 
 1  Yes Yes 0 
 2  No  No  3 
 2  No  Yes 0 
 2  Yes No  1 
 2  Yes Yes 0 
 3  No  No  2 
 3  No  Yes 1 
 3  Yes No  0 
 3  Yes Yes 1 
 4  No  No  0 
 4  No  Yes 3 
 4  Yes No  0 
 4  Yes Yes 1 
 5  No  No  3 
 5  No  Yes 1 
 5  Yes No  1 
 5  Yes Yes 0 
 6  No  No  3 
 6  No  Yes 1 
 6  Yes No  1 
 6  Yes Yes 0 
 7  No  No  3 
 7  No  Yes 1 
 7  Yes No  1 
 7  Yes Yes 0 

 8  No  No  2 
 8  No  Yes 2 
 8  Yes No  1 
 8  Yes Yes 0 
 9  No  No  1 
 9  No  Yes 3 
 9  Yes No  1 
 9  Yes Yes 0 
 10 No  No  3 
 10 No  Yes 1 
 10 Yes No  0 
 10 Yes Yes 1 
 11 No  No  3 
 11 No  Yes 1 
 11 Yes No  0 
 11 Yes Yes 1 
 12 No  No  2 
 12 No  Yes 2 
 12 Yes No  0 
 12 Yes Yes 1 
 13 No  No  1 
 13 No  Yes 3 
 13 Yes No  0 
 13 Yes Yes 1 
 14 No  No  4 
 14 No  Yes 3 
 14 Yes No  0 
 14 Yes Yes 1 
 15 No  No  5 
 15 No  Yes 2 
 15 Yes No  1 

 15 Yes Yes 1 
 16 No  No  2 
 16 No  Yes 5 
 16 Yes No  1 
 16 Yes Yes 1 
 17 No  No  1 
 17 No  Yes 7 
 17 Yes No  1 
 17 Yes Yes 1 
 18 No  No  5 
 18 No  Yes 3 
 18 Yes No  0 
 18 Yes Yes 2 
 19 No  No  7 
 19 No  Yes 4 
 19 Yes No  2 
 19 Yes Yes 1 
 20 No  No  4 
 20 No  Yes 8 
 20 Yes No  1 
 20 Yes Yes 2 
; 
 
proc freq order=data 
data=matching; 
 weight N; 
 tables Set*Exposed*Diseased 
          / cmh; 
run; 

 



The FREQ Procedure 
 
Summary Statistics for Exposed by Diseased 
Controlling for Set 
 
  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1      0.2735    0.6010 
    2        Row Mean Scores Differ     1      0.2735    0.6010 
    3        General Association        1      0.2735    0.6010 
 
 
            Estimates of the Common Relative Risk (Row1/Row2) 
 
Type of Study     Method                  Value     95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control      Mantel-Haenszel        1.2647       0.5291       3.0228 
  (Odds Ratio)    Logit **               1.1897       0.5277       2.6821 
 
Cohort            Mantel-Haenszel        1.0564       0.8605       1.2968 
  (Col1 Risk)     Logit                  1.0027       0.8426       1.1932 
 
Cohort            Mantel-Haenszel        0.8106       0.3739       1.7571 
  (Col2 Risk)     Logit **               0.9225       0.4985       1.7072 
 
** These logit estimators use a correction of 0.5 in every cell 
     of those tables that contain a zero. Tables with a zero 
     row or a zero column are not included in computing the 
     logit estimators. 
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     Breslow-Day Test for 
Homogeneity of the Odds Ratios 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square             16.1411 
DF                          17 
Pr > ChiSq              0.5139 
 
 
Total Sample Size = 135 

 
Conclusions 

• The Mantel-Haenszel adjusted odds of myocardial infarction for d-dimer positive 
individuals is 1.26 times that for d-dimer negative individuals.  The 95% confidence 
interval is (0.53, 3.02) and the association is not statistically significant (p = 0.6010). 

6.1.7 Comments on the Cochran-Mantel-Haenszel Test 
In general, the CMH statistic can be used to test for an association between two 
categorical variables.  By controlling the column and row scores, the test can be 
powered to detect specific alternative hypotheses: 

• Integer scores (row mean scores test) - more powerful for detecting linear trends 
than the general association test. 

• No scores (general association test) - more powerful for detecting non-linear trends. 
Note that when scores are used, associations in the data may be detected even if the 
trend is not strictly increasing or decreasing. 
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Non-Linear Trend Example 
Consider the following data: 
 

 Exposure 
 1 2 3 4 
Controls 50 50 30 50 
Cases 50 50 70 50 
OR 1.0 1.0 2.33 1.0 

 
The resulting CMH test results are given below. 
 
Summary Statistics for disease by exposure 
 
  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1      0.8061    0.3693 
    2        Row Mean Scores Differ     1      0.8061    0.3693 
    3        General Association        3     12.0909    0.0071 
 
 
Total Sample Size = 400 

 140



 

Linear Trend Example 
Consider the data: 
 

 Exposure 
 1 2 3 4 
Controls 50 45 40 35 
Cases 50 55 60 65 
OR 1.0 1.22 1.5 1.86 

 
which yield the following test results: 
 
Summary Statistics for disease by exposure 
 
  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
    1        Nonzero Correlation        1      5.1023    0.0239 
    2        Row Mean Scores Differ     1      5.1023    0.0239 
    3        General Association        3      5.1023    0.1645 
 
 
Total Sample Size = 400 
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Notes 
• In the non-linear example, where there was an effect of exposure level 3 but no 

trend, the general association test was more powerful; i.e. more likely to detect an 
association (smaller p-value: 0.0071 vs. 0.3693). 

• When the trend in the odds ratios was strictly increasing, the mean scores test was 
more powerful (smaller p-value: 0.0239 vs. 0.1645). 

• If we were to increase the sample sizes and keep the ratio of controls to cases the 
same within exposure levels, the p-values could be made arbitrarily small.  In other 
words, it is possible to get significant results from either test regardless of the type 
of association. 

• Significance in one test does not imply that the other test will be significant.  It 
depends on the type of association in the data. 
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7.1 Overview 
Matching subjects at the time of enrollment is one possible method of controlling for 
potential confounders.  The two types of matching are: 

1. Individual - subject-by-subject matching per individual characteristics. 
2. Frequency - define a discrete number of categories from the range of values for the 

confounders; balance the number of subjects within each category. 
 

7.1.1 Advantages of Matching 

• Direct control of the confounders. 
• Ensures that adjustment is possible. 
• May improve the efficiency (more precise risk estimates) of the investigation. 
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Cohort Example 
This example illustrates the effect that matching can have on the precision of the relative 
risk estimate. 
 
Unmatched Study:  Consider the first year data from a hypothetical cohort study, where 
the exposed and unexposed subjects were independently select at random. 
 

 Male Female 
 Exposed Unexposed Exposed Unexposed
Diseased 450 5 10 9 
Totals 90,000 10,000 10,000 90,000 
Rate 0.005 0.0005 0.001 0.0001 
RR 10.0 10.0 

  
Note that 

• There are an equal number (100,000) of males and females. 
• 90% of males and 10% of females are exposed. 
• The gender-specific risks for the exposed are 10 times greater than that for the 

unexposed. 
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• The crude estimate is 
+

= =
+crude

(450 10) /100,000 32.9
(5 9) /100,000

RR . 

• The relationship between exposure and disease is confounded by gender. 
• The Mantel-Haenszel estimate of the adjusted relative risk is 10.0 with a 95% 

confidence interval of (4.73, 21.16). 
 
Matched Study:  Suppose that, in our study, we were to enroll the same number of 
exposed male (90,000) and exposed female (10,000) subjects.  Then, for each, select an 
unexposed subject of the same gender. 
  

 Male Female 
 Exposed Unexposed Exposed Unexposed
Diseased 450 45 10 1 
Totals 90,000 90,000 10,000 10,000 
Rate 0.005 0.0005 0.001 0.0001 
RR 10.0 10.0 
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The rates in the unmatched study were used to generate the matched data, as follows: 
 

1. Select 100,000 exposed. 
a. Exposed are 90% male, as 

before. 
b. Enroll 90,000 exposed males 

and 10,000 exposed females. 
2. Select 100,000 unexposed 

subjects matched on gender. 
a. Individual matching will yield 

the same gender mix as in the 
exposed cohort. 

b. Enroll 90,000 unexposed 
males and 10,000 unexposed 
females. 

3. In exposed males: 
a. N = 90,000. 
b. Assume the same disease 

rate of 0.005 as before. 
c. Expect 450 incident cases 

4. In unexposed males: 
a. N = 90,000 
b. Assume a disease rate of 

0.0005 
c. Expect 45 cases 

5. In exposed females: 
a. N = 10,000. 
b. Assume the previous disease 

rate of 0.001. 
c. Expect 10 incident cases 

6. In unexposed females: 
a. N = 10,000 
b. Assumed disease rate is 

0.0001 
c. Expect 1 case 



Note that 
• The proportion of exposed individuals is the same for both males and females 

(50%). 
• The gender-specific risk for the exposed is 10 times greater than that for the 

unexposed. 
• The crude estimate is 

crude
(450 10) /100,000 10.0

(45 1) /100,000
RR +

= =
+

. 

• The relationship between exposure and disease is not confounded by gender. 
• Therefore, it is appropriate to estimate the relative risk using the crude value of 

10.0, for which the 95% confidence interval is (7.39, 13.54). 
 
Conclusions 

• The same number of exposed (100,000) and unexposed (100,000) subjects were 
included in the two studies. 

• Gender was a confounder that was controlled for using Mantel-Haenszel methods 
in the first study and matching in the second study. 

• The matched study yielded a narrower 95% confidence interval of (7.39, 13.54) 
versus (4.73, 21.16). 

• Therefore, matching improved the efficiency of the investigation. 
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• A situation could arise where confounding is so extreme in the unmatched study so 
as to render the Mantel-Haenszel adjustment ineffective.  Consider, for example, a 
study where 100,000 exposed and 100,000 unexposed subjects are selected at 
random.  In the most extreme case of confounding by gender, we could obtain the 
following results: 
 

 Male Female 
 Exposed Unexposed Exposed Unexposed
Diseased 500 0 0 10 
Totals 100,000 0 0 100,000 
Rate 0.005 - - 0.0001 
RR - - 

 
where the crude estimate of the relative risk is 
 

crude
(500 0) /100,000 50.0
(0 10) /100,000

RR +
= =

+
 

 
and the Mantel-Haenszel adjusted relative risk cannot be computed.  In other 
words, we cannot analytically control for the effects of gender in order to study the 
exposure-disease relationship. 
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Case-Control Example 
Consider a case-control study carried out using the (450 + 5 + 10 + 9) = 474 incident 
cases from the previous example.  If we apply the same assumptions as before, the 
following data result: 
 

 Male Female 
 Case Control Case Control 
Exposed 450 410 10 2 
Unexposed 5 45 9 17 
Totals 455 455 19 19 
OR 9.88 9.44 

 
The rates in the cohort study were used to generate the matched case-control data, as 
follows: 
 

1. Number of cases is the same. 
2. Individual matching on case-control status gives 455 male controls. 

a. 90% of males are exposed; 10% unexposed. 
b. Expect 0.90 * 455 = 410 exposed males. 
c. Expect 0.10 * 455 = 45 unexposed males. 

 149



3. Matching produces 19 female controls. 
a. 10% of females are exposed; 90% unexposed. 
b. Expect 0.10 * 19 = 2 exposed females. 
c. Expect 0.90 * 19 = 17 unexposed females. 

 
Note that 

• The crude estimate of the odds ratio is 

crude
460 62 4.94
412 14

OR ×
= =

×
 

for which the gender-specific odds ratios are consistently larger. 
• Even though there is no confounding in the population, matching has created a 

selection bias. 
• The Mantel-Haenszel method can be used to account for the matching and, thus, 

remove the selection bias 
( )( ) ( )( )
( )( ) ( )( )

450 45 910 10 17 38
9.80

410 5 910 2 9 38MHOR
+

= =
+

. 
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7.1.2 Why Case-Control Matching Induces Selection Bias 

• The purpose of the control group in a case-control study is to provide an estimate of 
the distribution of exposure in the source population. 

• If controls are selected to match the cases on a factor that is correlated with the 
exposure, then the crude exposure frequency in controls will be distorted in the 
direction of similarity to that of the cases. 

o In a case-control study we are comparing exposure odds. 
o Matched controls are identical to cases with respect to the matching factor.   
o If the matching factor is perfectly correlated with the exposure, the exposure 

distribution of controls would be identical to that of the cases. 
o In this case the crude odds ratio would be 1.0.   
o This would also occur if there was a perfect negative correlation between the 

matching variable and exposure. 

7.1.3 Disadvantages to Matching 

• Additional cost (time and money) of finding a control to match each case. 
• The statistical efficiency that matching provides often comes at a substantial cost.   

o If a factor has been matched, it is no longer possible to estimate the effect of 
that factor from the stratified data alone. 

o Matching distorts the relation of the factor to the disease. 
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• Do not match on a factor that is associated only with exposure and not with the 
disease (not a true confounder).   

• When matched and unmatched controls have equal cost and the potential matching 
factor is to be treated purely as a confounder, then avoid matching on the factor 
unless the factor is expected to be a strong disease risk factor with at least some 
association with exposure. 

• Matching on a non-confounder will usually harm efficiency. 
 

7.1.4 Comments on the Analysis of Cohort and Case-Control Studies 

• In a cohort study without loss to follow-up, the relative risk estimate need not be 
adjusted to account for the matching, because matching unexposed to exposed 
prevents an association between exposure and the matching factors. 

• If the matching factors are associated with the exposure in the study population, the 
odds ratio estimates in a case-control study must be adjusted for matching, even if 
the matching factors are not risk factors for the disease. 
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7.2 Analysis of 1:1 Matched Case-Control Data 

7.2.1 Continuous Exposure 
Infant Malformation Example 

Each of 11 malformed infants collected from rural French villages were matched to a 
control for sex, date of birth, and location.  A continuous variable y representing the 
distance to the nearest electrical power line was measured for each subject.   
A general layout for data from a typical 1:1 matched study is given by the following table: 
 

 Distance to Power Line 
Cases y11 y12 … y1n 
Controls y21 y12 … y2n 

 
The raw data and differences for this study of the effects of power line exposure are 
displayed below: 
 

Case-
Control Pair 

Distance to Power Line Difference Case Control 
1 1150 300 850 
2 100 100 0 
3 2000 2150 -150 
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Case-
Control Pair 

Distance to Power Line Difference Case Control 
4 350 1350 -1000 
5 400 800 -400 
6 2700 1250 1450 
7 1200 450 750 
8 1800 400 1400 
9 10 900 -890 
10 250 1950 -1700 
11 350 1050 -700 

 
To test if there is a difference in exposure between cases and controls, we can use 

• Paired t-test 
o As a rule of thumb, is used if there are at least 20 matched pairs. 
o The null hypothesis is that the mean exposure for cases is equal to that for 

controls. 
• Wilcoxon signed-rank test 

o A non-parametric test which is appropriate regardless of the sample size. 
o The null hypothesis is that the distribution of exposures is the same for both 

cases and controls. 
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SAS Code and Output 
 
data powerlines; 
 input pair case control; 
 diff = case - control; 
 cards; 
 1  1150 300 
 2  100  100 
 3  2000 2150 
 4  350  1350 
 5  400  800 
 6  2700 1250 

 7  1200 450 
 8  1800 400 
 9  10   900 
 10 250  1950 
 11 350  1050 
; 
 
proc univariate data=powerlines; 
 var diff; 
run;

 

 
Syntax 

• diff = case - control; creates a new variable that is the difference in the distances 
for the case and the control.  This is the variable used in the paired data analyses. 

• PROC UNIVARIATE generates summary statistics for the SAS variables listed in 
the var statement. 



The UNIVARIATE Procedure 
Variable:  diff 
 
                            Moments 
  
N                          11    Sum Weights                 11 
Mean               -35.454545    Sum Observations          -390 
Std Deviation      1033.84103    Variance            1068827.27 
Skewness           0.10370826    Kurtosis             -1.053542 
Uncorrected SS       10702100    Corrected SS        10688272.7 
Coeff Variation    -2915.9619    Std Error Mean      311.714799 
 
 
              Basic Statistical Measures 
 
    Location                    Variability 
 
Mean      -35.455     Std Deviation               1034 
Median   -150.000     Variance                 1068827 
Mode         .        Range                       3150 
                      Interquartile Range         1740 
 
 
           Tests for Location: Mu0=0 
 
Test           -Statistic-    -----p Value------ 
 
Student's t    t  -0.11374    Pr > |t|    0.9117 
Sign           M        -1    Pr >= |M|   0.7539 
Signed Rank    S      -1.5    Pr >= |S|   0.9219 
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Conclusions 
• The p-value for the paired t-test is 0.9117 and 0.9219 for the Wilcoxon signed-rank 

test. 
• The paired t-test is questionable since the sample size is less than 20.  Thus, the 

Wilcoxon result would be reported. 
• At the 5% level of significance, there is no evidence of a difference in the 

distribution of distances to power lines between diseased and non-diseased infants 
(p = 0.9219). 

 

7.2.2 Categorical Exposure 
Low Birthweight Example 

Suppose that a case-control study was conducted to study the effects of maternal 
smoking during pregnancy on the risk of low birthweight.  A case is defined as a mother 
who gave birth to a low-weight (<2500 grams) baby.  One-hundred-sixty-seven cases 
were enrolled.  Each case was matched to a control based on age, length of pregnancy, 
and mother’s weight. 

• Exposure = Smoking during pregnancy (Yes/No) 
• Disease = Low birthweight (<2500 grams) 
• Matching factors = Age, length of pregnancy, and mother’s weight. 
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The four possible outcomes for each case-control pair in the study are 
 

Case Control N 
Smoker Smoker 15 
Smoker Nonsmoker 40 
Nonsmoker Smoker 22 
Nonsmoker Nonsmoker 90 
Total 167 

 
Alternatively, we could summarize the data in a 2×2 table, such as 
 

 Control Totals Case Smoker Nonsmoker 
Smoker 15 40 55 
Nonsmoker 22 90 112 
Totals 37 130 167 
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In general, the following notation is used: 
 

 Control Totals Case Exposed Unexposed 
Exposed a b a+b 
Unexposed c d c+d 
Totals a+c b+d n 

  
• Let n represent the total number of case-control pairs. 
• For cases, 

[ ]1 Pr Exposed|Case a bp
n
+ . =

• For controls, 

[ ]2 Pr Exposed|Control a cp
n
+ . =
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• These two proportions differ only if b is different from c.  Indeed, the difference in 
the two proportions is given by 

1 2ˆ ˆ a b a c b cp p
n n n
+ + −

− = − = . 

This is a measure of the difference in the exposure risk between cases and 
controls. 

• We are interested in testing the null and alternative hypotheses of the form 

0 1

1 2

:
:A

H p p
H p p

2=

≠
. 

Specifically, the null is that the probability of exposure is the same for both cases 
and controls.  From the previous point, this test only depends on the number of 
discordant case-control pairs, b and c. 

• If the number of discordant pairs b + c ≥ 20 then McNemar’s test can be used to 
test the hypotheses.  The test statistic is 

2
2 2

1
( ) ~b cX
b c

χ−
=

+
 

with a two-sided p-value of 
2 2
1Prp Xχ⎡ ⎤= ≥⎣ ⎦ . 
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• One can always use the exact binomial distribution to test the hypotheses.  Under 
the null hypothesis, the number of case-control pairs Y in table cell b or c is 
distributed 

 
( )~ 1/ 2,Y Binomial b c+  

 
for which a two-sided p-value is 
 

( )2Pr min ,p Y b= ≤ c⎡ ⎤⎣ ⎦ . 

 
In terms of discordant pairs, we are testing that the case-control pair of (Smoker, 
Nonsmoker) is equally as likely as (Nonsmoker, Smoker). 
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SAS Code and Output 
 
data birthweight; 
 input case $ control $ N; 
 cards; 
 Smoker    Smoker    15 
 Smoker    Nonsmoker 40 
 Nonsmoker Smoker    22 
 Nonsmoker Nonsmoker 90 
; 

proc freq order=data data=birthweight; 
 weight N; 
 tables case*control / agree; 
 
proc freq order=data data=birthweight; 
 where case ^= control; 
 weight N; 
 exact binomial; 
 tables case; 
run; 

 

 
Syntax 

• The specification of the agree option in the first PROC FREQ will produce 
McNemar’s test. 

• The where statement in the second PROC FREQ restricts the analysis to 
discordant pairs only.  Subsequently, the exact binomial option uses the binomial 
distribution to test that the discordant pairs are equally distributed. 



The FREQ Procedure 
 
Table of case by control 
 
case      control 
 
Frequency‚ 
Percent  ‚ 
Row Pct  ‚ 
Col Pct  ‚Smoker  ‚Nonsmoke‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Smoker   ‚     15 ‚     40 ‚     55 
         ‚   8.98 ‚  23.95 ‚  32.93 
         ‚  27.27 ‚  72.73 ‚ 
         ‚  40.54 ‚  30.77 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Nonsmoke ‚     22 ‚     90 ‚    112 
         ‚  13.17 ‚  53.89 ‚  67.07 
         ‚  19.64 ‚  80.36 ‚ 
         ‚  59.46 ‚  69.23 ‚ 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total          37      130      167 
            22.16    77.84   100.00 

Statistics for Table of case by control 
 
    McNemar's Test 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Statistic (S)    5.2258 
DF                    1 
Pr > S           0.0223 
 
 
    Simple Kappa Coefficient 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Kappa                     0.0832 
ASE                       0.0770 
95% Lower Conf Limit     -0.0678 
95% Upper Conf Limit      0.2342 
 
Sample Size = 167 
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The FREQ Procedure 
 
                                     Cumulative    Cumulative 
case        Frequency     Percent     Frequency      Percent 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Smoker            40       64.52            40        64.52 
Nonsmoke          22       35.48            62       100.00 
 
 
        Binomial Proportion 
         for case = Smoker 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Proportion (P)               0.6452 
ASE                          0.0608 
95% Lower Conf Limit         0.5261 
95% Upper Conf Limit         0.7643 
 
Exact Conf Limits 
95% Lower Conf Limit         0.5134 
95% Upper Conf Limit         0.7626 
 
   Test of H0: Proportion = 0.5 
 
ASE under H0                 0.0635 
Z                            2.2860 
One-sided Pr >  Z            0.0111 
Two-sided Pr > |Z|           0.0223 
 
Exact Test 
One-sided Pr >=  P           0.0150 
Two-sided = 2 * One-sided    0.0300 
 
Sample Size = 62 
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Thus, the odds of disease is 1.82 times more likely for exposed than for unexposed. 

• The p-value from McNemar’s test is 0.0223 and 0.0300 from the exact binomial 
test.  Since there are 62 discordant case-control pairs, it is appropriate to report the 
McNemar result.  Thus, at the 5% level of significant, the risk of exposure differs 
between cases and controls (p = 0.0223). 

• It turns out that the Mantel-Haenszel estimate of the odds ratio for a case-control 
study with 1:1 matching, such as this, is 

40 1.82
22MH

bOR
c

= = = . 
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8.1 Overview 
Standardization is an analytic method for dealing with confounding by evaluating the 
theoretical effect of the observed exposure on a standard population with a known 
distribution of the confounding variable.  The vast majority of standardization occurs 
where the confounding variable is age. 

California/Maine Example 
Suppose that we are interested in comparing the mortality rates between California and 
Maine.  The total population and number of observed deaths in 1970 are stratified by age 
and presented below. 
 

Age California (a) Maine (b) United States (s) 
Pop/1000 Deaths Pop/1000 Deaths Pop/1000 Deaths 

<15 5,524 8,751 286 535 57,900 103,062 
15-24 3,558 4,747 168 192 35,441 45,260 
25-34 2,677 4,036 110 152 24,907 39,193 
35-44 2,359 6,701 109 313 23,088 72,617 
45-54 2,330 15,675 110 759 23,220 169,517 
55-64 1,704 26,276 94 1,622 18,590 308,373 
65-74 1,105 36,259 69 2,690 12,436 445,531 
75+ 696 63,840 46 4,788 7,630 736,758 
Totals 19,953 166,285 992 11,051 203,212 1,920,311 
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The age-specific population distributions are: 
 

Age 
California (a) Maine (b) United States (s) 

( )a
ip  ( ) ( )a a

i ip p∑  ( )b
ip  ( ) ( )b b

i ip p∑  ( )s
ip  ( ) ( )s s

i ip p∑  
<15 5,524 27.7% 286 28.8% 57,900 28.5% 
15-24 3,558 17.8% 168 16.9% 35,441 17.4% 
25-34 2,677 13.4% 110 11.1% 24,907 12.3% 
35-44 2,359 11.8% 109 11.0% 23,088 11.4% 
45-54 2,330 11.7% 110 11.1% 23,220 11.4% 
55-64 1,704 8.5% 94 9.5% 18,590 9.1% 
65-74 1,105 5.5% 69 7.0% 12,436 6.1% 
75+ 696 3.5% 46 4.6% 7,630 3.8% 
Totals 19,953 100.0% 992 100.0% 203,212 100.0% 

 
Note that 

• The population of Maine tends to be older than California. 
• Because mortality is related to age, we would want to adjust for the differences in 

age between the two populations. 
• The Mantel-Haenszel approach is one method we have already discussed for 

dealing with this problem; direct and indirect standardization are other means of 
adjusting for confounding. 

• Although this mortality example will be used throughout the notes, keep in mind that 
these methods are applicable to any outcome of interest and any confounder. 
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8.2 Direct Standardization 
The direct standardized event rate (DSR) is the number of events that would be 
expected in the standard population if the age-specific event rates in the study 
population prevailed, divided by the size of the standard population. 

• This ensures that the population age distributions are the same, so that age will not 
confound the relationship between exposure and disease. 

• It guarantees that the rates are being compared in populations with identical age 
distributions. 

Notation 

Stratum-specific population sizes Stratum-specific number of events 
( )a
ip  Total for the ith level of population 

a 
( )b
ip  Total for population b 
( )s
ip  Total for the standard population 
( ) ( )s s

ip p= ∑  

( )a
ie  Number of events in the ith level of 

population a 
( )b
ie  Number for population b 
( )s
ie  Number for the standard population 
( ) ( )s s

ie e= ∑  
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Stratum-specific rates: 

( )
( )

( )
( )

( )

( )
( )

( )

( ), ,
a b s

a b si i i
i i ia b s

i i i

e e er r r
p p p

= = =  

Crude rates: 

( )
( )

( )
( )

( )

( )
( )

( )

( ), ,
a b s

a b s
a b s

e e er r r
p p p

= = =  

 
California/Maine Example 
The observed age-specific mortality rates per 1,000 person-years are 
 

 Mortality Rates per 1,000 
Age California Maine US 
<15 1.6 1.9 1.8 
15-24 1.3 1.1 1.3 
25-34 1.5 1.4 1.6 
35-44 2.8 2.9 3.1 
45-54 6.7 6.9 7.3 
55-64 15.4 17.3 16.6 
65-74 32.8 39.0 35.8 
75+ 91.7 104.1 96.6 
Crude Rates 8.3 11.4 9.4 
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The crude rate ratio comparing Maine to California is 

crude 11.4 8.3 1.37RR = = . 

8.2.1 Poisson Distribution 
In constructing confidence intervals for the indirect and direct standardized rates, the 
number of events is commonly assumed to follow a Poisson distribution.  Probability 
distributions allow us to calculate the probability that a random variable takes on a 
specific value or range of values.  In this case, the random variable of interest is the 
number of events observed over a period of time. 

Properties of a Poisson Random Variable 
• Takes on integer values greater than or equal to zero; often a count of the number 

of occurrences of some event. 
• The probability that the random variable equals x is given by the formula 

Pr( )
!

xex
x

λλ−

=  

where λ controls the shape of the distribution and is referred to as the rate 
parameter.  λ can be any positive number.  We will denote the distribution as 
Poisson(λ). 
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• The expected value and variance are 
[ ]
[ ]

E X

Var X

λ

λ

=

=
. 

 
The following are plots of Poisson distributions for a rate parameter of 5 and 10. 
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Cumulative Poisson probabilities are given in Table 1 for a few, select values of λ. 
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Table 1.  Cumulative Poisson Probabilities [ ]Pr X x≤  

 Rate Parameter (λ) 
x 2 3 4 5 10 
0 0.1353 0.0498 0.0183 0.0067 0.0000 
1 0.4060 0.1991 0.0916 0.0404 0.0005 
2 0.6767 0.4232 0.2381 0.1247 0.0028 
3 0.8571 0.6472 0.4335 0.2650 0.0103 
4 0.9473 0.8153 0.6288 0.4405 0.0293 
5 0.9834 0.9161 0.7851 0.6160 0.0671 
6 0.9955 0.9665 0.8893 0.7622 0.1301 
7 0.9989 0.9881 0.9489 0.8666 0.2202 
8 0.9998 0.9962 0.9786 0.9319 0.3328 
9 1.0000 0.9989 0.9919 0.9682 0.4579 
10 1.0000 0.9997 0.9972 0.9863 0.5830 
11 1.0000 0.9999 0.9991 0.9945 0.6968 
12 1.0000 1.0000 0.9997 0.9980 0.7916 
13 1.0000 1.0000 0.9999 0.9993 0.8645 
14 1.0000 1.0000 1.0000 0.9998 0.9165 
15 1.0000 1.0000 1.0000 0.9999 0.9513 
16 1.0000 1.0000 1.0000 1.0000 0.9730 
17 1.0000 1.0000 1.0000 1.0000 0.9857 
18 1.0000 1.0000 1.0000 1.0000 0.9928 
19 1.0000 1.0000 1.0000 1.0000 0.9965 
# # # # # # 
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8.2.2 Estimation of the Direct Standardized Rate 
The direct method proposes to adjust the age distribution for each study population so 
that it matches the distribution in the standard population.  The formula is 
 

( )
( )

( )

( )
( )1 s

s si ii
i i is s

i

r peDSR p r w
pp p

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

∑∑ ∑  

 

where the  are the stratum-specific rates in the study population and the ir
( )s
iw  are the 

proportions from the standard population.  The DSR is the rate we would expect if the 
study subjects were distributed as in the standard population.  Literally, we are applying 
the observed rates to the standard population to compute the overall expected or 
adjusted rate.  If we assume that the number of events has a Poisson distribution, then 
the 95% confidence interval for the direct standardized rate is 
 

( )

( ) 2

0.975
1 s

i
is

i

pDSR z e
pp

⎛ ⎞
± ⎜ ⎟

⎝ ⎠
∑ . 
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California/Maine Example 
If we use the U.S. population as the standard population, then the weights for the direct 
standardization are simply the associated proportions within each age strata. 
 

 US (Standard Population) 
Age ( )s

ip  ( ) ( ) ( )s s s
i iw p p=  

<15 57,900 57,900 / 203,212 = 0.285 
15-24 35,441 35,441 / 203,212 = 0.174 
25-34 24,907 24,907 / 203,212 = 0.123 
35-44 23,088 23,088 / 203,212 = 0.114 
45-54 23,220 23,220 / 203,212 = 0.114 
55-64 18,590 18,590 / 203,212 = 0.091 
65-74 12,436 12,436 / 203,212 = 0.061 
75+ 7,630 7,630 / 203,212 = 0.038 
Totals 203,212 1.000 
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The direct, age-standardized mortality rates for California and Maine are 
 

 California (a) Maine (b) US 
Age ( )a

ir  ( ) ( )a s
i ir w  ( )b

ir  ( ) ( )b s
i ir w  ( )s

iw  
<15 1.6 0.451 1.9 0.533 0.285 
15-24 1.3 0.233 1.1 0.199 0.174 
25-34 1.5 0.185 1.4 0.169 0.123 
35-44 2.8 0.323 2.9 0.326 0.114 
45-54 6.7 0.769 6.9 0.788 0.114 
55-64 15.4 1.411 17.3 1.579 0.091 
65-74 32.8 2.008 39.0 2.386 0.061 
75+ 91.7 3.444 104.1 3.908 0.038 
Totals  8.823  9.889 1.000 

 
The age-adjusted mortality rate for California is 
 

( ) 8.823aDSR =  
 
deaths per 1,000 person-years. 
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The 95% confidence interval is 
 

( )
( )

( )
( )

( )

( )
( )

2

0.975

2

1

1 57,9008.823 1.96 8,751
203,212 5,524

8.823 1.96 0.0217

8.781,8.865

s
a a i

is a
i

pDSR z e
p p

⎛ ⎞
± ⎜ ⎟

⎝ ⎠

⎛ ⎞± +⎜ ⎟
⎝ ⎠

±

∑

… . 

 
Finally, the direct age-standardized rate ratio is 
 

direct 9.889 8.823 1.12RR = = . 
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8.2.3 Choice of Standard Population 
Note that the weights depend on the standard population.  Thus, different choices for the 
standard population will lead to different adjusted rates.  Some rules-of-thumb: 

• Select a population that is relevant to the data. 
• Understand what you are doing in calculating direct standard rates: 

o A younger standard population will weight earlier events more heavily. 
o An older population will weight later events more heavily. 

• Standardized rates are only meaningful with knowledge of the population that was 
used as the standard. 

• You could select one of the study populations (e.g. California or Maine) as the 
standard. 
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8.3 Indirect Standardization 
Sometimes direct adjustment is not valid: 

• Stratum-specific rates in the groups to be standardized are not available. 
• Sample sizes are so small that the stratum-specific rates are not reliable. 

Indirect standardization does not require stratum-specific rates in the study populations 
to be standardized.  It does require the 

• Stratum-specific distributions in the study population to be standardized. 
• Total events in the study population to be standardized. 
• Stratum-specific rates for the standard population. 

We will use the same notation as before. 

8.3.1 Estimation of the Indirect Standardized Rate 
Indirect standardization is a three-stage process: 

1. The stratum-specific rates in the standard population are applied to the study 
population.  This is done to compute the expected number of events (E) in the study 
population if the standard population rates were applicable: 

( )

( )
( )

s
si

i i is
i

eE p r . p
p

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑ ∑
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2. Divide the observed number of events by the expected number to obtain the 
standardized event ratio (SER) 

eSER
E

= . 

for which a 95% confidence interval is computed as 

0.975
eSER z

E
± . 

When the event is death this is referred to as the standardized mortality ratio 
(SMR).  A value less than one indicates a study population with a mortality rate less 
than that in the standard population, after adjusting for the confounder.  A value 
greater than one indicates a study population rate higher than in the standard 
population. 

3. The indirect standardized rate (ISR) is computed as the product of the 
standardized event rate and the crude rate in the standard population: 

( )sISR SER r= × . 
 

If we assume that the number of events follows a Poisson distribution, then a 95% 
confidence interval for the ISR is given by 

( )
0.975

s eISR z r
E

± . 
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California/Maine Example 
We can use the mortality rates in the U.S. population to compute indirect rates for 
California and Maine. 
 

 California Maine US 
Age Population 

( )a
ip  

Deaths 
( )a  iE

Population 
( )b
ip  

Deaths 
( )b  iE

Rate 
( )s  ir

<15 5,524 9,943 286 515 1.8 
15-24 3,558 4,625 168 218 1.3 
25-34 2,677 4,283 110 176 1.6 
35-44 2,359 7,313 109 338 3.1 
45-54 2,330 17,009 110 803 7.3 
55-64 1,704 28,286 94 1,560 16.6 
65-74 1,105 39,559 69 2,470 35.8 
75+ 696 67,234 46 4,444 96.6 
Totals  178,252  10,524 9.4 
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Recall that there were 166,285 observed deaths in California.  Thus, the indirect 
standardized rate for California is 
 

( ) ( )

( ) ( )

166,285 9.4
178,252
0.933 9.4

8.769

a sISR SER r= ×

= ×

=

=

 

 
deaths per 1,000 person-years.  The 95% confidence interval is 
 

( )

( )

( )

0.975

166,2858.769 1.96 9.4
178,252

8.727,8.811

s eISR z r
E

±

⎛ ⎞
± ⎜ ⎟

⎝ ⎠
. 
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( ) ( )

( ) ( )

11,051 9.4
10,524
1.050 9.4

9.870

a sISR SER r= ×

= ×

=

=

 

indirect 9.870 8.769 1.13RR = = . 

and, therefore, the indirect age-standardized rate ratio is 

Likewise, the indirect standardized rate for Maine is 
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9.1 Disease Incidence 
• Measures the occurrence of new disease. 
• Incidence data is often derived from cohort studies, also known as 

o Follow-up Studies 
o Incidence Studies 
o Panel Studies 
o Prospective Studies 

• Incidence is studied by recording the number of incident cases over a period of time 
among subjects who are known to be disease-free initially. 

• Following at-risk subjects over time allows investigators to measure risk factors 
before disease occurrence.  Such a study design allows for the observation of risk 
and disease in the proper time-sequence and is ideally suited for characterizing the 
association between the two. 
o Particularly true of chronic diseases for which the first occurrence of disease is 

often the event of interest. 
o May not be the case for acute diseases. 

• Two measures of disease incidence 
1. Incidence Rate 
2. Incidence Risk 
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9.2 Incidence Rates 

9.2.1 Definition 

• A measure of the potential for disease onset per unit of time in a given disease-free 
population. 

• Conceptually, it is an instantaneous measure that applies to a point in time. 
• Also referred to as: 

o Hazard Rate 
o Force of “Mortality” 
o Person-Time Incidence Rate 

• Expressed as the number of events per time unit (per year, per day, per month). 
• Can be expressed on any scale and may exceed one. 
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9.2.2 Incidence Density 

• In general, the instantaneous incidence rate cannot be measured directly. 
• However, the average incidence rate over a given period of time or incidence 

density can be studied: 
 

=
eID
y

 

 
where e is the number of events and y is the total follow-up time for the study 
population. 

• Included in the denominator is the time over which the subjects are disease-free 
and at-risk for the disease. 

• Many of the issues in estimating the incidence density revolve around methods for 
calculating the total follow-up time in the denominator of our estimator. 
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9.2.3 Confidence Intervals 
Confidence intervals are constructed under the assumption that the number of incident 
cases of disease e follows a Poisson distribution.  There is both an approximate and 
exact method for computing the confidence interval. 

Approximate Method 
This method is appropriate if the number of incident cases is large, say .  The 95% 
confidence interval formula is 

20e ≥

 
2

0.9751
2
zID

e
⎛ ⎞±⎜ ⎟
⎝ ⎠

 

 
Example 
Suppose that e = 10,954 incidence cases of disease are observed in 1,600,000 person-
years of follow-up.  The incidence density is 
 

10,954 0.0068
1,600,000

eID
y

= = =  
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The 95% confidence interval is 
 

( )
( )

22
0.975 1.961 0.0068 1

2 2 10,954
0.0068 0.981,0.0068 1.019

0.0067,0.0070

zID
e

⎛ ⎞⎛ ⎞± = ±⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

= × ×

=

. 

 
Theoretical Note 

• The confidence interval formula arises from the result that, if ( )~X Poisson λ , then 

 

( ),1/ 4X N λ≈  
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Exact Method 
If the number of incident cases is too small for the approximate method, then exact 
probabilities from the Poisson distribution must be used to construct the confidence 
interval. 
An exact %( )1 100α−  confidence interval for the incidence density is of the form 

, UL ee
y y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where the upper and lower bounds are such that [ ] [ ]Pr Pr 2U LY e Y e α≤ = ≥ =  and 

( )
( )

~

~
L L

U U

Y Poisson e

Y Poisson e
. 

 
Small Sample Example 
Suppose that we observe e = 10 cases for which there were 1000 person-years of 
follow-up.  The resulting incidence density is 
 

10 0.01
1000

ID = = . 
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We can perform an iterative search using software that computes Poisson probabilities 
to find the upper and lower bounds of an exact 95% confidence interval. 

[ ] ( )Pr 10 0.025LY ≥ =  for ~ 4.8LY Poisson . • 

• [ ]Pr 10 0.025UY ≤ =  for ( )~ 18.4UY Poisson . 

Therefore, the exact confidence interval is 

( )4.8 18.4, 0.0048,0.0184
1000 1000
⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 

 

9.2.4 Follow-up Data 

• Follow-up data result from subjects being observed or followed for a period of time.  
Subjects for whom disease is not observed at the end of their follow-up period are 
said to be censored.  The follow-up time is the length of time from study entry until 
disease occurrence or censoring. 

• Reasons for censoring: 
• Follow-up loss due to migration, non-response, withdrawal of consent, etc. 
• Death from another cause 
• No longer at risk; e.g. hysterectomy when pregnancy is the outcome 
• Termination of study prior to disease occurrence 
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Follow-up Data Example 

0 1 2 3 4 5

Year (Study Calendar)

0
2

4
6

8
10

12

S
ub

je
ct

Observation Period
Disease
Death

 
 

• Subject 1 and 2 have 2.5 and 3.5 years of follow-up until disease occurrence, 
respectively 

• Subject 3 is followed for 1.5 years at which point s/he dies from another cause 
• Subject 4 begins follow-up at year 1 and dies from another cause at year 3.5.  

S/he has 2.5 years of follow-up. 
• Subject 5 begins follow-up at year 1.  The study is stopped at year 5.5 for a total 

of 4.5 years of follow-up.  S/he is still alive at that time and has not experienced 
the disease. 
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• The length of follow-up is more easily seen if we shift the start times for all 
subjects to zero.  This is often the way that follow-up data is conceptualized 
when study entry coincides with the start of exposure to a risk factor or the 
initiation of an intervention. 

0 1 2 3 4 5

Year (Study Entry)

0
2

4
6

8
10

12

Su
bj

ec
t

Observation Period
Disease
Death
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• The follow-up times can be summarized as 
 

Subject Years of 
Follow-up Disease 

1 2.5 1 
2 3.5 1 
3 1.5 0 
4 2.5 0 
5 4.5 0 
6 0.5 1 
7 0.5 0 
8 2.5 0 
9 2.5 1 

10 2.5 0 
11 1.5 1 
12 1.5 0 

Total 26.0 5 
 

• The incidence density is the number of new cases of disease divided by the total 
follow-up time.  In our example, 

5 / 26.0 0.19ID = =  cases per year. 
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9.2.5 Interval Data 
It may be the case that the time of disease occurrence is unobservable; rather we know 
only that the disease occurs within certain time intervals. 

• We need a numerical follow-up time for each subject in order to compute the 
incidence density. 

• One option is to assume that death and censoring occur at the midpoint of the 
associated interval. 

 

Cardiac Transplant Example 
 

Table 1.  Survival after Cardiac Transplant 
Postoperative Interval 
(months) 

Subjects at 
start of interval

Deaths Censored 

[0,2) 300 167 28 
[2,4) 105 13 14 
[4,6) 78 9 6 
[6,8) 63 7 5 
[8,10) 51 2 7 
[10,12) 42 10 2 
[12,14) 30 0 6 
Totals - 208 68 
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• Consider the first interval of [0,2) months. 

o The 300 – 167 – 28 = 105 subjects who remained at-risk throughout the entire 
interval contribute 105 × 2 = 210 months. 

o The deaths and censorings are assumed to occur at month 1, halfway through 
the interval.  Thus the 167 subjects who died and the 28 who were censored 
each contribute one month for a sum of 195 × 1 = 195 months. 

o The total person-months in the first interval is 210 + 195 = 405 months. 
• A summary of the months of follow-up time is given in Table 2. 

 
Table 2.  Follow-up Time for the Cardiac Transplant Subjects 

Postoperative Interval 
(months) 

At Risk Through 
Interval 

Deaths Censored Follow-up

[0,2) 105 × 2 = 210 167 × 1 28 × 1 405 
[2,4) 78 × 2 = 156 13 × 1 14 × 1 183 
[4,6) 63 × 2 = 126 9 × 1 6 × 1 141 
[6,8) 51 × 2 = 102 7 × 1 5 × 1 114 
[8,10) 42 × 2 = 84 2 × 1 7 × 1 93 
[10,12) 30 × 2 = 60 10 × 1 2 × 1 72 
[12,14) 24 × 2 = 48 0 × 1 6 × 1 54 
Totals 786 208 68 1062 
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• The incidence density is then calculated as the number of deaths divided by the 

follow-up time calculated in the table: 208 / 1062 = 0.196 deaths per month. 
 

9.2.6 Stable Populations 
Another method for calculating follow-up is to assume that the at-risk population is stable 
over time. 

• In this case we do not need to know exact follow-up times because we assume that 
every individual has the same follow-up time. 

• Particularly useful in computing incidence density for registry data. 
 
Example 
Suppose that we are interested in the incidence of bladder cancer in the Iowa City 
metropolitan area. 

• Assume that the population in the metro area of approximately 100,000 individuals 
is stable over time. 

• Suppose that there are 500 cases of bladder cancer reported to the Iowa State 
Health Registry over a 5-year period. 

• The incidence density is 500 / (5 × 100,000) = 0.001 cases per year. 
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9.2.7 Comments 

• Incidence rate, as was initially defined, is an instantaneous measure of disease 
onset at a point in time. 

• Our estimate of the incidence rate was an average over a period of time. 
• There is no reason to believe that the true incidence rate is constant; namely, the 

same at each point in time over the follow-up period. 
• As the follow-up window becomes smaller the incidence density will approach the 

incidence rate.  The trade-off, however, is that a smaller window leads to less 
follow-up time and fewer observed events, thus increasing the uncertainty in our 
estimate. 

• Ideally, the incidence rate would be estimated as a function of time.  Methods to do 
this are discussed in the Applied Survival Analysis course (171:242). 

• The Mortality Rate can be thought of as an Incidence Rate where the “disease” of 
interest is death.  Consequently, the material presented here for the incidence rate 
also applies to the mortality rate. 
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9.3 Incident Rate Ratio 

9.3.1 Data Layout 
Multiple Exposure Categories 

To measure the association between l levels of an exposure variable and the incidence 
rate, we will work with the data as summarized in the following table. 
 

 Exposure Levels Totals x1 x2 … xl 
Incident 
Cases e1 e2 … el e 

Follow-
up Time y1 y2 … yl y 

 
where 

• e  = total number of incident cases 
1

l

i
i

e
=

= ∑

• 
1

l

i
i

y y
=

= ∑  = total follow-up time 
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Two Exposure Categories 
In the simple case of two exposure categories, the table is 
 

 Unexposed Exposed Totals 
Incident Cases e1 e2 e 
Follow-up Time y1 y2 y 

 

9.3.2 Estimation 
A ratio comparison two average rates is called an incidence density ratio (IDR) or rate 
ratio. The IDR for the jth exposure category, relative to the ith exposure category is 
 

j j j

i i i

ID e y
IDR

ID e y
= =  

 
where 

• IDi and IDj are the incidence density estimates for the ith  and jth exposure 
categories, respectively. 

• ei and ej are the number of incident cases within each category. 
• yi and yj are the observed follow-up times within each category. 
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• The IDR can take on any value greater than or equal to zero 
o Values less then 1 indicate a negative association between exposure and 

disease. 
o Value greater than 1 indicate a positive association. 
o If the rates are equal then the IDR will evaluate to 1, indicating no association. 
o The further away from 1, the stronger the association. 

 
Example 
The following table summarizes the number of Prevalent and Incident cases during a 2-
year follow-up of a hypothetical stable population of size N, stratified by exposure status 
and age. 
 
 Unexposed Exposed 
Age N Prevalent Incident N Prevalent Incident 
40-49 240,000 600 240 35,000 175 70 
50-59 230,000 2,840 1,136 50,000 1,220 488 
60-69 200,000 9,525 3,810 60,000 5,455 2,182 
70-79 130,000 14,445 5,778 55,000 11,000 4,400 
Totals 800,000 27,410 10,954 200,000 17,850 7,140 
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The resulting incidence density rates are 
 
 Unexposed Exposed 
Age e y ID e y ID 
40-49 240 480,000 0.0005 70 70,000 0.0010 
50-59 1,136 460,000 0.0025 1,220 100,000 0.0049 
60-69 3,810 400,000 0.0095 5,455 120,000 0.0182 
70-79 5,778 260,000 0.0222 4,400 110,000 0.0400 
Totals 10,954 1,600,000 0.0068 7,140 400,000 0.0179 

 
For example, the crude density rates over all age groups are 
 

unexposed
10,954 0.0068

2 800,000
ID = =

×
 exposed

7,140 0.0179
2 200,000

ID = =
×

 

 
Thus, the incidence density ratio for the exposed versus the unexposed populations is 
 

0.0179 2.6
0.0068

IDR = =  
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Conclusion 
• The 2-year average rate of disease is 2.6 times greater in the exposed population 

than in the unexposed population. 
• There is a positive association between disease incidence and exposure. 
• Note, however, that each age-specific ratio is approximately equal to 2.0; noticeably 

less than the crude ratio.  Since age is a (positive) risk factor for the disease and 
the mean age for the exposed subjects is greater than that for the unexposed, the 
crude exposure effect is distorted or confounded by age.  Indirect or direct 
standardization could be used to address the age effect. 

 

9.3.3 Confidence Intervals 
Consider the calculation of the incidence density ratio as 
 

2 2

1 1

e yIDR
e y

= . 

 
We will only discuss the approximate method for computing the confidence interval. 
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If the incidence rate was the same for both the exposed and unexposed subjects, then 
we could combine the two groups to estimate the overall incidence density 

eID
y

=  

where e is the total number of incident cases and y is the total follow-up time.  Under this 
scenario we would expect to see 

1 1

2 2

eE y
y
eE y
y

= ×

= ×
 

number of cases in each group. 
 

Approximate Method 
If the number of expected cases is large, say 20 , then the approximate 95% 
confidence interval is 

1 2,E E ≥

 

( )
( )

2 1

1 2

1 2 0.975,2 2,21 2

2 1 0.975,2 2,2 2 1

1
,

1
e e

e e

E e FE e
E e F E e

+

+

⎛ ⎞+
⎜ ⎟⎜ ⎟+⎝ ⎠
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Example 
We have 

1

2

1 1

2 2

10,954
7,140

18,0941,600,000 14,475.2
2,000,000
18,094400,000 3,618.8

2,000,000

e
e

eE y
y
eE y
y

=

=

= = =

= = =

. 

 
Software can be used to find percentiles for the F distribution, 

+

+

= =

= =
0 1

1 0

0.975,2 2,2 0.975,21910,14280

0.975,2 2,2 0.975,14282,21908

1.03

1.03
e e

e e

F F

F F
. 

 
The associated confidence interval for the rate estimate of 2.6 is 

( )

14,475.2 7,140 14,475.2 7,141 1.03,
3,618.8 10,955 1.03 3,618.8 10,954

2.53,2.69

× × ×⎛ ⎞
⎜ ⎟× × ×⎝ ⎠ . 
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9.3.4 Hypothesis Testing 
Suppose we are interested in testing the equality of incidence densities across levels of 
an exposure variable.  Namely, the null and alternative hypotheses are 

0 1 2:
: , for some  and 

l

A i j

H ID ID ID
H ID ID i j

= = =

≠

…
. 

The standard chi-square goodness of fit statistic is 

( )2 2
1

1

observed-expected
~

expected

l

l
i

χ −
=
∑ . 

In our case, the statistic can be expressed as 

( )22 2
1

1

-
~

l
i i

l
ii

e E
X

E
χ −

=

= ∑  

where Ei is the expected number of cases, under the null hypothesis that the incidence 
densities are equal across exposure levels, and is computed as 

i i
eE y
y

= . 

The two-sided p-value is 
2 2

1Pr lp Xχ −⎡ ⎤= ≥⎣ ⎦ . 
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Example 
The goodness of fit statistic is 

( ) ( )2 2
2
1

10,954 14,475.2 7,140 3,618.8
4282.79 ~

14,475.2 3,618.8
χ

− −
+ = . 

with a 2-sided p-value of .  Therefore, the incidence 
densities differ significantly between the exposed and unexposed subjects.  Note that 
there are only two exposure groups in this example. 

2
1Pr 4282.79 0.0001p χ⎡ ⎤= ≥ <⎣ ⎦

 
Thus, the null and alternative hypotheses are simply 

0 1 2

1 2

:
:A

H ID ID
H ID ID

=

≠
 

which are equivalent to 

0 : 1
: 1A

H IDR
H IDR

=

≠
. 

Hence, we could have concluded equivalently that the incidence density ratio is 
significantly different from one.  In particular, the IDR of 2.6 is significantly greater than 
one.  There is a statistically significant positive association between exposure and 
disease (p < 0.0001). 
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9.4 Incidence Risk 

9.4.1 Definition 

• The probability of disease developing in an individual over a specified time interval. 
• Value must be between zero and one. 
• Examples 

o Risk of developing breast cancer by age 50 
o Risk of developing leukemia 5 years after nuclear detonation at Hiroshima 
o Risk of binge drinking between ages 18 and 21 

9.4.2 Cumulative Incidence 

• A measure or estimate of average risk. 
• Assumes that the follow-up times are approximately the same for all subjects and 

that there is no censoring. 
• Calculated as the proportion of subjects who become diseased over the study 

period: 
number of incident cases
total number of subjects

CI = . 

• Dimensionless quantity which is often reported as a percentage. 
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• All the statistical methods for binomial proportions apply (confidence intervals, tests 
of association, etc.) 

Example 
5,000 subjects were enrolled in a study and followed for 5 years.  100 incident cases of 
disease were observed during the study period. 

• Cumulative incidence is 100 / 5,000 = 0.02 or 2%. 
• There is a 2% risk of disease within the associated 5-year time window. 

9.4.3 Kaplan-Meier Estimator 
Cumulative incidence has limited use as an estimate of risk because it does not 
adequately account for censoring.  The Kaplan-Meier estimator is one popular solution. 

• Nonparametric method for estimating risk. 
• Yields an estimate of risk for any point in time during the follow-up period. 
• Also referred to as the Product-Limit estimator. 
• Allows for censoring and varying lengths of follow-up. 

 
Follow-up Data Example 
We will use the times to disease or censoring (*) in our original example to illustrate the 
Kaplan-Meier estimator: 

0.5, 0.5*, 1.5, 1.5*, 1.5*, 2.5, 2.5, 2.5*, 2.5*, 2.5*, 3.5, 4.5* 
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Step 1:  Construct a table with a row for time zero and each subsequent time point at 
which an incident case is observed. 
 

Table 3.  Kaplan-Meier Estimate of the Cumulative Survival Function in the Follow-up 
Example 

Time (t) Number at Risk (nt) Number of Cases (et) pt st
0 12 0 1.000 1.000

0.5 12 1 0.917 0.917
1.5 10 1 0.900 0.825
2.5     
3.5     
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Step 2:  Calculate the proportion pt of subjects at risk at time t who are not incident cases 

t t
t

t

n ep
n
−

= . 

This is referred to as the conditional probability of remaining disease-free (surviving) 
beyond time t.  For example, 

0

0.5

1.5

12 0 1.00
12
12 1 0.917

12
10 1 0.900

10

p

p

p

−
= =

−
= =

−
= =

. 

 

 209



Step 3:  Calculate the proportion of original subjects that remain disease-free at time t 

t j
j t

s p
≤

=∏ . 

In our example, 

( )( )
( )( )( )

0 0

1 0 0.5

2 0 0.5 1.5

1.000
1.000 0.917 0.917

1.000 0.917 0.900 0.825

s p
s p p

s p p p

= =

= = =

= = =

. 

• This is called the Kaplan-Meier estimate of the cumulative survival function. 
• st is the estimated probability of surviving beyond any time-point in the interval 

[ ),t t ′ , where t ′ is the next observed failure time. 

• In the context of this course, st is interpreted as the probability of remaining 
disease-free beyond time t. 

• rt = 1 - st is the estimated probability (risk) that a subject will be diseased by time t. 
 
Thus, we have an estimate of disease risk for any time point during the follow-up period.  
For instance, the estimated 1-year risk of disease in our example is 

= − = − =1 11 1 0.917 0.083r s  or 8.3% 

since t = 1 falls within the interval [0.5, 1.5). 
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SAS Program and Output 
data followup; 
   input ID Time Disease; 
   cards; 
   1  0.5 1 
   2  0.5 0 
   3  1.5 1 
   4  1.5 0 
   5  1.5 0 
   6  2.5 1 
   7  2.5 1 

   8  2.5 0 
   9  2.5 0 
   10 2.5 0 
   11 3.5 1 
   12 4.5 0 
; 
 
proc lifetest plots=(s) data=followup; 
   time Time*Disease(0); 
run;

 
 

Syntax 
• PROC LIFETEST provides non-parametric methods for estimating and comparing 

survival distributions for follow-up data. 
• plots=(s) requests that a survival curve be plotted. 
• The variables containing the follow-up times and censoring indicators are specified 

with the time statement. 
o Time here is the variable of follow-up times in the SAS dataset followup. 
o Disease is the indicator variable for censoring.  The variable is coded so that a 

value of 0 indicates censoring and 1 indicates disease onset. 



The LIFETEST Procedure 
 
                   Product-Limit Survival Estimates 
 
                                     Survival 
                                     Standard     Number      Number 
    Time     Survival    Failure      Error       Failed       Left 
 
 0.00000       1.0000           0           0        0          12 
 0.50000       0.9167      0.0833      0.0798        1          11 
 0.50000*           .           .           .        1          10 
 1.50000       0.8250      0.1750      0.1128        2           9 
 1.50000*           .           .           .        2           8 
 1.50000*           .           .           .        2           7 
 2.50000            .           .           .        3           6 
 2.50000       0.5893      0.4107      0.1623        4           5 
 2.50000*           .           .           .        4           4 
 2.50000*           .           .           .        4           3 
 2.50000*           .           .           .        4           2 
 3.50000       0.2946      0.7054      0.2236        5           1 
 4.50000*           .           .           .        5           0 
 
NOTE: The marked survival times are censored observations. 
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Summary Statistics for Time Variable Time 
 
             Quartile Estimates 
 
             Point     95% Confidence Interval 
Percent    Estimate      [Lower      Upper) 
 
     75      .          3.50000      . 
     50     3.50000     2.50000      . 
     25     2.50000     1.50000     3.50000 
 
 
    Mean    Standard Error 
 
 2.83095           0.32255 
 
NOTE: The mean survival time and its standard error were underestimated because the largest 
      observation was censored and the estimation was restricted to the largest event time. 
 
 
Summary of the Number of Censored and Uncensored Values 
 
                                 Percent 
   Total  Failed    Censored    Censored 
 
      12       5           7       58.33 

 

 213



 

 214



Estimated Disease Risk 
• As was mentioned, disease risk as a function of time can be calculated as one 

minus the Kaplan-Meier estimates. 
• The corresponding estimate for our follow-up example is given in the following plot 

(not a SAS graph). 
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• This is an estimate of the cumulative probability of disease as a function of time. 
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• For example, the plot shows that there is: 
o An 8.3% risk of developing the disease during the first year of follow-up. 
o A 17.5% risk of developing the disease during the first 2 years of follow-up. 

 

Comments on the Kaplan-Meier Estimator 
• The methods of Kaplan-Meier provide an estimate of the cumulative probability of 

remaining at risk (surviving) as a function of time. 
• The estimated values are commonly referred to as the Kaplan-Meier estimate of the 

survival function.  The associated plots are known as Kaplan-Meier survival curves. 
• The Kaplan-Meier estimator yields a step-function; i.e. the function/curve has a 

discrete number of points at which its value changes. 
• Subtracting the Kaplan-Meier estimates from one gives the estimated risk of 

disease.  Specifically, it gives an estimate of the cumulative probability of disease at 
any point in time during the follow-up period. 

• Since the Kaplan-Meier estimator is a measure of cumulative probability, the 
associated survival curve is decreasing as a function of time.  Conversely, the risk 
curve is increasing. 

• The outcome of interest need not be limited to diseases.  These methods can be 
applied to the general situation of subjects being followed until the occurrence of 
any dichotomous event; such as death, pregnancy, recovery, retirement, etc. 
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9.4.4 Life Table Method 
Life table methods are appropriate if 

1. The time of disease is observable only within certain time intervals, or 
2. Interval, rather than point, estimates of incidence are desired. 

We will discuss the actuarial method that assumes censoring occurs at the midpoint of 
the associated interval. 

• The algorithm for computing risk using life tables is similar to the method of Kaplan-
Meier, except that we are now interested in the probability of surviving beyond 
intervals of time rather than points in time. 

• Consider the Cardiac Transplant data used earlier to compute incidence rates from 
interval data (page 193): 

 

(( )tn Deaths (et) Censored (ct) Number at Risk Time (t) Number at Start )*
tn

[0,2) 300 167 28 286 
[2,4) 105 13 14 98 
[4,6) 78 9 6 75 
[6,8) 63 7 5 60.5 
[8,10) 51 2 7 47.5 
[10,12) 42 10 2 41 
[12,14) 30 0 6 27 
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Step 1:  Compute the average number of subjects at risk within each interval. 
Under the assumption that censoring occurs at the interval midpoints, the average 
number at risk in the tth interval is 

* 2t t tn n c= −  

 
Step 2:  Compute the survival probabilities.  The probability that a subject remains 
disease-free through interval t, given that s/he made it that far is 

*

*
t t

t
t

n ep
n
−  =

and the cumulative probability of remaining disease-free up to time t is 

t j
j t

s p
<

=∏ . 

Note that the probability of surviving through interval t is not included in the calculation of 
the cumulative survival.  Finally, the cumulative probability of disease is 

1r st t  = −
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Time Interval Number at Risk ( )*
tn Deaths (et) pt st rt 

[0,2) 286 167 0.4161 1.0000 0.0000
[2,4) 98 13 0.8673 0.4161 0.5839
[4,6) 75 9 0.8800 0.3609 0.6391
[6,8) 60.5 7 0.8843 0.3176 0.6824
[8,10) 47.5 2 0.9579 0.2808 0.7192
[10,12) 41 10 0.7561 0.2690 0.7310
[12,14) 27 0 1.0000 0.2034 0.7966
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SAS Program and Output 
data cardiac; 
   input Time Death N; 
   cards; 
   0  1 167 
   0  0  28 
   2  1  13 
   2  0  14 
   4  1   9 
   4  0   6 
   6  1   7 
   6  0   5 
   8  1   2 

   8  0   7 
   10 1  10 
   10 0   2 
   12 0   6 
   14 0  24 
; 
 
proc lifetest method=life plots=(s) 
data=cardiac; 
   time Time*Death(0); 
   freq N; 
run;

 
 

Syntax 
• method=life specifies that the life table method be used to compute survival 

probabilities.  The Kaplan-Meier method is the default. 
• The interval option (not shown) can be used to manually define the life table 

intervals. 
• The freq statement identifies a variable containing the frequency of occurrences 

of each observation.  N is the frequency variable in the dataset cardiac. 



 The LIFETEST Procedure 
 
                               Life Table Survival Estimates 
 
                                                                    Conditional 
                                          Effective   Conditional   Probability 
      Interval        Number    Number      Sample    Probability     Standard 
 [Lower,     Upper)   Failed   Censored      Size     of Failure        Error     Survival 
 
       0          2    167        28        286.0        0.5839        0.0291       1.0000 
       2          4     13        14         98.0        0.1327        0.0343       0.4161 
       4          6      9         6         75.0        0.1200        0.0375       0.3609 
       6          8      7         5         60.5        0.1157        0.0411       0.3176 
       8         10      2         7         47.5        0.0421        0.0291       0.2808 
      10         12     10         2         41.0        0.2439        0.0671       0.2690 
      12         14      0         6         27.0             0             0       0.2034 
      14         16      0        24         12.0             0             0       0.2034 
 
                                 Survival    Median     Median 
      Interval                   Standard   Residual   Standard 
 [Lower,     Upper)    Failure     Error    Lifetime     Error 
 
       0          2          0          0     1.7126     0.1013 
       2          4     0.5839     0.0291     9.8585     0.6406 
       4          6     0.6391     0.0290          .          . 
       6          8     0.6824     0.0289          .          . 
       8         10     0.7192     0.0287          .          . 
      10         12     0.7310     0.0287          .          . 
      12         14     0.7966     0.0282          .          . 
      14         16     0.7966     0.0282          .          . 
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                      Evaluated at the Midpoint of the Interval 
 
                                    PDF                 Hazard 
      Interval                   Standard              Standard 
 [Lower,     Upper)      PDF       Error     Hazard      Error 
 
       0          2     0.2920     0.0146   0.412346   0.029069 
       2          4     0.0276    0.00739   0.071038   0.019653 
       4          6     0.0217    0.00699    0.06383   0.021233 
       6          8     0.0184    0.00674   0.061404   0.023165 
       8         10    0.00591    0.00414   0.021505   0.015203 
      10         12     0.0328    0.00968   0.138889   0.043495 
      12         14          0          .          0          . 
      14         16          0          .          0          . 
 
 
Summary of the Number of Censored and Uncensored Values 
 
                                 Percent 
   Total  Failed    Censored    Censored 
 
     300     208          92       30.67 
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Cumulative Survival Probability 
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Cumulative Probability of Death (R Plot) 

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Follow-up Time (Months)

C
um

ul
at

iv
e 

R
is

k 
of

 D
ea

th

 

 224



9.5 Log-Rank Test 

9.5.1 Introduction 
Leukemia Study Example 

A clinical trial was conducted to study the effects of an experimental drug on time to 
death in leukemia patients.  Forty-two patients were randomized to receive a placebo or 
the drug.  The number of weeks until death or censoring (*) were: 

• Placebo (21 patients):  1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 
23 

• Drug (21 patients):  6, 6, 6, 6*, 7, 9*, 10, 10*, 11*, 13, 16, 17*, 19*, 20*, 22, 23, 25*, 
32*, 32*, 34*, 35* 

 
Results 

• The log-rank test was used to test the null hypothesis that the mortality rates 
between the two groups are equal, versus the two-sided alternative they differ. 

2
1χ• A value of 16.8 was obtained for the  test statistic. 

• At the 5% level of significance, it was concluded that time to death differs between 
the two groups (p < 0.0001). 
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Questions 
1. What are the properties of the log-rank test? 
2. When is the test appropriate? 
3. How should the results be interpreted? 

 

9.5.2 Methodology 
Consider the collection of ordered distinct times of death t for the two groups of subjects. 
 

t e1t n1t e2t n2t
1 2 21 0 21 
2 2 19 0 21 
3 1 17 0 21 
4 2 16 0 21 
5 2 14 0 21 
6 0 12 3 21 
7 0 12 1 17 
8 4 12 0 16 
10 0 8 1 15 
# # # # # 

23 1 1 1 6 
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At time t there are n1t subjects at risk in group 1 of which e1t died.  n2t and e2t are similarly 
defined for group 2.  The events at time t can be summarized in the 2 x 2 table 

 

 Diseased Survivors At Risk 

Group 1 1te  1 1t tn e−  1tn  

Group 2 2te  2 2t tn e−  2tn  

Totals te  t tn e−  tn  

 
If we condition on knowing the table margins and assume a common rate of disease, 
then e1t is a hypergeometric random variable with a mean and variance given by 

( )

( ) ( )
( )

1 1

1 2
1 2var

1

t
t t

t

t t t t t
t

t t

eE e n
n

n n e n e
e

n n

=

−
=

−

 

The standard test for an association between the row and column factors for 
independent 2 x 2 tables is the Mantel-Haenszel statistic. 
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This statistic is constructed by subtracting the expected number of incident cases in 
Group 1 from the observed cases, and then standardizing this difference by the square 
root of the variance: 

( )( )

( )
( )

1 1

1

0,1
var

t t
t

MH
t

t

e E e
X N

e

−
= ≈
∑
∑

. 

The square of this statistic  has an approximate chi-square distribution with one 
degree of freedom and is typically reported in practice. 

2
MHX

• 2
MHX  is known as the log-rank statistic.  It can be generalized for the comparison of 

more than two groups of subjects. 
• The p-value is computed as 

2 2
1Pr MHp Xχ⎡ ⎤= ≥⎣ ⎦  

and is inherently two-sided. 
• The log-rank test is a non-parametric test.  As in the Kaplan-Meier estimator, no 

assumptions are made about the distribution of the survival times. 
• Each of the 2 x 2 tables can be viewed as a comparison of the incidence rates at 

the corresponding point in time.  Since each of the ( )1 1t te E e−  differences receives 
equal weight in the test statistic, the log-rank test is most powerful when the 
incidence rates are proportional over time. 
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• A non-significant result from the log-rank test does not imply that the incidence 
rates are equal; only that the test does not provide evidence to the contrary. 

 
Leukemia Example:  The log-rank test for the leukemia data is based on 17 unique 
failure times, each of which can be summarized in a 2 x 2 table.  The first six tables are 
given below. 
 
 

Time     
1  Deaths Survivors At Risk 
 Placebo 2 19 21 
 Drug 0 21 21 
  2 40 42 
  E = 1.000 var = 0.488  
     
2  Deaths Survivors At Risk 
 Placebo 2 17 19 
 Drug 0 21 21 
  2 38 40 
  E = 0.950 var = 0.486  
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Time     
3  Deaths Survivors At Risk 
 Placebo 1 16 17 
 Drug 0 21 21 
  1 37 38 
  E = 0.447 var = 0.247  
     
4  Deaths Survivors At Risk 
 Placebo 2 14 16 
 Drug 0 21 21 
  2 35 37 
  E = 0.865 var = 0.477  
     
5  Deaths Survivors At Risk 
 Placebo 2 12 14 
 Drug 0 21 21 
  2 33 35 
  E = 0.800 var = 0.466  
     
6  Deaths Survivors At Risk 
 Placebo 0 12 12 
 Drug 3 18 21 
  3 30 33 
  E = 1.091 var = 0.651  

 



The calculations necessary for computing the log-rank statistic are given in the following 
work sheet.  
 

nt E(e1t) t e1t e2t et n1t n2t e1t - E(e1t) var(e1t) 
1 2 0 2 21 21 42 1.000 1.000 0.488 
2 2 0 2 19 21 40 0.950 1.050 0.486 
3 1 0 1 17 21 38 0.447 0.553 0.247 
4 2 0 2 16 21 37 0.865 1.135 0.477 
5 2 0 2 14 21 35 0.800 1.200 0.466 
6 0 3 3 12 21 33 1.091 -1.091 0.651 
7 0 1 1 12 17 29 0.414 -0.414 0.243 
8 4 0 4 12 16 28 1.714 2.286 0.871 
10 0 1 1 8 15 23 0.348 -0.348 0.227 
11 2 0 2 8 13 21 0.762 1.238 0.448 
12 2 0 2 6 12 18 0.667 1.333 0.418 
13 0 1 1 4 12 16 0.250 -0.250 0.188 
15 1 0 1 4 11 15 0.267 0.733 0.196 
16 0 1 1 3 11 14 0.214 -0.214 0.168 
17 1 0 1 3 10 13 0.231 0.769 0.178 
22 1 1 2 2 7 9 0.444 0.556 0.302 
23 1 1 2 1 6 7 0.286 0.714 0.204 
Total 21 9 30     10.251 6.257 
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Summing the terms over all 17 failure times gives 
 

( ) ( ) ( ) 2
2

2

2 1.000 2 0.950 1 0.286
0.488 0.486 0.204

10.251 16.79
6.257

MHX
− + − + + −⎡ ⎤⎣ ⎦=

+ + +

= =

…
… . 

 
Thus, the 2-sided p-value is 
 

2
1Pr 16.79 0.0000417p χ⎡ ⎤= > =⎣ ⎦  

 
which agrees with the p-value given in the original statement of the analysis results. 
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SAS Program and Output 
data leukemia; 
   input ID Group Time Disease; 
   cards; 
   1  1 1  1 
   2  1 1  1 
   3  1 2  1 
   4  1 2  1 
   5  1 3  1 
   6  1 4  1 
   7  1 4  1 
   8  1 5  1 
   9  1 5  1 
   10 1 8  1 
   11 1 8  1 
   12 1 8  1 
   13 1 8  1 
   14 1 11 1 
   15 1 11 1 
   16 1 12 1 
   17 1 12 1 
   18 1 15 1 
   19 1 17 1 
   20 1 22 1 
   21 1 23 1 
   22 2 6  1 
   23 2 6  1 
   24 2 6  1 

   25 2 6  0 
   26 2 7  1 
   27 2 9  0 
   28 2 10 1 
   29 2 10 0 
   30 2 11 0 
   31 2 13 1 
   32 2 16 1 
   33 2 17 0 
   34 2 19 0 
   35 2 20 0 
   36 2 22 1 
   37 2 23 1 
   38 2 25 0 
   39 2 32 0 
   40 2 32 0 
   41 2 34 0 
   42 2 36 0 
; 
 
proc lifetest plots=(s) data=leukemia; 
   time Time*Disease(0); 
   strata Group; 
run; 
 



 The LIFETEST Procedure 
 
                        Stratum 1: Group = 1 
 
                   Product-Limit Survival Estimates 
 
                                     Survival 
                                     Standard     Number      Number 
    Time     Survival    Failure      Error       Failed       Left 
 
  0.0000       1.0000           0           0        0          21 
  1.0000            .           .           .        1          20 
  1.0000       0.9048      0.0952      0.0641        2          19 
  2.0000            .           .           .        3          18 
  2.0000       0.8095      0.1905      0.0857        4          17 
  3.0000       0.7619      0.2381      0.0929        5          16 
  4.0000            .           .           .        6          15 
  4.0000       0.6667      0.3333      0.1029        7          14 
  5.0000            .           .           .        8          13 
  5.0000       0.5714      0.4286      0.1080        9          12 
  8.0000            .           .           .       10          11 
  8.0000            .           .           .       11          10 
  8.0000            .           .           .       12           9 
  8.0000       0.3810      0.6190      0.1060       13           8 
 11.0000            .           .           .       14           7 
 11.0000       0.2857      0.7143      0.0986       15           6 
 12.0000            .           .           .       16           5 
 12.0000       0.1905      0.8095      0.0857       17           4 
 15.0000       0.1429      0.8571      0.0764       18           3 
 17.0000       0.0952      0.9048      0.0641       19           2 
 22.0000       0.0476      0.9524      0.0465       20           1 
 23.0000            0      1.0000           0       21           0 
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Summary Statistics for Time Variable Time 
 
             Quartile Estimates 
 
             Point     95% Confidence Interval 
Percent    Estimate      [Lower      Upper) 
 
     75     12.0000      8.0000     17.0000 
     50      8.0000      4.0000     11.0000 
     25      4.0000      2.0000      8.0000 
 
 
    Mean    Standard Error 
 
  8.6667            1.4114 
 
 
 
The LIFETEST Procedure 
 
      event time. 
 
 
      Summary of the Number of Censored and Uncensored Values 
 
                                                            Percent 
Stratum           Group       Total  Failed    Censored    Censored 
 
      1               1          21      21           0        0.00 
      2               2          21       9          12       57.14 
------------------------------------------------------------------- 
  Total                          42      30          12       28.57 

 235



 
The LIFETEST Procedure 
 
Testing Homogeneity of Survival Curves for Time over Strata 
 
 
        Rank Statistics 
 
Group       Log-Rank    Wilcoxon 
 
1             10.251      271.00 
2            -10.251     -271.00 
 
 
Covariance Matrix for the Log-Rank Statistics 
 
Group             1             2 
 
1           6.25696      -6.25696 
2          -6.25696       6.25696 
 
 
Covariance Matrix for the Wilcoxon Statistics 
 
Group             1             2 
 
1           5457.11      -5457.11 
2          -5457.11       5457.11 
 
 
       Test of Equality over Strata 
 
                                   Pr > 
Test      Chi-Square      DF    Chi-Square 
 
Log-Rank     16.7929       1      <.0001 
Wilcoxon     13.4579       1      0.0002 
-2Log(LR)    16.5459       1      <.0001 
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10.1 Overview 
Suppose that we would like to develop a mathematical model that describes the 
underlying relationship between, say, age and systolic blood pressure. 
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Analysis Goals 
1. Select an appropriate mathematical model to use. 
2. Find the “best” fit to the data 
3. Use the model to make inference about the effect of the predictor variable (age) on 

the response variable (systolic blood pressure). 
 
Strategy: 

1. Assume a linear effect of age on blood pressure. 
2. Estimate the “best” fit to the data. 
3. Does the fitted model provide an adequate explanation of the systolic blood 

pressures: 
• No ⇒ Examine the model assumptions, assume a new model for the data, and 

repeat from step 2. 
• Yes ⇒ Stop 
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Notation 
• Let X denote the predictor variable and Y the response variable. 
• A straight-line model for the data can be expressed as 

β β= +0 1Y X  

where 0β 1β is called the “intercept” and  the “slope”. 

• 1β  is the rate of change in Y for each unit change in X.  If X increases by 1 unit, 
then Y increases by 1β  units.  Suppose, for example, that we were to model the 
effect of age on blood pressure as 

98.71 0.97Y X= + . 
This would imply that blood pressures increases by 0.97 units for every 1-year 
increase in age. 
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10.2 Linear Regression Model Assumptions 
1. The Y values are independent, given X. 
2. At any given value of X, Y is normally distributed. 
3. In simple linear regression, the means of the response variable lie on the straight 

line 

| 0Y X 1Xμ β β= + . 

where |Y Xμ  is read as the mean of Y given X.  Think of this as the expected value of 
Y at the given value of X. 

4. The variance of Y is the same at any value of X; 2 2
|Y Xσ σ= . 

5. The X values are measured without error. 
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The previous assumptions are illustrated in the following graphic: 
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The simple linear regression model may be written mathematically as 

|

0 1

Y XY

X

μ ε

β β ε

= +

= + +
 

where 
• | 0 1Y X Xμ β β= +  is the true population mean as a function of X, which cannot be 

observe directly. 
• |Y XYε μ= −  is the residual value.  It is the difference between the observed Y and 

the true mean of Y. 
• ε is assumed to be a Normal random variable with a mean of zero and variance 

equal to 2σ , 

( )2~ 0,Nε σ

• If we could observe the ε, they would be randomly scattered about zero. 

. 
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10.3 Data Format 
The data in simple linear regression consist of a set of n data points 
( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y… .  For instance, the data in the blood pressure example look like 

 
Subject SBP Age 
1 144 39 
2 220 47 
3 138 45 
4 145 47 
5 162 65 
# # #
30 175 69 

 
where each blood pressure-age pair is measured on an individual subject. 
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10.4 Parameter Estimation 
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The least-squares method determines the best-fitting straight line by minimizing the 
sum of squares of the lengths of the vertical-line segments drawn from the observed 
data points on the scatter diagram to the fitted line (the residuals). 
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For the data set ( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y…

• Let 1

, 

0 ixβ β+  be the value of the true regression line at . ix

• Let 0β̂  and 1̂β  denote the estimated intercept and slope of the “best fitting” straight 
line. 

• The estimated regression line is thus represented by the equation 0 1
ˆ ˆˆ i iy xβ β= + . 

• Call ( ) ( )22
0 1

ˆ ˆˆi i i iSSE y y y xβ β= − = − −∑ ∑  the sum of squares due to error. 

• We want to find the 0β̂  and 1̂β  that minimize the SSE; that is 

( ) ( )2 2* *
0 1 0 1

ˆ ˆ
i i i iSSE y x y xβ β β β= − − ≤ − −∑ ∑  

for any other estimators *
0β  and *

1β . 

 

10.4.1 Least-Squares Estimates 
The slope and intercept estimates that minimize the SSE are given by 

( )( )
( )1 2

ˆ i i

i

x x y y
x x

β
− −

=
−

∑
∑

 and 0 1
ˆ ˆy xβ β= −  

where ix x n  and = ∑ iy y n= ∑ . 
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SAS Program and Output 
data bp; 
 input sbp age; 
 cards; 
 144 39 
 220 47 
 138 45 
 145 47 
 162 65 
 142 46 
 170 67 
 124 42 
 158 67 
 154 56 
 162 64 

 150 56 
 140 59 
 110 34 
 128 42 
 130 48 
 135 45 
 114 17 
 116 20 
 124 19 
 136 36 
 142 50 
 120 39 
 120 21 
 160 44 

 158 53 
 144 63 
 130 29 
 125 25 
 175 69 
 .   40 
 .   50 
 .   60 
; 
 
proc reg data=bp; 
 model sbp = age / clm cli; 
 
run;

 

Syntax 
• PROG REG performs linear regression analysis based on the method of least 

squares. 
• The response and predictor variables are supplied in the model statement.  The 

clm and cli options request confidence intervals (for the mean) and prediction 
intervals (for individual predictions), respectively. 

• The blood pressure measurements are missing “.” for the last three entries in the 
dataset.  SAS will exclude these records from the estimation of the regression 
parameters.  However, SAS will use the resulting regression model to produce 
estimates of the missing blood pressures. 



The REG Procedure 
Model: MODEL1 
Dependent Variable: sbp 
 
                             Analysis of Variance 
 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                     1     6394.02269     6394.02269      21.33    <.0001 
Error                    28     8393.44398      299.76586 
Corrected Total          29          14787 
 
 
Root MSE             17.31375    R-Square     0.4324 
Dependent Mean      142.53333    Adj R-Sq     0.4121 
Coeff Var            12.14716 
 
 
                        Parameter Estimates 
 
                     Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
Intercept     1       98.71472       10.00047       9.87      <.0001 
age           1        0.97087        0.21022       4.62      <.0001 
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The REG Procedure 
Model: MODEL1 
Dependent Variable: sbp 
 
                                    Output Statistics 
 
            Dep Var  Predicted     Std Error 
     Obs        sbp      Value  Mean Predict       95% CL Mean         95% CL Predict 
 
       1   144.0000   136.5787        3.4139   129.5857   143.5717   100.4302   172.7271 
       2   220.0000   144.3456        3.1853   137.8208   150.8704   108.2848   180.4064 
       3   138.0000   142.4039        3.1612   135.9285   148.8792   106.3520   178.4558 
       4   145.0000   144.3456        3.1853   137.8208   150.8704   108.2848   180.4064 
       5   162.0000   161.8213        5.2377   151.0923   172.5502   124.7684   198.8742 
       6   142.0000   143.3748        3.1663   136.8889   149.8606   107.3210   179.4285 
       7   170.0000   163.7630        5.5787   152.3356   175.1905   126.5018   201.0242 
       8   124.0000   139.4913        3.2289   132.8771   146.1055   103.4142   175.5684 
       9   158.0000   163.7630        5.5787   152.3356   175.1905   126.5018   201.0242 
      10   154.0000   153.0835        3.9001   145.0946   161.0724   116.7292   189.4377 
      11   162.0000   160.8504        5.0717   150.4616   171.2393   123.8945   197.8063 
      12   150.0000   153.0835        3.9001   145.0946   161.0724   116.7292   189.4377 
      13   140.0000   155.9961        4.2999   147.1881   164.8041   119.4531   192.5391 
      14   110.0000   131.7243        3.9332   123.6676   139.7810    95.3551   168.0935 
      15   128.0000   139.4913        3.2289   132.8771   146.1055   103.4142   175.5684 
      16   130.0000   145.3165        3.2180   138.7248   151.9082   109.2435   181.3895 
      17   135.0000   142.4039        3.1612   135.9285   148.8792   106.3520   178.4558 
      18   114.0000   115.2195        6.7058   101.4832   128.9558    77.1867   153.2523 
      19   116.0000   118.1321        6.1568   105.5204   130.7439    80.4909   155.7734 
      20   124.0000   117.1613        6.3382   104.1781   130.1444    79.3939   154.9286 
      21   136.0000   133.6661        3.6984   126.0901   141.2420    97.4003   169.9318 
      22   142.0000   147.2582        3.3225   140.4525   154.0640   111.1455   183.3709 
      23   120.0000   136.5787        3.4139   129.5857   143.5717   100.4302   172.7271 
      24   120.0000   119.1030        5.9774   106.8588   131.3472    81.5833   156.6227 
      25   160.0000   141.4330        3.1700   134.9395   147.9265   105.3779   177.4882 
      26   158.0000   150.1708        3.5675   142.8632   157.4785   113.9602   186.3815 
      27   144.0000   159.8796        4.9090   149.8238   169.9353   123.0159   196.7432 

 249



The REG Procedure 
Model: MODEL1 
Dependent Variable: sbp 
 
                                    Output Statistics 
 
            Dep Var  Predicted     Std Error 
     Obs        sbp      Value  Mean Predict       95% CL Mean         95% CL Predict 
 
      28   130.0000   126.8700        4.6362   117.3731   136.3668    90.1549   163.5851 
      29   125.0000   122.9865        5.2825   112.1657   133.8072    85.9069   160.0661 
      30   175.0000   165.7048        5.9299   153.5579   177.8517   128.2167   203.1929 
      31          .   137.5495        3.3402   130.7075   144.3915   101.4300   173.6691 
      32          .   147.2582        3.3225   140.4525   154.0640   111.1455   183.3709 
      33          .   156.9669        4.4451   147.8615   166.0724   120.3511   193.5828 
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10.5 Inference 
Note that the least-square estimate of the slope can be written as 

( )( )
( )

( )
( )

( )

1 2 2
ˆ i i i

i
i i

i
i

xx

x x y y x x
y

x x x x

x x
y

S

β
− − −

= =
− −

−
=

∑ ∑∑ ∑

∑
 

where ( )2
xx iS x x .  The estimator for the intercept can be expressed in a similar 

form. 
= −∑

 
Theoretical Results:  If 1 2, , , ny y … y  are independent, normally distributed random 
variables with means iμ  and variance 2σ , and if  are known constants, then 
the following hold: 

1 2

• i

, , , nc c c…

iL c y=

• The mean and variance of L are 

∑  is called a linear function of the y and also has a normal distribution. 

L ci iμ μ= ∑  and 2 2 2
L icσ σ= ∑ . 
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• The relevant results are as follows: 

0β̂ 1̂β and  are normally distributed 1. The least-squares estimators 

2. 0β̂  and 1̂β  are unbiased estimators of the true population intercept 0β  and slope 
. 1β

3. The variance of 0β̂  and 1̂β  are 

( )
2

2
0

1ˆvar
xx

x
n S

β σ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 and ( ) 2
1

1ˆvar
xxS

β σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

The square root of the variance is known as the standard error of the parameter 
estimate; i.e. 

( )
2

0
1ˆse

xx

x
n S

β σ= +  

and 

( )1
1ˆse
xxS

β σ= . 

4. Among all linear estimators, the least-squares estimators have minimum 
variance. 
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5. In order to make statistical inference about our regression estimates, we will 
estimate the common variance 2σ  by the residual variance 

( )22 1 ˆˆ i i
SSEy y

n p n p
σ = − =

− −∑  

where p is the number of regression parameters ( 2p =  in the case of simple 
linear regression).  n p−  is referred to as the error degrees of freedom. 

 

10.5.1 Inference for the Slope 
If 1β  is the true slope of the regression line, then  

m ( )
1 1

1

ˆ
~

ˆse n pT tβ β
β −

−
= . 

 
In the case of simple linear regression, this statistic can be expressed as 

m ( )
β β β β

σβ −

− −
= =1 1 1 1

2
1

ˆ ˆ
~

ˆ 1ˆse n
xx

T t
S

. 
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Confidence Interval 
A 95% confidence interval for the slope is 
 

m ( )1 ,0.975
ˆ ˆsen pt 1β β−± . 

 
Example:  From the SAS analysis, the estimated slope and standard error are 

1̂ 0.9709β =  and m ( ) .  The error degrees of freedom is 301̂se 0.2102β = 2 28n p− = − = .  
Thus, a 95% confidence interval for the slope is 

( )
( )( )

( )

28,0.9750.9709 0.2102

0.9709 2.05 0.2102

0.540,1.402

t±

± . 
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Hypothesis Testing 
The test of the hypotheses 

0 1

1 1

:
:A

H b
H b

1β
β
=

≠
 

where b1 is the hypothesized null value (often zero), is based on the test statistic T.  
Under the null hypothesis, this statistic has a t distribution with pn −  degrees of freedom.  
The two-sided p-value is 

2Pr n pp t T−⎡ ⎤= ≥⎣ ⎦ . 

 
Example:  The test statistic given in SAS is for a null slope value of zero,  

0 1

1

: 0
: 0A

H
H

β
β
=

≠
 

Thus, 

m ( )
1 1

1

ˆ 0.9709 0 4.618
ˆ 0.2102se
bT β
β
− −

= = =  

for which the p-value is 282Pr 4.618 7.87 5p t e= ≥ = − .  Therefore, at the 5% level of ⎡ ⎤⎣ ⎦
significance, age has a significant positive effect on blood pressure (p < 0.0001). 
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10.5.2 Inference for the Intercept 
If 0β  is the true intercept of the regression line, then  

m ( )
0 0

0

ˆ
~

ˆse n pT tβ β
β −

−
= . 

In the case of simple linear regression, this statistic can be written as 

m ( )
β β β β

β σ
−

− −
= =

+
0 0 0 0

22
0

ˆ ˆ
~

ˆse 1ˆ
n

xx

T t
n x S

. 

Confidence Interval 
A 95% confidence interval for the intercept is 

m ( )0 ,0.975 0
ˆ ˆsen ptβ β−± . 

 
Example:  From the SAS analysis, the estimated intercept and standard error are 

0
ˆ 98.71β =  and m ( ) .  Thus, a 95% confidence interval for the intercept is 0

ˆse 10.00β =

( )
( )( )

( )

28,0.97598.71 10.00

98.71 2.05 10.00

78.21,119.21

t±

± . 
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Hypothesis Testing 
The test of the hypotheses 

0 0

0 0

:
:A

H b
H b

0β
β

=

≠
 

where b0 is the hypothesized null value (often zero), is based on the test statistic T.  
Under the null hypothesis, this statistic has a t distribution with pn −  degrees of freedom.  
The two-sided p-value is 

2Pr n pp t T−⎡ ⎤= ≥⎣ ⎦ . 

 
Example:  The test statistic given in SAS is for testing a null intercept value equal to 
zero,  

0 0

0

: 0
: 0A

H
H

β
β

=

≠
. 

Thus, 

m ( )
0 0

0

ˆ 98.71 0 9.871
ˆ 10.00se
bT β
β
− −

= = =  

for which the p-value is 282Pr 9.871 1.28 10p t e= ≥ = − .  Therefore, at the 5% level of ⎡ ⎤⎣ ⎦
significance, the intercept is significantly different from zero (p < 0.0001). 
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10.5.3 Regression Estimates 
One way to indicate the precision in the parameter estimates is to construct a confidence 
interval for the regression line at select X values.  Suppose that we want a confidence 
interval for the regression line at the value 0x .  We will talk about two potential regressi
estimates - an estimate of the mean as well as that for an individual subject. 

on 

Estimated Mean Values of the Response Variable 
The regression estimate at 0x  of the mean of the distribution for Y is simply 

0| 0 0
ˆ ˆˆY x 1xμ β β= + . 

 
A 95% confidence interval for this mean value is given by 

( )
0 0| ,0.975 |seˆ ˆY x n p Y xtμ μ−±  

which, for simple linear regression, is 

( ) ( )2
0

0 1 0 2,0.975
1ˆ ˆ ˆn

xx

x x
x t

n S
β β σ−

−
+ ± + . 
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Example:  The confidence intervals for the estimated blood pressure means were 
requested via the clm option in the SAS regression analysis.  They can be found in the 
resulting output under the heading “95% CL Mean”.  For instance, the estimated mean 
and 95% confidence interval for the first subject ( )  are 0 39x =

( )
|39 136.58ˆ

129.59,143.57
Yμ =

. 

The estimated means and confidence intervals are summarized in the following plot. 
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Predicted Values of the Response Variable 
The predicted value at 0x  for an individual subject is computed as 

0 1
ˆ ˆˆ 0y xβ β= + . 

 
It is frequently convenient to construct a "confidence interval” for this predicted Y value. 

• This is commonly referred to as a prediction interval to distinguish it from the 
aforementioned confidence interval for the mean of the regression line. 

• To get an interval estimate at x0 we first estimated the mean of y at x0 as we did 
before, and then account for the extra variability in y. 

• The prediction interval will be wider than the confidence interval for the mean due to 
the extra subject-to-subject variability. 

• A 95% prediction interval is given by 
( ),0.975ˆ ˆsen py t y−±  

which, for simple linear regression, is 

( ) ( )2
0

0 1 0 2,0.975
1ˆ ˆ 1ˆn

xx

x x
x t

n S
β β σ−

−
+ ± + + . 
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Example:  The confidence intervals for the predicted blood pressures were requested via 
the cli option in the SAS regression analysis.  They can be found in the resulting output 
under the heading “95% CL Predict”.  For instance, the predicted blood pressure and 
95% confidence interval for the first subject ( )0 39x =  are 

( )
ˆ 136.58

100.43,172.73
y =

. 

The predicted values and confidence intervals are summarized in the following plot. 
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10.6 Interpretation of Regression Estimates 
Consider the hypotheses for the regression slope 

0 1

1

: 0
: 0A

H
H

β
β
=

≠
. 

If we fail to conclude that the slope is significantly different from zero, then we are saying 
one of the following: 

1. The true model is 0Y β ε= + ; the regression line has no slope.  This means that X 
does not help in predicting Y.  A model without X does just as well in predicting Y as 
a model with X. 

2. The true model is not linear. 
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If we were to analyze the data from either of the following graphs using simple linear 
regression, our slope estimate would not be significant. 

X

Y

 
X

Y

• In the first plot, the slope is not significant because we have chosen the wrong 
(linear) model. 

• In the second, there probably is no relationship. 
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If we conclude that the slope is significantly different from zero, then the following are 
true: 

1. X provides significant evidence for the prediction of Y.  The model 0 1Y Xβ β ε= + +  
is significantly better than the simple model Y 0β ε= +  for predicting Y. 

2. A better model may still exist.  For instance, in the graph below, there is evidence of 
a linear effect, but that does not fully describe the relationship between X and Y. 

X

Y
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10.7 Points of Emphasis 
1. Be familiar with the linear regression model assumptions and the general concept 

of least-squares. 
2. Fit a regression model in SAS using PROC REG. 
3. Interpret the regression parameters, including the estimated effect of the predictor 

variable on the response variable.  Use the regression model to predict Y values at 
a given value of X.  Plot the regression line. 

4. Assess the significance of the regression estimates using SAS output.  Compute a 
confidence interval and p-value.  Interpret the results. 

5. Know the difference between prediction intervals and confidence intervals and how 
to compute these if supplied with the standard errors. 
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11.1 The Method of Maximum Likelihood 
Binomial Example 

Suppose that we are interested in estimating the prevalence of a particular disease in a 
large population. 

• Let θ  be the true prevalence in the population, 0 1θ≤ ≤

• Suppose that a random sample of n individuals is selected from this population. 
. 

• Let Y be the random variable denoting the number of individuals in the random 
sample of size n who have the disease. 

• The possible values of Y are 0, 1,…, n. 
Consequently, Y has a binomial distribution with parameters n and θ ; that is, 

( )~ ,Y Bin n θ . 

 
Analysis Goal:  Use n and Y to obtain a “good” (unbiased and small variance) estimate of 
the true prevalenceθ . 
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Note that the probability function for the binomial random variable Y is 
 

[ ] ( )Pr ; 1 n yyn
Y y

y
θ θ θ −⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

 

 
where 

( )
!

! !
n n

y n yy
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
. 

 
The following table displays, for n = 5, the results of the probability function evaluated at 
select values for θ  and all possible values of Y (y = 0, 1, 2, 3, 4, and 5). 
 

θ  y 
0 1 2 3 4 5 

0.2 0.328 0.410 0.205 0.051 0.006 0.000 
0.4 0.078 0.259 0.346 0.230 0.077 0.010 
0.6 0.010 0.077 0.230 0.346 0.259 0.078 

 

 267



For example, 
 

[ ]

( ) ( )

3 5 3

3 2

5
Pr 3; 0.2 0.2 0.8

3

10 0.2 0.8
0.051

Y θ −⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠

=

=

 

[ ]

( ) ( )

3 5 3

3 2

5
Pr 3; 0.4 0.4 0.6

3

10 0.4 0.6
0.230

Y θ −⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠

=

=

 

[ ]

( ) ( )

3 5 3

3 2

5
Pr 3; 0.6 0.6 0.4

3

10 0.6 0.4
0.346

Y θ −⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠

=

=

 

 
Suppose that we would like to decide between the three select values of θ  (0.2, 0.4, and 
0.6).  If we were to observe 3 cases out of 5, then it is most likely to have occurred if 

0.6θ =  - the largest value of [ ]Pr 3;Y θ= .  Examination of the table indicates that 

• y = 0 or 1 ⇒ 0.2θ =  
• y = 2 ⇒ 0.4θ =

• y = 3, 4, or 5 ⇒ 
 

0.6θ =  
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In particular, 
0.2 0,1

ˆ 0.4 2
0.6 3,4,5

y
y
y

θ
=⎧

⎪= =⎨
⎪ =⎩

 

is called the maximum likelihood estimator of θ . 
 

Definition 
The method of maximum likelihood (ML) is the process of selecting the value of θ , 
denoted θ̂ , that satisfies the inequality 

*ˆPr ; Pr ;y yθ θ⎡ ⎤ ⎡ ⎤≥ ⎣ ⎦⎣ ⎦  

where *θ  is any alternative value of θ  and y is the observed data. 
 
Binomial Example:  In general, when any value of 10 θ≤ ≤  is possible, the ML method 
involves finding the value θ̂  for which 

[ ] ( )Pr ; 1 n yyn
y

y
θ θ θ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

is maximized as a function of θ . 
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The maximization can be achieve with calculus, by 
1. Taking the derivative of the previous equation with respect to θ . 
2. Setting the derivative equal to zero. 
3. Solving for θ . 

For instance, 
 

[ ] ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

11

11

11

Pr ; 1 1

1 1

1

n y n yy y

n yy

n yy

nd y y n y
d y

n
y n y

y
n

y n
y

θ θ θ θ θ
θ

θ θ θ θ

θ θ θ

− − −−

− −−

− −−

⎛ ⎞ ⎡ ⎤= − − − −⎜ ⎟ ⎣ ⎦⎝ ⎠
⎛ ⎞

= − − − −⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 

 
The derivative evaluates to zero for θ  equal to 0, 1, or y n .  The first two minimize the 
probability function; the third maximizes it.  Thus, the maximum likelihood estimate is 

ˆ y
n

θ = . 

This is the sample proportion that you learned to use in Introduction to Biostatistics.   
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This estimator has the property that 
*ˆPr ; Pr ;y yθ θ⎡ ⎤ ⎡ ⎤≥ ⎣ ⎦⎣ ⎦  

for any value *θ . 
 
The following figure illustrates the maximum likelihood process for the binomial 
distribution: 
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Note 
• The solid curve represents the probability of the data (Y) for each value of the 

parameter θ . 
• The method selects the estimate θ̂  that yields the largest value of the likelihood 

[ ]Pr . ;Y θ

• Note that Y is the fixed quantity in this problem.  We are searching for the estimate 
θ̂  that has the largest “likelihood” given the data. 

 

General Notation 
In general, assume that we have a data set that represents a random sample from a 
population 

1 2, , , ny y y… . 

We will also allow for the possibility of more than one parameter of interest (e.g. the 
intercept and slope parameter in simple linear regression). 

• Denote the data vector as 
( )1 2, , , ny y y=y …  

and the parameter vector as 

( )1 2, , , pθ θ θ=θ … . 
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• Define the likelihood function ( );L y θ  as the probability distribution for the data 
evaluated at the parameter vector . θ

• The maximum likelihood estimate is the vector of values ( )1 2
ˆ ˆ ˆ ˆ, , , pθ θ θ=θ …  that 

maximizes the likelihood function; i.e. 

( ) ( )*ˆ; ;L L≥y θ y θ  

where  is any other set of parameter estimates. *θ
• In practice, we find the maximum likelihood estimates using iterative computer 

algorithms because in most cases there is no closed form for the solution. 
• The Logistic regression techniques that we will discuss in this course use iterative 

methods to find the maximum likelihood estimates. 
 

11.2 Statistical Inference using Maximum Likelihood 
Besides yielding estimates of the parameters, the maximum likelihood method yields 
several results that are useful in comparing models (testing hypotheses) and 
constructing confidence intervals, including 

( )• The maximized likelihood value ˆ;L y θ

• Estimates of the variances (standard errors) of the parameter estimates . 

. 

θ̂
• Estimates of the covariances (correlations) among the elements of . θ̂
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Regression Example 
Recall the simple linear regression example where systolic blood pressure (Y) was 
modeled as a function of age (X).  We now want to use the observations 

( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y…  

to decide which of the following models is most consistent with the data: 
 

Model 1 0Y β ε= +  
Model 2 0 1Y Xβ β ε= + +  
Model 3 2

0 1 2Y X Xβ β β ε= + + +  

 
Model 2: Simple Linear Regression 
The usual regression assumptions hold: 

• The Y values are independent 

( )• 2
0 1~ ,Y N Xβ β σ+

• The X values are measured without error. 

 

The parameter vector of interest is 

( )2
0 1, ,β β σ=θ  
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For each observation, we can write the normal probability density function as 

( ) ( ) 2
0 2

1 1; , , exp
22

i i if y y xβ β σ β β
σπσ

2
1 0 12

⎧ ⎫= − − +⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭
. 

Under the assumption that the Y’s are independent, the likelihood function is given by 

( ) ( )

( )
( )

1

2

2
1

; , , ; , ,

1 1exp
22

n

i
i

n

i in
i

L f y

y x

β β σ β β σ

β β
σπσ

2 2
0 1 0 1

=

0 122
=

=

⎧ ⎫
= − − +⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭

∏

∑

y

. 

Taking partial derivatives with respect to the three parameters and setting them equal to 
zero yields a set of three equations in three unknowns. 

• The solutions to these three equations are the maximum likelihood estimates 

0
ˆ ˆy xβ β1= − , ( )( )

( )1 2
ˆ i i

i

x x y y
x x

β
− −

=
−

∑
∑

, 

and 

( ) 22

1

1 ˆ ˆˆ
n

i i
i

SSEy x
n n

σ β β0 1
=

⎡ ⎤= − + =⎣ ⎦∑  

where SSE is the sum of squared errors for the fitted straight line. 
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• The previous solutions are the same as the least-squares estimates.  This 
equivalence holds in general for multiple linear regression where the residuals are 
independent and normally distributed. 

• The ML estimator 2σ̂  is a biased estimator; the unbiased estimator is 

2ˆ
n SSE

n p n p
σ⎛ ⎞ =⎜ ⎟− −⎝ ⎠

. 

 

11.2.1 Likelihood Ratio Test 
In the case of linear regression, the likelihood function obtains its maximum at 

( ) ( ) 22ˆ; 2 ˆ
n

L eπσ
−

=y θ  

where 2σ̂  is the maximum likelihood estimate of the variance.  It is more convenient to 
work with the natural log of the likelihood 

( ) ( )2ˆln ; ln 2 ˆ
2
nL eπσ= −y θ  

We will use this maximum value to construct the likelihood ratio test statistic. 
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Hypothesis Testing 
We will use the likelihood ratio test to compare models in a manner entirely analogous to 
using the partial F-test in multiple linear regression. 

1. Fit the full model 
2. Fit the reduced model 
3. Look at the change in the maximum likelihood 
4. If the change is large then we will reject the hypothesis that the reduced model is as 

good as the full model. 
 
From our blood pressure example, SAS was used to compute the log-likelihood for the 
three models of interest. 
 

Model Form ( )ˆln ;L y θ  

1 0Y β ε= +  -135.5732 
2 0 1Y Xβ β ε= + +  -127.0783 
3 2

0 1 2Y X Xβ β β ε= + + +  -127.0781 
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Notes 

( ) ( ) ( )2 2 2ˆ ˆ ˆ ˆ ˆ; , ; , , ; , , ,ˆ ˆ ˆL L L ˆ• β σ β β σ β β β σ0 0 1 0 1 2< <y y y

• This is analogous to the result that in multiple linear regression R2 increases as 
more variables are added to the model. 

 

• Models 1, 2, and 3 represent a set of hierarchical models.  In other words, the 
variables contained in earlier models, appear in the later ones. 

• We will use the hierarchical nature of the models to test hypotheses, just as we did 
in multiple linear regression. 

• Suppose the “Full” model has p + k parameters and the “Reduced” model has p 
parameters.  Then, if the sample size is large, the likelihood ratio statistic 

( )2 2
Reduced Full2 ln ln ~ kX L L χ= − −  

follows a chi-square distribution with k degrees of freedom. 
• That is, the degrees of freedom is equal to the number of parameters in the full 

model minus the number in the reduced model. 
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Regression Example: 
Suppose that we wanted to compare model 1 with model 2; that is, test that a linear 
model is better than a model with just an intercept (no effect of age). 

• The Full model is 

0 1Y Xβ β ε= + +  

and the Reduced model is 

0Y β ε= +

• The likelihood ratio test statistic is computed as 

. 

( )
( )

2
Reduced Full

2
1

2 ln ln

2 135.5732 127.0783

16.9898 ~

X L L

χ

= − −

= − − +

=

 

and yields a p-value of e2
1Pr 16.9898 3.76 5p χ⎡ ⎤= ≥ =⎣ ⎦ − .  Therefore, at the 5% 

level of significance, the linear model provides a better fit to the data than the 
intercept-only model. 

• Note that this comparison of models is equivalent to testing the hypotheses 

0 1

1

: 0
: 0A

H
H

β
β
=

≠
. 
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We could compare the fit of the quadratic model to that of the linear model. 
• The Full model is 

2
0 1 2Y X Xβ β β ε= + + +  

and the Reduced model is 

0 1Y Xβ β ε= + + . 

• The likelihood ratio test statistic is computed as 

( )
( )

2
Reduced Full

2
1

2 ln ln

2 127.0783 127.0781

0.0004 ~

X L L

χ

= − −

= − − +

=

 

which has a p-value of .  Therefore, at the 5% level of 
significance, the quadratic model does not provide a better fit to the data than the 
linear model. 

2
1Pr 0.0004 0.9840p χ⎡ ⎤= ≥ =⎣ ⎦

• Note that this comparison of models is equivalent to testing the hypotheses 
 

0 2

2

: 0
: 0A

H
H

β
β

=

≠
. 
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Finally, we could compare the fit of the quadratic model to the intercept-only model. 
• The Full model is 

2
0 1 2Y X Xβ β β ε= + + +  

and the Reduced model is 

0Y β ε= +

• The likelihood ratio test statistic is computed as 

. 

( )
( )

2
Reduced Full

2
2

2 ln ln

2 135.5732 127.0781

16.9902 ~

X L L

χ

= − −

= − − +

=

 

which has a p-value of e2
2Pr 16.9902 2.04 5p χ⎡ ⎤= ≥ =⎣ ⎦ − .  Therefore, at the 5% 

level of significance, the quadratic model provide a better fit to the data than the 
intercept-only model. 

• Note that this comparison of models is comparable to testing the hypotheses 

0 1 2

1 2

: 0, 0
: 0 or 0A

H
H

β β
β β
= =

≠ ≠
. 
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SAS Program and Output 
data bp; 
 input sbp age; 
 cards; 
 144 39 
 220 47 
 138 45 
 145 47 
 162 65 
 ... 
 175 69 

; 
proc genmod data=bp; 
 model sbp = ; 
 
proc genmod data=bp; 
 model sbp = age; 
 
proc genmod data=bp; 
 model sbp = age age*age; 
run; 

 
Syntax 

• PROC GENMOD is one of several regression procedures available in SAS.  It can 
be used to perform many different types of regression, including linear regression. 

• We use it here to obtain maximum likelihood results (standard errors and log 
likelihood); PROC REG only provides least-squares estimates. 

• The three GENMOD statements correspond to the three models of interest. 



The GENMOD Procedure 
 
      Model Information 
 
Data Set               WORK.BP 
Distribution            Normal 
Link Function         Identity 
Dependent Variable         sbp 
Observations Used           30 
Missing Values               3 
 
 
           Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
 
Deviance                  29      14787.4667        509.9126 
Scaled Deviance           29         30.0000          1.0345 
Pearson Chi-Square        29      14787.4667        509.9126 
Scaled Pearson X2         29         30.0000          1.0345 
Log Likelihood                     -135.5732 
 
 
Algorithm converged. 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1   142.5333     4.0535   134.5887   150.4780   1236.46       <.0001 
Scale        1    22.2017     2.8662    17.2384    28.5941 
 
NOTE: The scale parameter was estimated by maximum likelihood. 
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The GENMOD Procedure 
 
 
           Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
 
Deviance                  28       8393.4440        299.7659 
Scaled Deviance           28         30.0000          1.0714 
Pearson Chi-Square        28       8393.4440        299.7659 
Scaled Pearson X2         28         30.0000          1.0714 
Log Likelihood                     -127.0783 
 
 
Algorithm converged. 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    98.7147     9.6614    79.7788   117.6507    104.40       <.0001 
age          1     0.9709     0.2031     0.5728     1.3689     22.85       <.0001 
Scale        1    16.7267     2.1594    12.9873    21.5426 
 
NOTE: The scale parameter was estimated by maximum likelihood. 
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The GENMOD Procedure 
 
 
           Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
 
Deviance                  27       8393.3127        310.8634 
Scaled Deviance           27         30.0000          1.1111 
Pearson Chi-Square        27       8393.3127        310.8634 
Scaled Pearson X2         27         30.0000          1.1111 
Log Likelihood                     -127.0781 
 
 
Algorithm converged. 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    98.2569    23.2366    52.7141   143.7998     17.88       <.0001 
age          1     0.9949     1.1295    -1.2189     3.2088      0.78       0.3784 
age*age      1    -0.0003     0.0128    -0.0254     0.0249      0.00       0.9827 
Scale        1    16.7265     2.1594    12.9872    21.5425 
 
NOTE: The scale parameter was estimated by maximum likelihood. 
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11.2.2 Wald Statistics 
PROC GENMOD gives confidence intervals and test statistics that are different than the 
ones obtained in PROC REG.  Previously, we based our inference on the least-squares 
test statistic 

m ( )
ˆ

~
ˆse

i i
n p

i

T tθ θ
θ −

−
= . 

The standard errors in PROC GENMOD are estimated differently; using maximum 
likelihood methods. For sufficiently large sample sizes, the maximum likelihood test 
statistic 

m ( ) ( )
ˆ

~ 0,1  
ˆse

i i

i

Nθ θ
θ
−

can be assumed to follow a normal distribution. 
 
Results 

• Suppose that the hypotheses of interest are 

0 :
:

i

A i

H c
H c

θ
θ
=

≠
, 
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• The hypotheses can be tested with the following maximum likelihood statistic: 

m ( ) ( )
ˆ

~ 0,1 . 
ˆse

i

i

c Nθ
θ
−

otherwise known as the Wald statistic, for which the two-sided p-value is 

m ( )
ˆ

2Pr
ˆse

i

i

cp Z θ
θ

⎡ ⎤−⎢ ⎥= ≥
⎢ ⎥⎣ ⎦

. 

• Because the square of a standard normal random variable follows a chi-square 
distribution with one degree of freedom, the p-value is often computed as 

m ( )

2

2
1

ˆ
Pr

ˆse
i

i

cp θχ
θ

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= ≥
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

. 

The chi-square form of the statistic and the p-value are reported by PROC 
GENMOD. 

• A 95% Wald confidence interval is given by 
m ( )0.975

ˆ ˆsei izθ θ± . 
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Regression Example:  In model 2, we can compute the 95% Wald confidence for the 
slope as 

m ( )
( )

( )

1 0.975 1
ˆ ˆse

0.9709 1.96 0.2031

0.573,1.369

zβ β±

± . 

 
The chi-square statistic for testing the hypotheses that 
 

0 1

1

: 0
: 0A

H
H

β =

β ≠
 

 
is computed as 
 

m ( )

2
2

1

1

ˆ 0 0.9709 22.85
ˆ 0.2031se

β
β

⎛ ⎞− ⎛ ⎞⎜ ⎟ = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

p e

 

 

for which the p-value is 2
1Pr 22.85 1.75 6χ⎡ ⎤= ≥ = −⎣ ⎦ . 
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11.2.3 Summary of Test Statistics 
The following table summarizes the three different test statistics considered for the linear 
and quadratic terms in our blood pressure example: 
 

Alternative Hypothesis Method 
Least-Squares Likelihood Ratio Wald 

1: 0AH  T = 4.62 
p < 0.0001 

X2 = 16.99 
p < 0.0001 

X2 = 22.85 
p < 0.0001 

β ≠

2A : 0H β ≠  T = -0.02 
p < 0.9838 

X2 = 0.0004 
p < 0.9840 

X2 = 0.0005
p < 0.9827 

 
Notes 

• In general, the p-values will differ between the three methods. 
• They are very similar here because the sample size is large and the effect is either 

very significant or non-significant. 
• Smaller sample sizes will lead to larger discrepancies in the results. 
• The preferred method is the likelihood ratio test. 
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11.3 Points of Emphasis 
1. Be familiar with the method of maximum likelihood.  Idea is to find values for the 

parameters that maximize the likelihood function for a given set of data.  It is used 
to estimate model parameters and standard errors and to compare the fit of nested 
models. 

2. Fit regression models with PROC GENMOD. 
3. Perform the likelihood ratio test to compare nested models. 
4. Use the maximum likelihood results from GENMOD to construct Wald confidence 

intervals and test statistics. 
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12.1 Overview 
Logistic regression is like linear regression in that it is a method for modeling the effect of 
predictor variables on a response variable.  The difference is that the response variable 
is binary; e.g. 

• Dead or alive 
• Diseased or non-diseased 
• Exposed or unexposed 
• Incident case or control 

 
Most of the techniques learned in linear regression are applicable to logistic regression.  
The main difference is in how the parameters are estimated and interpreted. 
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CHD Example 
Data are available on 100 patients from a cross-sectional study where we have age in 
years and whether or not the individual patient shows signs of coronary heart disease 
(CHD). 
 

id age chd 
1 20 0 
2 23 0 
3 24 0 
4 25 1 
5 25 0 
# # #
100 69 1 

 
where 

• id is the unique study identifier. 
• age is the age of the subject at the time of the cross-sectional sample. 
• chd is an indicator variable for evidence of coronary heart disease (0 = no CHD; 1 

= CHD). 
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In general, we will use a 0/1 indicator variable to represent the absence/presence of the 
event of interest.  A scatter plot of CHD by age is given below. 

Age (years)

C
H

D
 s

ta
tu

s

20 30 40 50 60 70

0
1
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Note 
• Suppose we were to use linear regression to analyze these data, say, 

0 1Y Xβ β ε= + +  

where ( )2~ 0,Nε σ  or, equivalently, 

( )2
0 1~ ,Y N Xβ β σ+ . 

In other words, the linear regression model assumes that the response variable is 
normally distributed with constant variance.  Does this assumption hold when the 
response variable is dichotomous? 

• If Y is dichotomous, it is still reasonable to assume that the error term has a mean 
of zero. 

• From the definition of the expected value, 
( ) [ ] [ ]

[ ]
0 Pr 0 1 Pr 1

Pr 1

E Y Y Y

Y
π

= × = + × =

= =

≡

. 

Consequently, the expected value of our model can be written as 

( ) ( )
( ) ( ) ( )

0 1

0 1

0 1

E Y E X

E E X E
X

π β β ε

β β ε

β β

= = + +

= + +

= +

. 
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However, Y is a Bernoulli random variable whose variance is given by 
( ) ( ) ( )( )0 1 0 11 1Var Y X Xπ π β β β β= − = + − −  

which is a function of the predictor variables.  This violates the assumption that the 
variance is constant. 

• Furthermore, Y is dichotomous which clearly violates the normality assumption. 

Probability as the Response Variable 
A frequency table with CHD summarized by age intervals is shown below. 
 

Age N CHD Mean 
(Proportion CHD) No Yes 

20-29 10 9 1 0.10 
30-34 15 13 2 0.13 
35-39 12 9 3 0.25 
40-44 15 10 5 0.33 
45-49 13 7 6 0.46 
50-54 8 3 5 0.63 
55-59 17 4 13 0.76 
60-66 10 2 8 0.80 
Total 100 57 43 0.43 
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Note 
• The column labeled “Mean” represents the mean of the CHD values within each 

interval. 
• Because the values of Y are 0 or 1, the mean is just the number of individuals with 

evidence of CHD (CHD = 1) divided by the total number of individuals in that age 
group, i.e. the mean is the proportion with evidence of CHD. 

• Note that the proportion of CHD events increases with age. 
( )Let the quantity  represents the expected value of Y given x, i.e. the theoretical 

mean of Y given the value of x. 
|E Y x

• In simple linear regression we write 
( )| |Y x E Y x xμ β β0 1= = +  

This expression implies that it is possible for ( )E Y x  to take on any value between 
−∞ and ∞. 

• The column labeled “Mean” in the previous table estimates the expected values.  In 
fact, the expected values are probabilities. 

• Because Y is either 0 or 1, ( )E Y x  is the probability of disease at the given x value.  
Denote this probability as 

( ) ( ) [ ]| Pr 1|x E Y x Y xπ = = = . 

Clearly, ( )xπ  must take on values ( )0 1xπ≤ ≤ .
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The following is a plot of the observed proportions from the table. 
 

30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Age (years)

C
H

D
 P

ro
po

rti
on

 
 

 297



Note that the curve is “S-shaped”.  It resembles the shape of a cumulative probability 
distribution.  We will consider the logistic distribution as a tool for modeling the 
relationship between a binary response variable and one or more predictor variables. 
 

12.2 Logistic Model 
The logistic regression model has the form 

( )( )
( )
( )

π

π
β β

π
⎡ ⎤

= +⎢ ⎥−⎣ ⎦
0 1

~ 1,

ln
1

Y Binomial x

x
x

x

 

where the expression on the left-hand side is referred to as the log-odds or logit.  In 
other words, the response is the natural log of the disease odds for the given x value. 

( )• The logit transformation “linearizes” the relationship between xπ  and the 
covariate x. 

• The logit takes on values ( )π−∞ ≤ ≤ ∞logit x

• There are alternative models for dichotomous response variables.  One reasons for 
the popularity of the logit model is that the coefficients have a simple interpretation 
in terms of the odds ratios. 

. 
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• The odds of disease in this model is 
( )
( ) { }0 1exp

1
x

x
x

π
β β

π
= +

−
. 

Note that the relationship between the odds and the predictor variable x is 
nonlinear. 

• The logit model can be rewritten in terms of the probability of disease, such that 

( )
1

x

x
ex

e

β β

β βπ
0 1

0 1

+

+=
+

 

which implies that ( )0 x 1π≤ ≤ ; also a nonlinear function of the predictors. 

12.2.1 Model Assumptions 
In linear regression we assume that an observed outcome can be expressed as 

( )|Y E Y x ε= +  where ε has mean zero. 

• The quantity ε is called the error and expresses an observation’s deviation from the 
conditional mean. 

• We usually assume that ( )ε σ 2~ 0,N . In particular, we assume that the variance is 
the same for all values of x. 
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If the dichotomous random variable Y represents the outcome from an individual subject 
then 

 
1. The Y values are independent and take on values of either 0 or 1. 
 
2. Since ( ) ( )Pr 1|Y x xπ= =  and ( ) ( )Pr 0 | 1Y x xπ= = − , 

Y has a binomial distribution with n = 1 and ( )p xπ= . 
Therefore 

• ( ) ( )E Y x xπ=  
• ( ) ( ) ( )( )var 1Y x x xπ π= −  

That is, the conditional distribution of the response variable Y follows a binomial 
distribution with probability given by the conditional mean ( )xπ . 
 

3. The conditional mean is modeled as ( )
1

x

x
ex

e

β β

β βπ
0 1

0 1

+

+=
+

. 

 
4. The X values are measured without error. 
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12.2.2 Summary 
1. The conditional mean of the regression equation must be bounded between 0 and 

1.  The form of the logistic model guarantees satisfies this property. 
2. The parameters in the logistic model have a natural interpretation in terms of the 

odds ratio. 
3. The binomial, not the normal, distribution describes the distribution of the response 

variable and will be the statistical distribution upon which the analysis is based. 
4. The principles that guide an analysis using linear regression will also guide us in 

logistic regression. 
 

12.3 Maximum Likelihood for Logistic Regression 
Just as in simple linear regression, the data will be a sample of independent 
observations.  In the case of one predictor variable, the data are given by 

( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y…  

where yi represents the value of the dichotomous response variable and xi is the value of 
the predictor variable for the ith subject. 
 
Furthermore, assume that the response variable has been coded as 0 or 1, representing 
the absence (0) or the presence (1) of the event, respectively. 
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In simple linear regression we assumed that  
 

( )E Y x xβ β0 1= +  

 

and used least-squares to estimate the parameters ( ), ,β β σ 2
0 1  that minimized the sum of 

squares  

( )2
i iy xβ β0 1− −∑ . 

 
For many reasons, this will not work for logistic regression.  Rather, we must use the 
method of maximum likelihood to obtain parameter estimates. 
 

• In brief, this method selects the values for the parameters β0  and β1  which 
maximize the probability of obtaining the observed set of data. 

• The method is based on the form of the likelihood function when the response 
variable is assumed to be a binomial random variable. 

• This function expresses the probability of the observed data as a function of the 
unknown parameters. 
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12.3.1 Likelihood Function 
The function for the conditional probability 

[ ] ( )Pr 1|
1

x

x
eY x x

e

β β

β βπ
0 1

0 1

+

+= = =
+

 

and implies that 

[ ] ( ) 1Pr 0 | 1
1 xY x x

eβ βπ
0 1+= = − =

+
. 

 
Thus, 

1. For those pairs (xi, yi) where yi = 1 the contribution to the likelihood function is 
( )ixπ , and 

2. For those where yi = 0 the contribution to the likelihood function is ( )1 ixπ− . 

 
A general way of describing 1 and 2 jointly is 
 

( ) ( )( )11 ii yy
i ix xπ π

−
−  
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To see why, note that when yi
 = 1 the result is  

( ) ( )( ) ( )01 1i i ix x xπ π π− =  

and when yi = 0 the result is  

( ) ( )( ) ( )1 00 1 1i i ix x xπ π π
−

− = − . 

 
Because the observations are assumed to be independent, the likelihood function is 
obtained as the product of the individual terms for each observation or 

( ) ( ) ( )( )1
1

1 ii
n yy

i i
i

L x xπ π
−

=

= −∏β  

Maximum likelihood requires that we use, as our estimate of β, the value which 
maximizes this expression.   
 
It is easier to work with the log of the likelihood function 

( ) ( ) ( ) ( ){ }
1

ln ln 1 ln 1
n

i i i i
i

L y x yπ π
=

= + − −⎡ ⎤⎣ ⎦∑β x  

If we choose the values of the parameters that maximize the log of the likelihood, those 
same values will also maximize the likelihood.  
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12.3.2 Likelihood Estimates 
In the simple case of one predictor variable with a linear effect in the model, 

( )
( ) 0 1ln

1
x

x
x

π
β β

π
⎡ ⎤

= +⎢ ⎥−⎣ ⎦
 

there are two parameters to estimate, 0β  and 1β .  We therefore have to take the partial 
derivatives of ( ) with respect to the parameters, set the derivatives equal to zero and 
solve for the parameters.  The two resulting equations are called the likelihood equations 
and are given by 

L β

( )
1 1

0
1

i

i

xn n

i i i x
i i

ey x y
e

β β

β βπ
0 1

0 1

+

+
= =

⎡ ⎤
− = − =  ⎡ ⎤ ⎢ ⎥⎣ ⎦ +⎣ ⎦

∑ ∑

and 

( )
1 1

0
1

i

i

xn n

i i i i i x
i i

ex y x x y
e

β β

β βπ
0 1

0 1

+

+
= =

⎡ ⎤
− = − =⎡ ⎤ ⎢ ⎥⎣ ⎦ +⎣ ⎦

∑ ∑  

These are not linear in the parameters.  Hence, iterative methods are used to solve 
them. 
 
Fortunately, we don’t have to worry about how the equations are solved; statistical 
software programs solve them for us.  We will use 0β̂  and β̂1  to denote the solutions to 
the likelihood equations; i.e. the maximum likelihood estimates. 
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• If the data are coded 1 for disease and 0 for non-disease then the descending 
option is required to force SAS to estimate [ ]Pr 1|Y x=  rather than the default of 

[ ] . 
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SAS Program and Output 
data chd; 
 input id age chd; 
 cards; 
 1   20 0 
 2   23 0 
 3   24 0 
 5   25 1 
 ... 
 100 69 1 
; 
 

  
proc logistic data=chd descending; 
 model chd = age; 
 output out=results predicted=p lower=lcl 

Pr 0 |Y x=

• Both procedures use maximum likelihood methods to fit the logistic regression 
models. 

• Both PROC LOGISTIC and PROC GENMOD can be used to perform logistic 
regression. 

          upper=ucl; 
 
proc print data=results; 
 
proc genmod data=chd descending; 
 model chd = age / dist=binomial; 
run;

Syntax 

• The output statement requests that specific estimates from the analysis be saved 
in the SAS dataset result.  This output statement would work in either procedure. 

 



The LOGISTIC Procedure 
 
              Model Information 
 
Data Set                      WORK.CHD 
Response Variable             CHD 
Number of Response Levels     2 
Number of Observations        100 
Model                         binary logit 
Optimization Technique        Fisher's scoring 
 
 
          Response Profile 
 
 Ordered                      Total 
   Value          CHD     Frequency 
 
       1            1            43 
       2            0            57 
 
Probability modeled is CHD=1. 
 

                    Model Convergence Status 
 
         Convergence criterion (GCONV=1E-8) satisfied. 
 
 
         Model Fit Statistics 
 
                              Intercept 
               Intercept         and 
Criterion        Only        Covariates 
 
AIC              138.663        111.353 
SC               141.268        116.563 
-2 Log L         136.663        107.353 
 
 
        Testing Global Null Hypothesis: BETA=0 
 
Test                 Chi-Square       DF     Pr > ChiSq 
 
Likelihood Ratio        29.3099        1         <.0001 
Score                   26.3989        1         <.0001 
Wald                    21.2541        1         <.0001 
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The LOGISTIC Procedure 
 
             Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept     1     -5.3095      1.1337       21.9350        <.0001 
AGE           1      0.1109      0.0241       21.2541        <.0001 
 
 
           Odds Ratio Estimates 
 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
 
AGE          1.117       1.066       1.171 
 
 
Association of Predicted Probabilities and Observed Responses 
 
Percent Concordant     79.0    Somers' D    0.600 
Percent Discordant     19.0    Gamma        0.612 
Percent Tied            2.0    Tau-a        0.297 
Pairs                  2451    c            0.800
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Obs    ID    AGE    CHD    _LEVEL_       p         lcl        ucl 
 
  1     1     20     0        1       0.04348    0.01207    0.14470 
  2     2     23     0        1       0.05962    0.01906    0.17145 
  3     3     24     0        1       0.06615    0.02216    0.18128 
  4     5     25     1        1       0.07334    0.02575    0.19159 
  5     4     25     0        1       0.07334    0.02575    0.19159 
  6     7     26     0        1       0.08125    0.02990    0.20241 
  7     6     26     0        1       0.08125    0.02990    0.20241 
  8     9     28     0        1       0.09942    0.04016    0.22560 
  9     8     28     0        1       0.09942    0.04016    0.22560 
 10    10     29     0        1       0.10980    0.04645    0.23802 
 11    11     30     0        1       0.12113    0.05364    0.25101 
 12    13     30     0        1       0.12113    0.05364    0.25101 
 13    16     30     1        1       0.12113    0.05364    0.25101 
 14    14     30     0        1       0.12113    0.05364    0.25101 
 15    15     30     0        1       0.12113    0.05364    0.25101 
 16    12     30     0        1       0.12113    0.05364    0.25101 
 17    18     32     0        1       0.14679    0.07112    0.27880 
 18    17     32     0        1       0.14679    0.07112    0.27880 
 19    19     33     0        1       0.16124    0.08163    0.29365 
 20    20     33     0        1       0.16124    0.08163    0.29365 
 21    24     34     0        1       0.17681    0.09344    0.30918 
 22    22     34     0        1       0.17681    0.09344    0.30918 
 23    23     34     1        1       0.17681    0.09344    0.30918 
 24    21     34     0        1       0.17681    0.09344    0.30918 
 25    25     34     0        1       0.17681    0.09344    0.30918 

# 
100   100     69     1        1       0.91246    0.76287    0.97124
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The GENMOD Procedure 
 
      Model Information 
 
Data Set              WORK.CHD 
Distribution          Binomial 
Link Function            Logit 
Dependent Variable         CHD 
Observations Used          100 
 
 
      Response Profile 
 
 Ordered               Total 
   Value    CHD    Frequency 
 
       1    1             43 
       2    0             57 
 
PROC GENMOD is modeling the probability that CHD='1'. 
 
 
           Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
 
Deviance                  98        107.3531          1.0954 
Scaled Deviance           98        107.3531          1.0954 
Pearson Chi-Square        98        101.9429          1.0402 
Scaled Pearson X2         98        101.9429          1.0402 
Log Likelihood                      -53.6765 
 
 
Algorithm converged. 
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                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    -5.3095     1.1337    -7.5314    -3.0875     21.94       <.0001 
AGE          1     0.1109     0.0241     0.0638     0.1581     21.25       <.0001 
Scale        0     1.0000     0.0000     1.0000     1.0000 
 
NOTE: The scale parameter was held fixed. 
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Summary of Results 
 

Variable Parameter Estimate SE Wald 
95% CI Chi-Square p-value 

Intercept β0  -5.3095 1.1337 (-7.53, -3.08) 21.94 <0.0001
Age β1 0.1109 0.0241 (0.064, 0.158) 21.25 <0.0001

 
Notes 

• The parameter estimates are for the associated effect on the log-odds of disease.  
Thus, for every year increase in age, the log-odds of CHD increases by 0.1109 
units. 

• With 95% confidence, the effect of age could be as small as 0.0638 units or as 
large as 0.1581 units. 

• The Wald chi-square statistic is computed as 

( )

2

2 2
1

ˆ
~X β

ˆse
χ

β⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟ . 
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The test statistic for age is 
2

2 0.1109 21.25
0.0241

X ⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

 

for which e − .  Therefore, at the 5% level of 
significance, there is a positive effect of age on CHD. 

2
1Pr 21.25 4.03 6p χ⎡ ⎤= ≥ =⎣ ⎦

• The Wald 95% confidence interval is 

( )0.975
ˆ ˆsezβ β± . 

For the effect of age, the confidence interval is 

( )
( )

0.1109 1.96 0.0241

0.06,0.16

±
. 
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12.3.3 Probability of Disease 
The probability estimates as a function of age are given by 

( )
0 1

0 1

ˆ ˆ

ˆ ˆˆ
1

x

x

ex
e

β β

β β
π

+

+
=

+
. 

 
CHD Example: 
The estimated probability function is 

( )
5.309 0.1109

5.309 0.1109ˆ
1

x

x
ex

e
π

− +

− +=
+

 

 
For instance, at age 20, the estimated probability of CHD is 

( )
( )

( )

5.3095 0.1109 20

5.3095 0.1109 2020 0.0435ˆ
1

e
e

π
− +

− += =
+

. 

In the SAS analysis, these probabilities were computed for each of the subjects in the 
study and saved in the results dataset, along with the upper and lower bounds of the 
95% Wald confidence intervals. 
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Subject 1 was 20 years-old.  From the printout of the results dataset, we see that the 
estimated probability and 95% confidence interval are 0.04348 and (0.101207, 0.14470). 
 
Therefore, at age 20 the estimated mean probability of CHD is 4.3% with a 95% 
confidence interval of ( )1.2%,14.5% .  The estimated CHD probability as a continuous 
function of age is plotted below. 
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Notes 

• The depicted logistic curve is like the regression line in simple linear regression. 
• The estimates are for the probability of CHD.  They are not estimates of the disease 

status for an individual. 
• The probability estimates from logistic regression are only generalizable to the 

study population if the study design is cohort or cross-sectional. 
• Because the proportion of diseased and non-diseased subjects is fixed by the case-

control design, the resulting estimates are conditional probabilities; i.e. the 
probability of disease given that diseased subjects are more likely to be selected for 
inclusion in the study. 
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12.4 Points of Emphasis 
1. The need for logistic regression when the response is dichotomous.  Understand 

which linear regression assumptions are not appropriate for dichotomous response 
variables. 

2. Logistic regression assumptions.  Response has a binomial distribution; know the 
form of the mean and variance. 

3. Form of the logistic model.  Be able to write down the log-odds, odds, and 
probability as a function of the predictor variables. 

4. Use of PROC LOGISTIC or PROC GENMOD to fit logistic regression models. 
5. Interpret SAS output.  Estimated effect of predictor variables on the log-odds of 

disease.  Construct Wald confidence intervals and test statistics. 
6. Use SAS results to compute the estimated probability of disease.  Know when the 

estimated probability is generalizable to the study population. 
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13.1 Odds Ratio Estimates 
In Section 11, we fit the following logistic regression model for the effect of age on CHD 
 

( )
( ) 0 1ln

1
x

x
x

π
β β

π
⎡ ⎤

= +⎢ ⎥−⎣ ⎦
. 

 
It turns out that there is a natural interpretation of the 1β  parameter, the effect of age, in 
terms of the relative odds of disease.  Note that the model can be expressed as a 
function of the odds of disease ( )g x , 

 

( ) ( )
( ) { }0 1exp

1
x

g x x
x

π
β β

π
≡ = +

−
. 

 
Specifically, our fitted model is 
 

( ) { }ˆ exp 5.3095 0.1109g x x= − +  

 
where x is the age variable. 
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13.1.1 Linear Effect for the Predictor  
Odds Ratio Estimate 

Goal:  Estimate the CHD odds ratio for an individual aged 60, relative to a 50 year-old. 
 
The odds ratio of interest is the ratio of the CHD odds at age 60 versus the odds at age 
50, 
 

( )
( )

( ) ( )( )
( ) ( )( )
60 1 6060CHD odds @ age 60

CHD odds @ age 50 50 50 1 50
g

OR
g

π π
π π

−
= = =

−
. 

 
The two disease odds needed to estimate the desired odds ratio are obtained from the 
logistic regression model. 
 

1. The numerator is ( ) { }0 1
ˆ ˆˆ 60 exp 60g β β= + × , and 

2. The denominator ( ) { }0 1
ˆ ˆˆ 50 exp 50g β β= + × . 
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Therefore, the estimated odds ratio is 
 

( )
( )

{ }
{ }

{ }
{ }

0 1

0 1

0 1 0 1

1

ˆ ˆexp 60ˆ 60
ˆ ˆˆ 50 exp 50

ˆ ˆ ˆ ˆexp 60 50

ˆexp 10

g
OR

g
β β

β β

β β β β

β

+ ×
= =

+ ×

= + × − − ×

= ×

 

 
which evaluates to 
 

{ }exp 0.1109 10 3.03OR = × = . 

 
General Result:  The estimated disease odds ratio for an individual with predictor 
variable x′ , relative to x′′ , is computed from the logistic regression model as 

( )
( )

ˆ
ˆ
g x

OR
g x

′
=

′′
. 
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In the case of our model 

( )
( ) 0 1ln

1
x

x
x

π
β β

π
⎡ ⎤

= +⎢ ⎥−⎣ ⎦
 

we have the following results: 
• The estimated odds of CHD for subjects aged 60 was 3.03 times the odds for those 

aged 50.  It can be shown that this estimate holds for any 10-year increase in age.  
That is, for a 10-year increase in age the disease odds ratio increases by a factor of 
3.03. 

• The odds ratio for a xΔ  increase in age is 
{ }1expOR xβ= × Δ

• For a one-year increase in age, the odds ratio is simply 

. 

{ }. 1expOR β=

• It is common to pick a reference age at which to report odds ratios.  If the reference 
age is chosen to be, say, age 20, then we have the following odds ratio function: 

( )
( ) ( ){ }1exp 20
20

g x
OR x

g
β= = × − . 

A plot of this function as estimated from the CHD data is given below. 
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Note that the odds ratio is equal to unity at the reference age of 20. 
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Confidence Interval 
As we saw earlier, the 95% Wald confidence interval for a given regression parameter is 

( )0.975
ˆ ˆsezβ β± . 

 
We would like to find a comparable confidence interval for the estimated odds ratios.  In 
particular, suppose that we want a confidence interval for the estimated odds ratio 

{ }1̂expOR cβ= ×  

where c is some constant. 
 
To obtain the Wald confidence interval: 

1. Compute the confidence interval for 1̂ cβ × , and 

2. Exponentiate the result. 
 

Since ( ) ( )1 1 c , the 95% Wald confidence interval for  ˆ ˆse secβ β× = ×

{ }1̂expOR cβ= ×  

is computed as 

( ) ( ){ }1 0.975 1
ˆ ˆexp sec z cβ β× ± × × . 
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CHD Example: 
The estimated odds ratio for a 10-year increase in age was found to be 
 

{ }
{ }

1̂exp 10

exp 0.1109 10 3.03

OR β= ×

= × =
 

 
for which the 95% Wald confidence interval is 
 

( ){ }
{ }

{ }
( )

1 0.975 1
ˆ ˆexp 10 se 10

exp 0.1109 10 1.96 0.0241 10

exp 1.109 0.472

1.89,4.86

zβ β× ± × ×

× ± × ×

±
. 
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SAS Program and Output 
proc logistic data=chd descending; 
 model chd = age / risklimits; 
 units age = 1 10; 
 
proc genmod data=chd descending; 
 model chd = age / dist=binomial; 
 estimate '1 unit'  age 1 / exp; 
 estimate '10 unit' age 10 / exp; 
run; 

 
Syntax 

• The risklimits option in PROC LOGISTIC produces estimates of the odds ratio 
along with Wald confidence intervals. 

• The units statement allows the user to specify the unit of change in the predictor 
variable so that customized odds ratios can be estimated.  The default is to 
estimate the odds ratio for a one unit change in the predictor variable.  Any unit of 
change may be specified with this option. 
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The LOGISTIC Procedure 
 
             Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept     1     -5.3095      1.1337       21.9350        <.0001 
AGE           1      0.1109      0.0241       21.2541        <.0001 
 
 
           Odds Ratio Estimates 
 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
 
AGE          1.117       1.066       1.171 
 
 
Association of Predicted Probabilities and Observed Responses 
 
Percent Concordant     79.0    Somers' D    0.600 
Percent Discordant     19.0    Gamma        0.612 
Percent Tied            2.0    Tau-a        0.297 
Pairs                  2451    c            0.800 
 
 
    Wald Confidence Interval for Adjusted Odds Ratios 
 
Effect         Unit     Estimate     95% Confidence Limits 
 
AGE          1.0000        1.117        1.066        1.171 
AGE         10.0000        3.032        1.892        4.859 
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The GENMOD Procedure 
 
      Model Information 
 
Data Set              WORK.CHD 
Distribution          Binomial 
Link Function            Logit 
Dependent Variable         CHD 
Observations Used          100 
 
 
      Response Profile 
 
 Ordered               Total 
   Value    CHD    Frequency 
 
       1    1             43 
       2    0             57 
 
PROC GENMOD is modeling the probability that CHD='1'. 
 
 
  Parameter Information 
 
Parameter       Effect 
 
Prm1            Intercept 
Prm2            AGE 
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           Criteria For Assessing Goodness Of Fit 
 
Criterion                 DF           Value        Value/DF 
 
Deviance                  98        107.3531          1.0954 
Scaled Deviance           98        107.3531          1.0954 
Pearson Chi-Square        98        101.9429          1.0402 
Scaled Pearson X2         98        101.9429          1.0402 
Log Likelihood                      -53.6765 
 
 
Algorithm converged. 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    -5.3095     1.1337    -7.5314    -3.0875     21.94       <.0001 
AGE          1     0.1109     0.0241     0.0638     0.1581     21.25       <.0001 
Scale        0     1.0000     0.0000     1.0000     1.0000 
 
NOTE: The scale parameter was held fixed. 
 
 
                           Contrast Estimate Results 
 
                        Standard                                Chi- 
Label         Estimate     Error   Alpha   Confidence Limits  Square  Pr > ChiSq 
 
1 unit          0.1109    0.0241    0.05    0.0638    0.1581   21.25      <.0001 
Exp(1 unit)     1.1173    0.0269    0.05    1.0658    1.1713 
10 unit         1.1092    0.2406    0.05    0.6376    1.5808   21.25      <.0001 
Exp(10 unit)    3.0320    0.7295    0.05    1.8920    4.8587 
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13.1.2 Quadratic Effect for the Predictor 
Suppose that we decide to extend our model to include a quadratic effect for age 
 

( )
( )

2
0 1 2ln

1
x

x x
x

π
β β β

π
⎡ ⎤

= + +⎢ ⎥−⎣ ⎦
 

 
or, equivalently,  
 

( ) { }2
0 1 2expg x x xβ β β= + + . 

 
How does this change our approach to estimating the odds ratio? 
 
Recall the general result that the estimated disease odds at x′ , relative to x′′ , is 

( )
( )

ˆ
ˆ
g x

OR
g x

′
=

′′
. 

Because of the quadratic term in the model, the estimated odds ratio is no longer 
constant for a given unit difference between the two values of the predictor variable. 
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CHD Example 
Suppose that the following parameter estimates were obtained for the quadratic model: 
 

Variable Parameter Estimate SE p-value 
Intercept β0  -4.2407 4.2902 0.3229 
Age β1 0.0613 0.1946 0.7527 
Age2 β2  0.0005 0.0021 0.7982 

 

Odds Ratio Estimate 
Goal:  Estimate the CHD odds ratio for an individual aged 60, relative to a 50 year-old. 
 
The odds ratio that we seek is the ratio of the estimated odds at age 60, to that at age 
50.  So according to the logistic regression model 

( )
( )

{ }
{ }

( ) ( ){ }
{ }

β β β

β β β

β β

β β

+ × + ×
= =

+ × + ×

= × − + × −

= × + ×

2
0 1 2

2
0 1 2

2 2
1 2

1 2

ˆ ˆ ˆexp 60 60ˆ 60
ˆ ˆ ˆˆ 50 exp 50 50

ˆ ˆexp 60 50 60 50

ˆ ˆexp 10 1100

g
OR

g

. 
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Inserting in the parameter estimates gives 

{ }exp 0.0613 10 0.0005 1100
3.20

OR = × + ×

=
. 

 
Unlike in the model with a linear effect for age, this estimated odds ratio is not the same 
for any 10-year increase in age.  Consider, for instance, the odds ratio for an individual 
age 40, compared to a 30 year-old: 

{ }
{ } ( ) ( ){ }

{ } { }

β β β
β β

β β β

β β

+ × + ×
= = × − + × −

+ × + ×

= × + × = × + ×

=

2
0 1 2 2 2

1 22
0 1 2

1 2

ˆ ˆ ˆexp 40 40 ˆ ˆexp 40 30 40 30ˆ ˆ ˆexp 30 30

ˆ ˆexp 10 700 exp 0.0613 10 0.0005 700

2.62

OR

. 

 
x′This difference highlights the importance of computing the odds ratio for , relative to 

x′′ , by 
1. Constructing the ratio of the odds from the logistic regression model for x′ , versus 

x′′ ; i.e. 

( ) ( )′ ′′= ˆ ˆOR g x g x . 

2. Reducing this equation to a form that is the exponential of the estimated regression 
parameters. 
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Confidence Interval 
When the estimated odds ratio involves multiple parameters (e.g. 1β  and 2β  in our 
current example) calculation of the confidence interval is a bit more involved.  The 
general idea is the same as with the linear effect for age.  To obtain a 95% Wald 
confidence interval for the estimated odds ratio 
 

{ }1 1 2 2expOR c cβ β= × + ×  

 
perform the following steps: 

1. Compute the confidence interval for 21 1 2c cβ β× + × , 

( ) ( )1 2 2 2 0.975 1 1 2 2sec c z c cβ β β β× + × ± × + ×  

where c1 and c2 are constants. 
2. Exponentiate the result. 

 
The difficulty arises in finding the standard error for a combination of parameters.  This 
involves the use of the covariance matrix for the parameters.  In this course, we will let 
the PROC GENMOD procedure in SAS do the work for us. 
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SAS Program and Output 
proc genmod data=chd descending; 
 model chd = age age*age / dist=binomial; 
 estimate '60 vs 50' age 10 age*age 1100 / exp; 
run; 

 
Syntax 

• Note that the quadratic effect for age, age*age, is included in the model statement. 
• The estimate statement can be used to produce odds ratio estimates and 

confidence intervals. 
• The text in quotes is the label assigned to the corresponding results in the output. 
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• The result from the estimate statement is 

î i
cβ ×∑  

where the ci are constants specified in the code immediately after the model terms.  
Any term appearing on the right-hand side of the model statement may be assigned 
a value.  Omitted terms are given a value of zero; i.e. not included in the 
summation.  For example, the SAS code 

 
 estimate '60 vs 50' age 10 age*age 1100 / exp; 

 
computes the estimate 

1 2
ˆ ˆ10 1100β β× + × . 

The exp options exponentiates the result, giving 

{ }1 2
ˆ ˆexp 10 1100β β× + ×  

which is the odds ratio discussed previously. 
 

• The estimate statement also provides 95% Wald confidence intervals and the p-
value for testing that the odds ratio is significantly different from one. 
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The GENMOD Procedure 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    -4.2408     4.2902   -12.6494     4.1678      0.98       0.3229 
AGE          1     0.0613     0.1946    -0.3202     0.4428      0.10       0.7527 
AGE*AGE      1     0.0005     0.0021    -0.0037     0.0047      0.07       0.7982 
Scale        0     1.0000     0.0000     1.0000     1.0000 
 
NOTE: The scale parameter was held fixed. 
 
 
                            Contrast Estimate Results 
 
                         Standard                                Chi- 
Label          Estimate     Error   Alpha   Confidence Limits  Square  Pr > ChiSq 
 
60 vs 50         1.2162    0.4890    0.05    0.2578    2.1746    6.19      0.0129 
Exp(60 vs 50)    3.3742    1.6500    0.05    1.2940    8.7986 
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13.1.3 Categorical Effect for the Predictor 
Consider the categorical variable for age 
 

1 35
2 35 5
3 55

age
agecat age

age
5

<⎧
⎪= ≤ <⎨
⎪ ≥⎩

 

 
and the indicator variables 
 

1 1
1

0
agecat

agecat
otherwise

=⎧
= ⎨
⎩

, 
1 2

2
0

agecat
agecat

otherwise
=⎧

= ⎨
⎩

, and 
1 3

3
0

agecat
agecat

otherwise
=⎧

= ⎨
⎩

. 

 
Note that the three age categories are represented in the following manner: 

Age Discrete Nominal 
agecat agecat1 agecat2 agecat3 

< 35 1 1 0 0 
35-54 2 0 1 0 
55+ 3 0 0 1 
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There are two different ways to include the categorical effect of age in the regression 
model. 
 

1. As an integer variable, 

0 1ln
1

agecatπ β β
π

⎡ ⎤ = + ×⎢ ⎥−⎣ ⎦
. 

With this coding there is a predetermined difference between the levels of the 
predictor.  The integer values used for the categories imply that there is a constant 
different between adjacent categories.  Other values, such as means, medians, or 
midpoints, could be assigned to the categories. 
 

2. As a nominal variable, 

0 1 2ln 1 2
1

agecat agecatπ β β β
π

⎡ ⎤ = + × + ×⎢ ⎥−⎣ ⎦
. 

This allows for the effect of age to be estimated separately for each level.  Only two 
of the indicator variables are needed to represent the three categories in the 
regression model.  The odds ratio estimates will be the same regardless of which 
two are chosen. 
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SAS Code and Output 
data chdmod; 
 set chd; 
 if age < 35 then do; 
  agecat = 1; 
  agecat1 = 1; 
  agecat2 = 0; 
  agecat3 = 0; 
 end; 
 else if 35 <= age < 55 then do; 
  agecat = 2; 
  agecat1 = 0; 
  agecat2 = 1; 
  agecat3 = 0; 
 end; 
 else if age >= 55 then do; 
  agecat = 3; 
  agecat1 = 0; 

  agecat2 = 0; 
  agecat3 = 1; 
 end; 
  
proc genmod data=chdmod descending; 
 model chd = agecat / dist=binomial; 
 estimate '2 vs 1' agecat 1 / exp; 
 estimate '3 vs 2' agecat 1 / exp; 
 estimate '3 vs 1' agecat 2 / exp; 
 
proc genmod data=chdmod descending; 
 model chd = agecat1 agecat2 / dist=binomial; 
 estimate '2 vs 1' agecat1 -1 agecat2  1 / exp; 
 estimate '3 vs 2' agecat1  0 agecat2 -1 / exp; 
 estimate '3 vs 1' agecat1 -1 agecat2  0 / exp; 
run;

 

 
Syntax 

• The discrete and nominal age variables are added to the new dataset chdmod.  
PROC GENMOD is used to fit logistic regression modes for the two variables. 

 



The GENMOD Procedure 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    -3.6679     0.8305    -5.2956    -2.0401     19.51       <.0001 
agecat       1     1.6323     0.3771     0.8931     2.3714     18.73       <.0001 
Scale        0     1.0000     0.0000     1.0000     1.0000 
 
NOTE: The scale parameter was held fixed. 
 
 
                           Contrast Estimate Results 
 
                       Standard                                Chi- 
Label        Estimate     Error   Alpha   Confidence Limits  Square  Pr > ChiSq 
 
2 vs 1         1.6323    0.3771    0.05    0.8931    2.3714   18.73      <.0001 
Exp(2 vs 1)    5.1154    1.9291    0.05    2.4427   10.7123 
3 vs 2         1.6323    0.3771    0.05    0.8931    2.3714   18.73      <.0001 
Exp(3 vs 2)    5.1154    1.9291    0.05    2.4427   10.7123 
3 vs 1         3.2645    0.7542    0.05    1.7862    4.7428   18.73      <.0001 
Exp(3 vs 1)   26.1671   19.7362    0.05    5.9669  114.7528 
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The GENMOD Procedure 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1     1.2528     0.4629     0.3455     2.1600      7.32       0.0068 
agecat1      1    -3.2452     0.7701    -4.7546    -1.7358     17.76       <.0001 
agecat2      1    -1.6756     0.5490    -2.7516    -0.5996      9.32       0.0023 
Scale        0     1.0000     0.0000     1.0000     1.0000 
 
NOTE: The scale parameter was held fixed. 
 
 
                           Contrast Estimate Results 
 
                       Standard                                Chi- 
Label        Estimate     Error   Alpha   Confidence Limits  Square  Pr > ChiSq 
 
2 vs 1         1.5696    0.6826    0.05    0.2318    2.9074    5.29      0.0215 
Exp(2 vs 1)    4.8046    3.2795    0.05    1.2608   18.3089 
3 vs 2         1.6756    0.5490    0.05    0.5996    2.7516    9.32      0.0023 
Exp(3 vs 2)    5.3421    2.9328    0.05    1.8214   15.6683 
3 vs 1         3.2452    0.7701    0.05    1.7358    4.7546   17.76      <.0001 
Exp(3 vs 1)   25.6667   19.7662    0.05    5.6735  116.1156 
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Parameter Estimates 
 

Model Variable Parameter Estimate SE Wald 
Chi-Square p-value 

1 Intercept 0β̂ -3.6679 0.8305 19.51 <0.0001 
 agecat 1̂β 1.6323 0.3771 18.73 <0.0001 
2 Intercept 0β̂ 1.2528 0.4629 7.32 0.0068 
 agecat1 1̂β -3.2452 0.7701 17.76 <0.0001 
 agecat2 2β̂ -1.6756 0.5490 9.32 0.0023 

 
Model 1 

0 1
ˆ ˆ ˆln 3.6679 1.6323

1 ˆ
agecat agecatπ β β

π
⎡ ⎤ = + × = − + ×⎢ ⎥−⎣ ⎦

 

 
Model 2 

π β β β
π

⎡ ⎤ = + × + ×⎢ ⎥−⎣ ⎦
= − × − ×

0 1 2
ˆ ˆ ˆ ˆln 1 2

1 ˆ
1.2528 3.2452 1 1.6756 2

agecat agecat

agecat agecat
 

 341



Odds Ratio Estimate: Category 2 vs. 1 
 
Model 1 
The estimated odds ratio is 
 

( )
( )

{ }
{ } { }

{ }

0 1
1

0 1

ˆ ˆexp 2ˆ 2 ˆexpˆ ˆˆ 1 exp 1

exp 1.6323 5.12

g agecat
OR

g agecat
β β

β
β β

+ ×=
= = =

= + ×

= =

 

 
Model 2 
The estimated odds ratio for the second model is 
 

( )
( )

{ }
{ } { }

{ } { }

0 1 2
2 1

0 1 2

ˆ ˆ ˆexp 0 1ˆ 1 0, 2 1 ˆ ˆexpˆ ˆ ˆˆ 1 1, 2 0 exp 1 0

exp 1.6756 3.2452 exp 1.5696 4.80

g agecat agecat
OR

g agecat agecat
β β β

β β
β β β

+ × + ×= =
= = = −

= = + × + ×

= − + = =
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Odds Ratio Estimate: Category 3 vs. 2 
 
Model 1 
The estimated odds ratio is 
 

( )
( )

{ }
{ } { }

{ }

0 1
1

0 1

ˆ ˆexp 3ˆ 3 ˆexpˆ ˆˆ 2 exp 2

exp 1.6323 5.12

g agecat
OR

g agecat
β β

β
β β

+ ×=
= = =

= + ×

= =

 

 
Model 2 
The estimated odds ratio for the second model is 
 

( )
( )

{ }
{ } { }

{ }

0 1 2
2

0 1 2

ˆ ˆ ˆexp 0 0ˆ 1 0, 2 0 ˆexpˆ ˆ ˆˆ 1 0, 2 1 exp 0 1

exp 1.6756 5.34

g agecat agecat
OR

g agecat agecat
β β β

β
β β β

+ × + ×= =
= = = −

= = + × + ×

= =
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Odds Ratio Estimate: Category 3 vs. 1 
 
Model 1 
The estimated odds ratio is 
 

( )
( )

{ }
{ } { }

{ } { }

0 1
1

0 1

ˆ ˆexp 3ˆ 3 ˆexp 2ˆ ˆˆ 1 exp 1

exp 1.6323 2 exp 3.2645 26.17

g agecat
OR

g agecat
β β

β
β β

+ ×=
= = = ×

= + ×

= × = =

 

 
Model 2 
The estimated odds ratio for the second model is 
 

( )
( )

{ }
{ } { }

{ }

0 1 2
1

0 1 2

ˆ ˆ ˆexp 0 0ˆ 1 0, 2 0 ˆexpˆ ˆ ˆˆ 1 1, 2 0 exp 1 0

exp 3.2452 25.67

g agecat agecat
OR

g agecat agecat
β β β

β
β β β

+ × + ×= =
= = = −

= = + × + ×

= =
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Notes 
• Wald estimates of the confidence intervals can be computed from the standard 

error estimates given in the SAS output. 
• Treating the age categories as an integer variable, agecat, resulted in identical 

odds ratio for 2 vs. 1 and 3 vs. 2. 
• Analyzing age as a nominal variable, agecat1 and agecat2, allowed the odds ratios 

for 2 vs. 1 and 3 vs. 2 to differ. 
 

Summary of Results 
 

Odds Ratio Model Formula Estimate 95% CI 
2 vs. 1 1 { }1̂exp β  5.12 (2.44, 10.71) 

 2 { }2 1
ˆ ˆexp β β− 4.80 (1.26, 18.31) 

3 vs. 2 1 { }1̂exp β  5.12 (2.44, 10.71) 

 2 { }2
ˆexp β−  5.34 (1.82, 15.67) 

3 vs. 1 1 { }1̂exp 2β ×  26.17 (5.97, 114.75) 

 2 { }1̂exp β−  25.67 (5.67, 116.12) 
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13.2 Points of Emphasis 
1. Be able to write down the odds for a logistic regression model as an exponential 

function of the β  parameters and predictor variables. 
2. Estimate the odds ratio from logistic regression models where a linear effect is 

specified for the predictor variable.  Construct Wald confidence intervals. 
3. Compute the odds ratios when the predictor has a quadratic effect. 
4. For a categorical predictor, know how to express the odds ratio as an exponential 

function of the model parameters. 
5. Use PROC GENMOD to estimate odds ratios and confidence intervals, as well as 

to test the significance of the odds ratios.  Understand how the regression equation 
for the odds ratio is used to determine the values in the estimate statement. 
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14.1 Introduction 
One of the advantages of regression modeling is the ability to examine the effect of 
multiple predictor variables on an outcome of interest.  In general, the multivariate 
logistic regression model is of the form 

( )
( ) 0 1 1 2 2ln

1 p px x x
π

β β β β
π

⎡ ⎤
= + + + +⎢ ⎥−⎣ ⎦

x
x

…  

where there are p predictor variables ix .  We will use the notational convention that 

( )1 2, , , px x x=x … . 

 

Radon Example 
Four-hundred thirteen lung cancer cases and six-hundred fourteen population-based 
controls were enrolled in the Iowa Radon Lung Cancer case-control study.  The 
investigators were interested in assessing the effect of radon exposure on lung cancer 
risk, while controlling for other important risk factors.  Consider the following variables 
from the study: 
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Table 1. Variable descriptions for the Iowa Radon Study example. 

Variable Description Values 
case Lung cancer indicator 1 = case 

0 = control 
wlm20 20-year radon exposure (working-level months) continuous 
age Age at enrollment (control) or diagnosis (case) continuous 
smkever Indicator for ever-smokers 1 = ever-smoker 

0 = never-smoker 
smkcur Indicator for current smokers 1 = current smoker 

0 = ex or never smoker 
school Attained education level 1 = grade school 

2 = high school 
3 = some college 
4 = college degree 
5 = graduate school 

 

 348



The categorical and continuous variables are summarized in Table 2 and Table 3. 
 

Table 2.  Descriptive statistics for the categorical variables in the radon study. 
Variable Levels N Percents 
case 1 

0 
413 
614 

40.2 
59.8 

smkever 1 
0 

557 
470 

54.2 
45.8 

smkcur 1 
0 

325 
702 

31.6 
68.4 

school 1 
2 
3 
4 
5 

89 
535 
288 
82 
33 

8.7 
52.1 
28.0 
8.0 
3.2 

 
Table 3.  Descriptive statistics for the continuous variables in the radon study. 

Variable Mean SD Min Max 
wlm20 10.64 8.89 1.42 91.54 
age 67.61 8.67 44.16 84.80 
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Analysis Goal:  Perform a multivariate logistic regression analysis of the data. Typical 
objectives are to 

• Identify the variables important in predicting lung cancer risk. 
• Determine if radon exposure is a significant predictor, after controlling for age, 

smoking, and socio-economic status. 
• Assess whether the covariates interact in their effect on lung cancer risk. 
• Estimate the effect of age, smoking, and education. 

 
We will consider the logistic model 
 

( )
( )

0 1 2 3 420
ln

1 1 2 3 4
wlm age smkever smkcur

school school school school
β β β β βπ

π β β β β
+ + + +⎡ ⎤

=⎢ ⎥− + + + +
x

x 5 6 7 8⎣ ⎦
. 
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SAS Program and Output 
proc import datafile="H:\Radon.txt" 
 out=radon 
 dbms=TAB 
 replace; 
 
data radonmod; 
 set radon; 
 school1 = (school = 1); 
 school2 = (school = 2); 
 school3 = (school = 3); 
 school4 = (school = 4); 
 school5 = (school = 5); 
 
proc genmod data=radonmod descending; 
 model case = wlm20 age smkever smkcur 
  school1 school2 school3 school4 / dist=binomial; 
run; 

 
Syntax 

• PROC IMPORT reads the data from the tab-delimited file Radon.txt into the SAS 
dataset radon. 

• A new dataset radonmod is created.  It contains the original data plus added 
indicator variables for education. 

• PROC GENMOD is used here to fit the multivariate logistic regression model. 
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The GENMOD Procedure 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    -5.7831     0.8658    -7.4801    -4.0862     44.62       <.0001 
WLM20        1     0.0105     0.0096    -0.0084     0.0294      1.18       0.2772 
AGE          1     0.0408     0.0097     0.0217     0.0599     17.57       <.0001 
SMKEVER      1     1.8477     0.1984     1.4588     2.2366     86.72       <.0001 
SMKCUR       1     1.6116     0.1987     1.2222     2.0009     65.81       <.0001 
school1      1     1.0773     0.5610    -0.0222     2.1768      3.69       0.0548 
school2      1     0.9014     0.5056    -0.0895     1.8923      3.18       0.0746 
school3      1     0.7424     0.5161    -0.2692     1.7539      2.07       0.1503 
school4      1     0.5238     0.5776    -0.6083     1.6559      0.82       0.3645 
Scale        0     1.0000     0.0000     1.0000     1.0000 
 
NOTE: The scale parameter was held fixed. 
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Parameter Estimates 
 

Variable Parameter Estimate SE Wald 
Chi-Square p-value 

Intercept 0β̂  -5.7831 0.8658 44.62 <0.0001 
wlm20 1̂β  0.0105 0.0096 1.18 0.2772 
age 2β̂  0.0408 0.0097 17.57 <0.0001 
smkever 3β̂  1.8477 0.1984 86.72 <0.0001 
smkcur 4β̂  1.6116 0.1987 65.81 <0.0001 
school1 5β̂  1.0773 0.5610 3.69 0.0548 
school2 6β̂  0.9014 0.5056 3.18 0.0746 
school3 7β̂  0.7424 0.5161 2.07 0.1503 
school4 8β̂  0.5238 0.5776 0.82 0.3645 

 
These are the maximum likelihood estimates for the intercept and eight predictor 
variables in the model. 

• Note that there are four predictor (indicator) variables for the effect of education. 
• Each predictor has an estimate, standard error, Wald chi-square statistic, and p-

value. 
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• As in multiple linear regression, the individual p-values are used to determine if the 
associated parameter is significant, given that the remaining predictors are in the 
model. 

14.1.1 Odds Ratio Estimates 
The general approach to computing odds ratios for a multiple logistic regression model is 
the same as before: 

1. Construct the ratio of the odds from the logistic regression model for ′x , versus ′′x  

n ( )
( )

ˆ
ˆ
g

OR
g

′
=

′′
x
x

 

where x is now a set of values for the predictor variables.** 
2. Reduce this equation to a form that is the exponential of the estimated regression 

parameters. 
3. Insert regression estimates for the parameters to obtain the odds ratio. 
4. The estimate statement in PROC GENMOD can be used to estimate the 

confidence interval and test hypotheses. 
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The main difference from the univariate models in Section 12 is that now x is a set of 
multiple predictors for which we must specify values to compute the odds ratio.  In the 
multivariate case, 

( ) { }0 1 1 2 2
ˆ ˆ ˆ ˆˆ exp p pg x x xβ β β β= + + + +x …  

and so 

{ ( )n ( ) ( ) }1 1 1 2 2 2
ˆ ˆ ˆexp p p pOR x x x x x xβ β β′ ′′ ′ ′′ ′ ′′= − + − + +… − . 

 
**Note that if the value of a predictor variable is the same in the numerator and 
denominator odds, then that predictor does not factor into the calculation of the odds 
ratio.  For instance, if p px x′ ′′=  then 

( ) 0p p px xβ ′ ′′− =  

and so the term for the pth predictor drops out of the equation for the odds ratio. 
 
In our example, the estimated odds model is 
 

( ) 0 1 2 3 4

5 6 7 8

ˆ ˆ ˆ ˆ ˆ20
ˆ exp

ˆ ˆ ˆ ˆ1 2 3 4

wlm age smkever smkcur
g

school school school school

β β β β β

β β β β

⎧ ⎫+ + + +⎪ ⎪= ⎨ ⎬
+ + + +⎪ ⎪⎩ ⎭

x . 
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Where the estimated coefficients in the proposed model are 
 

1̂β  2β̂ 3β̂ 4β̂ 5β̂ 6β̂ 7β̂ 8β̂
0.0105 0.0408 1.8477 1.6116 1.0773 0.9014 0.7424 0.5238

 

Example 1 - WLM20 
Goal:  Estimate the lung cancer odds ratio for individuals with 10 WLM radon exposure, 
relative to 5 WLM exposure. 
 
Q: In the multivariate setting, we have variables other than radon exposure to consider in 
computing the odds ratio.  What values should be use for them? 
 
A: Our goal is really to estimate the odds ratio associated with radon exposure, while 
controlling for the effects of the other predictors in the model.  We do this by comparing 
the odds for two individuals who differ only in their radon exposure (10 vs. 5).  The 
individuals are the same with respect to the other predictor variables (age, smoking, 
education). 
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Specifically, the model estimates of the numerator and denominator odds are 

1.  ( ) 0 1 2 3 4

5 6 7 8

ˆ ˆ ˆ ˆ ˆ10
ˆ exp

ˆ ˆ ˆ ˆ1 2 3 4

age smkever smkcur
g

school school school school

β β β β β

β β β β

⎧ ⎫+ × + + +⎪ ⎪′ = ⎨ ⎬
+ + + +⎪ ⎪⎩ ⎭

x

2.  ( ) 0 1 2 3 4

5 6 7 8

ˆ ˆ ˆ ˆ ˆ5
ˆ exp

ˆ ˆ ˆ ˆ1 2 3 4

age smkever smkcur
g

school school school school

β β β β β

β β β β

⎧ ⎫+ × + + +⎪ ⎪′′ = ⎨ ⎬
+ + + +⎪ ⎪⎩ ⎭

x

 
so that 
 

n ( )
( )

( )
( ) ( ){ } { }1

ˆ ˆ 20 10 ˆexp 10 5 exp 0.0105 5 1.05
ˆ ˆ 20 5
g g wlm

OR
g g wlm

β
′ =

= = = × − = × =
′′ =

x
x

. 

 
The other terms do not contribute because the values for those predictor variables are 
held constant.  The 95% Wald confidence interval is 
 

( ) ( ){ }
( ){ }

( )

1 0.975 1
ˆ ˆexp 5 5

exp 0.0105 5 1.96 0.0096 5

0.96,1.16

z seβ β× ± × ×

× ± × × . 
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SAS Program and Output 
proc genmod data=radonmod descending; 
 model case = wlm20 age smkever smkcur 
  school1 school2 school3 school4 / dist=binomial; 
 estimate 'wlm20: 10vs5' wlm20 5 / exp; 
run; 

 
                             Contrast Estimate Results 
 
                            Standard                                Chi- 
Label             Estimate     Error   Alpha   Confidence Limits  Square  Pr > ChiSq 
 
wlm20: 10v5         0.0524    0.0482    0.05   -0.0421    0.1469    1.18      0.2772 
Exp(wlm20: 10v5)    1.0538    0.0508    0.05    0.9588    1.1582 

 

Example 2 - Age 
Goal:  Estimate the lung cancer odds ratio for individuals aged 60, relative to 50 year-
olds. 
 
Same approach as used to estimate the odds ratio for radon exposure.  Now age is the 
only variable that changes, and all others are fixed: 

n ( )
( ) ( ){ } { }2

ˆ 60 ˆexp 60 50 exp 0.0408 10 1.50
ˆ 50
g age

OR
g age

β
=

= = × − = × =
=
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The 95% Wald confidence interval is 
 

( ) ( ){ }
( ){ }

( )

2 0.975 2
ˆ ˆexp 10 10

exp 0.0408 10 1.96 0.0097 10

1.24,1.82

z seβ β× ± × ×

× ± × × . 

 

SAS Program and Output 
proc genmod data=radonmod descending; 
 model case = wlm20 age smkever smkcur 
  school1 school2 school3 school4 / dist=binomial; 
 estimate 'age: 60vs50' age 10 / exp; 
run; 

 
                             Contrast Estimate Results 
 
                            Standard                                Chi- 
Label             Estimate     Error   Alpha   Confidence Limits  Square  Pr > ChiSq 
 
age: 60vs50         0.4084    0.0974    0.05    0.2174    0.5993   17.57      <.0001 
Exp(age: 60vs50)    1.5044    0.1466    0.05    1.2429    1.8209 
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Example 3 - Smoking 
Goal:  Estimate the lung cancer odds ratio for current smokers, relative to never-
smokers. 
 
Recall that we have two indicator variables for smoking, smkever and smkcur.  These 
are used to identify an individual as a current, ex, or never smoker as illustrated in the 
table below. 
 

Status smkever smkcur 
Never Smoker 0 0 
Ex-Smoker 1 0 
Current Smoker 1 1 

 
Thus, the odds ratio we seek is 

n ( )
( ) ( ) ( ){ }

{ } { }

3 4

3 4

ˆ 1, 1 ˆ ˆexp 1 0 1 0
ˆ 0, 0

ˆ ˆexp exp 1.8477 1.6116 31.79

g smkever smkcur
OR

g smkever smkcur
β β

β β

= =
= = × − + × −

= =

= + = + =

. 

Since the odds ratio estimate involves more than one parameter, we use PROC 
GENMOD to obtain the 95% Wald confidence interval ( )21.08,47.95 . 
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SAS Program and Ouptup 
proc genmod data=radonmod descending; 
 model case = wlm20 age smkever smkcur 
  school1 school2 school3 school4 / dist=binomial; 
 estimate 'smk: cur vs never' smkever 1 smkcur 1 / exp; 
run; 

 
                             Contrast Estimate Results 
 
                                    Standard                                    Chi- 
Label                    Estimate      Error    Alpha    Confidence Limits    Square 
 
smk: cur vs never          3.4593     0.2097     0.05     3.0484     3.8702   272.25 
Exp(smk: cur vs never)    31.7951     6.6660     0.05    21.0815    47.9533 
 
     Contrast Estimate Results 
 
Label                    Pr > ChiSq 
 
smk: cur vs never            <.0001 
Exp(smk: cur vs never) 
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Example 4 - Education 
Goal:  Estimate the lung cancer odds ratio for individuals with only a high school degree, 
relative to those with a college degree. 
 
Education status was included in the model using the four indicator variables 
summarized below. 
 

Status school1 school2 school3 school4 
Grade School 1 0 0 0 
High School 0 1 0 0 
Some College 0 0 1 0 
College Degree 0 0 0 1 
Graduate School 0 0 0 0 

 
The desired odds ratio is 

n ( )
( ) ( ) ( ){ }

{ } { }

6 8

6 8

ˆ 2 1, 4 0 ˆ ˆexp 1 0 0 1
ˆ 2 0, 4 1

ˆ ˆexp exp 0.9014 0.5238 1.46

g school school
OR

g school school
β β

β β

= =
= = × − + × −

= =

= − = − =

 

and the 95% Wald confidence interval from PROC GENMOD is ( )0.78,2.72 . 
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SAS Program and Output 
proc genmod data=radonmod descending; 
 model case = wlm20 age smkever smkcur 
  school1 school2 school3 school4 / dist=binomial; 
 estimate 'school: 2 vs 4' school2 1 school4 -1 / exp; 
r n; u

                           Contrast Estimate Results 

 
 
 
                                 Standard                                    Chi- 
Label                 Estimate      Error    Alpha    Confidence Limits    Square 
 
school: 2 vs 4          0.3776     0.3187     0.05    -0.2471     1.0023     1.40 
Exp(school: 2 vs 4)     1.4588     0.4650     0.05     0.7810     2.7246 
 
   Contrast Estimate Results 
 
Label                 Pr > ChiSq 
 
school: 2 vs 4            0.2362 
Exp(school: 2 vs 4) 
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Example 5 - Age and Smoking 
Goal:  Estimate the lung cancer odds ratio for current smokers aged 60, relative to 
never-smokers aged 50. 
 
The odds ratio estimate is 
 

n ( )
( )

( ) ( ) ( ){ }
{ } { }

2 3 4

2 3 4

ˆ 60, 1, 1
ˆ 50, 0, 0

ˆ ˆ ˆexp 60 50 1 0 1 0

ˆ ˆ ˆexp 10 exp 0.0408 10 1.8477 1.6116

47.81

g age smkever smkcur
OR

g age smkever smkcur

β β β

β β β

= = =
=

= = =

= × − + × − + × −

= × + + = × + +

=

 

 
with a 95% Wald confidence interval of ( )28.86,79.28 . 
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SAS Program and Output 
proc genmod data=radonmod descending; 
 model case = wlm20 age smkever smkcur 
  school1 school2 school3 school4 / dist=binomial; 
 estimate 'age|smk: 60|cur vs 50|never' age 10 smkever 1 smkcur 1 / exp; 
run; 

 
                              Contrast Estimate Results 
 
                                              Standard 
Label                              Estimate      Error    Alpha    Confidence Limits 
 
age/smk: 60/cur vs 50/never          3.8677     0.2578     0.05     3.3624     4.3730 
Exp(age/smk: 60/cur vs 50/never)    47.8324    12.3312     0.05    28.8591    79.2796 
 
               Contrast Estimate Results 
 
                                     Chi- 
Label                              Square    Pr > ChiSq 
 
age/smk: 60/cur vs 50/never        225.08        <.0001 
Exp(age/smk: 60/cur vs 50/never) 
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14.2 Points of Emphasis 
1. Be able to write down the odds for a multivariate logistic regression model as an 

exponential function of the β  parameters and predictor variables. 
2. Estimate the odds ratio for any predictor or combination of predictors in the model. 
3. Compute manually confidence intervals for odds ratios that involve a single 

parameter. 
4. Use PROC GENMOD to estimate odds ratios and confidence intervals. 
5. Assess the statistical significance of the odds ratio based on the confidence interval 

or p-value. 
6. Interpret the odds ratio. 
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16.1 Introduction 
There are many different regression models that may be constructed from a given set of 
predictor variables.  Two analysts may come up with different regression models given 
the same set of data.  How can we compare the two models? 
The three methods discussed in this section are: 

1. Likelihood Ratio Test 
2. Wald Test 
3. Akiake Information Criterion (AIC) 

 

CHD Example 
Recall that we looked at four different models for the effect of age on the odds of 
coronary heard disease.  These models were 

 Model Age Effect 
1 ( )π β β= +⎡ ⎤⎣ ⎦ 0 1logit x age  Continuous (Linear) 
2 ( )π β β β= + +⎡ ⎤⎣ ⎦

2
0 1 2logit x age age  Continuous (Quadratic) 

3 ( )π β β= +⎡ ⎤⎣ ⎦ 0 1logit x agecat  Categorical (Integer) 
4 ( )π β β β= + +⎡ ⎤⎣ ⎦ 0 1 2logit 1 2x agecat agecat  Categorical (Nominal) 

 Where age is the age in years of the study subject; agecat is the three-level categorical 
(<35, 35-54, 55+) classification of age. 
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16.2 Likelihood Ratio Test 
The Likelihood Ratio Test (LRT) was covered in the context of maximum likelihood 
methods for linear regression models.  The LRT proceeds as follows: 

1. Fit the “full” model with p + k predictor variables. 
2. Fit the “reduced” model with p predictors. 
3. Look at the change in the maximum likelihood 

( ) χ= − −2 2
reduced full2 ln ln ~ kX L L  

4. If the difference, as measured by the p-value 

⎡χ ⎤= ≥⎣ ⎦
2 2Pr kp X , 

is significant then we conclude that full model provides a better fit to the data than 
the reduced model.  In other words, the k predictor variables are significant in the 
model. 
 

CHD Example: 
The values of the log-likelihood functions for the four models are available from the 
previous PROC GENMOD output. 
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Model Parameters Log-Likelihood 
0 0β  -68.3315 
1 β β+0 1age  -53.6765 
2 β β β+ + 2

0 1 2age age  -53.6440 
3 β β+0 1agecat  -55.7029 
4 β β β+ +0 1 21 2agecat agecat  -55.6969 

 
Note that Model 1 is nested within Model 2, since the latter simply adds a quadratic 
effect to the model.  In other words, Model 2 contains all of the predictors found in Model 
1; i.e. the linear effect for age.  The LRT is equivalent to 

β
β

=

≠
0 2

2

: 0
: 0A

H
H

 

and yields a test statistic value of 

( )( )2

2
1

2 53.6765 53.6440

0.065 ~

X

χ

= − − − −

=
 

for which .  Therefore, at the 5% level of significance, the full 
model does not provide a better fit than the reduced model.  The quadratic effect is not 
significant. 

χ⎡ ⎤= ≥ =⎣ ⎦
2
1Pr 0.065 0.7988p
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It is not obvious that Model 3 is nested within Model 4, but that is the case. 

• When indicator variables are used to model the effect of a categorical variable, no 
assumption is made about the function form of the relationship (linear, quadratic, 
etc.) with disease. 

• Thus, Model 4 is the most general way of estimating the three-level categorical 
effect of age. 

• Any other coding of this categorical effect that uses fewer variables will be nested 
within Model 4. 

 
The LRT statistic comparing these two models is 

( )( )2

2
1

2 55.7029 55.6969

0.012 ~

X

χ

= − − − −

=
 

for which .  Therefore, at the 5% level of significance, a 
linear term for the categorical age variable provides an adequate fit to the data. 

2
1Pr 0.012 0.9128p χ⎡ ⎤= ≥ =⎣ ⎦

 
Model 0 does not include an effect for age.  It is nested within the other four and may be 
used to test the significance of the associated age effects. 
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Model Log-Likelihood LRT 
Statistic df p-value 

0 -68.3315 0 - - 
1 -53.6765 29.3100 1 6.17e-8 
2 -53.6440 29.3750 2 4.18e-7 
3 -55.7029 25.2572 1 5.02e-7 
4 -55.6969 25.2692 2 3.26e-6 

 
We see that age is significant in all of the models. 

• Each null hypothesis is a global test of the age variables in the model. 
 

Model H0 HA 
1 1 0β =  1 0β ≠  
2 1 20, 0β β= =  1 20 or 0β β≠ ≠  
3 1 0β =  1 0β ≠  
4 1 20, 0β β= =  1 20 or 0β β≠ ≠  

 
• Recall that Model 2 and 4 did not provide a significantly better fit than Model 1 or 3, 

respectively.  These models contain terms for age that are not significant.  Thus, 
the corresponding global tests of age are less significant than the global tests for 
the reduced models. 
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• The reduced models adequately explain the age effects with fewer terms.  Thus, 
the reduced models provide more powerful tests of the age effect; i.e. smaller p-
values. 

Notes 
• The LRT is the most appropriate method for comparing nested models. 
• This method requires fitting both the full and reduced model. 
• The LRT cannot be used to compare Models 1 and 2 to Models 3 and 4, since they 

are not nested.  The age variables - continuous versus categorical - are different. 
 

16.3 Wald Test 
The Wald test can also be used to compare nested models.  Specifically, the test may be 
used to assess the significance of terms in a given model.  We have already used the 
Wald test for the hypotheses 
 

β
β
=

≠
0 : 0

: 0A

H
H

 

 
where β  is a parameter in the regression model. 
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When maximum likelihood methods are used the test statistic is 
 

( )

2

2 2
1

ˆ
~ˆse

X β χ
β

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

for which 22
1Prp Xχ⎡= ≥⎣ ⎤⎦ .  So far, we have only used the Wald test for a single 

parameter.  The test has a general form that allows one to simultaneously test the 
significance of multiple parameters. 
 
CHD Example: 
The following results were obtained for Models 1 and 2: 
 

Model Term Parameter 
Estimate SE Wald 

Chi-Square p-value 
1 Intercept -5.3095 1.1337 21.94 <0.0001
 age 0.1109 0.0241 21.25 <0.0001
2 Intercept -4.2408 4.2902 0.98 0.3229 
 age 0.0613 0.1946 0.10 0.7527 
 age2 0.0005 0.0021 0.07 0.7982 
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The comparison of Models 1 and 2 is equivalent to a test of the hypotheses 
β
β

=

≠
0 2

2

: 0
: 0A

H
H

. 

 
The Wald statistic for this test is 

( )

2
2

2 2

2

ˆ 0.0005 0.06ˆ 0.0021se
X β

β

⎛ ⎞ ⎛ ⎞= = =  ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

for which .  The quadratic term is not significantly different from 
zero.  Therefore, Model 2 is not significantly different from Model 1. 

2
1Pr 0.06 0.81p χ⎡ ⎤= ≥ =⎣ ⎦

 
The Wald test could also be used to test the hypotheses 

0 1 2

1

: 0, 0
: 0 or 0A

H
H

β β
β β
= =

≠ ≠
. 

 
We will rely on SAS to compute the appropriate Wald test statistic for multiple 
parameters. 
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SAS Program and Output 
proc genmod descending data=chd; 
 model chd = age age*age / dist=binomial; 
 contrast 'Global age' age 1, age*age 1 / wald; 
 contrast 'Global age' age 1, age*age 1; 
run; 
 

Syntax 
• PROC GENMOD is used to fit the logistic regression model with a quadratic effect 

for age. 
• The contrast statement may be used to test the null hypothesis that several 

parameters are simultaneously equal to zero. 
• Like the estimate statement, the first item is a label to appear in the output. 
• The variable names of the parameters to be tested are followed by a one and 

separated by commas. 
• The wald option requests that the Wald statistic be computed; the default is the 

Likelihood Ratio statistic. 
• The contrast statement is also available in PROC LOGISTIC.  LOGISTIC will only 

provide the Wald statistic; hence, the wald option is not needed there. 
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The GENMOD Procedure 
 
 
                    Contrast Results 
 
                           Chi- 
Contrast          DF     Square    Pr > ChiSq    Type 
 
Global age         2      21.46        <.0001    Wald 
Global age         2      29.37        <.0001    LR 

 

Notes 
• The Likelihood Ratio and Wald test are alternative methods of comparing nested 

models. 
• The LRT is preferred because the test statistic has better distributional properties. 
• The Wald test statistic is often easier to compute since a second, reduced model 

need not be fit.  Thus, it has a longer history of use. 
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16.4 Akiake Information Criterion (AIC) 
Neither the Likelihood Ratio test nor the Wald test can be used compare models that are 
not nested.  There are several methods to handle this problem.  We will discuss one, the 
Akaike Information Criterion (AIC). 
 
Akaike (1972) proposed a method of comparison based on both the log-likelihood and 
the number of parameters in the model.  The AIC is defined as 

2ln 2AIC L p= − +  

where p is the number of parameters in the model.  Based on this criterion the model of 
choice is the one with the lowest AIC. 
 
CHD Example: 
Suppose that we want to compare the model with a linear effect for age (Model 1) to the 
model with a categorical effect (Model 4). 
 

Model Parameters Log-Likelihood 
1 β β+0 1age  -53.6765 
4 β β β+ +0 1 21 2agecat agecat  -55.6969 
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The AIC for each model is 
 

Model 2lnL− 2p AIC 
1 107.35 4 111.35 
4 111.39 6 117.39 

 
Model 1 has the smaller AIC and would be selected based on this criterion. 
 

Notes 
• The AIC is a method for choosing among competing models.  It is does not provide 

a test for detecting statistically significant differences between models. 
• The Likelihood Ratio and Wald tests should be used to compare nested models. 
• The AIC may be used to compare models that are not nested.  It is often referred to 

as a goodness-of-fit statistic. 
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16.5 Iowa Radon Lung Cancer Example 
Definitions for several variables from the Iowa Radon Study are given in Table 1. 
 

Table 1.  Variables in the Iowa Radon Study. 
Variable Description Values 
case Lung cancer indicator 1 = case, 0 = control 
age Age at enrollment (control) or diagnosis (case) continuous 
bmi Body mass index continuous 
children Number of children discrete continuous 
city Lived within city limits 1 = yes, 0 = no 
prelung Previous lung disease 1 = yes, 0 = no 
pyr Cigarette pack-years continuous 
pyrrate pyr / (age - 5) continuous 
school Attained education level 1 = grade school 

2 = high school 
3 = some college 
4 = college degree 
5 = graduate school 

smkcur Indicator for current smokers 1 = current smoker 
0 = ex or never smoker

smkever Indicator for ever-smokers 1 = ever-smoker 
0 = never-smoker 

smkquit Years since smoking cessation continuous 
smkyrs Years as a smoker continuous 
wlm20 20-year radon exposure (working-level months) continuous 

 379



 
In the previous section we discussed the multivariate logistic regression model 
 

β
( )

β β β β
π

+

β β β β
+ + +

=⎡ ⎤⎣ ⎦
0 1 2 3 420

logit
wlm age smkever smkcur

x
+ + + +5 6 7 81 2 3 4school school school school

 

 
where ( )π x  is the conditional probability of lung cancer. 
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16.5.1 Likelihood Ratio Test 
The Likelihood Ratio statistic may be used to test a specific risk factor in the model by 
comparing the full model containing the risk factor to a reduced model without the factor.  
Likelihood Ratio tests are given in Table 2 for the risk factors in three different models. 
 

Table 2.  Likelihood Ratio tests for lung cancer risk factors. 
Model Terms -2Log-Lik Chi-Square df p-value 
1 int + wlm20 + age + smkever + smkcur 

+ school1 + school2 + school3 + school4 978.72 - - - 

 - wlm20 979.91 1.19 1 0.2753 
 - age 996.95 18.23 1 <0.0001
 - smkever 1072.11 93.39 1 <0.0001
 - smkcur 1049.84 71.12 1 <0.0001
 - school1 - school2 - school3 - school4 984.38 5.66 4 0.2260 
      
2 int + age + smkever + smkcur 

+ school1 + school2 + school3 + school4 979.91 - - - 

 - age 999.26 19.35 1 <0.0001
 - smkever 1072.57 92.66 1 <0.0001
 - smkcur 1052.07 72.16 1 <0.0001
 - school1 - school2 - school3 - school4 985.54 5.63 4 0.2285 
      
3 int + age + smkever + smkcur 985.54 - - - 
 - age 1006.20 20.66 1 <0.0001
 - smkever 1077.81 92.27 1 <0.0001
 - smkcur 1061.82 76.28 1 <0.001 
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Notes 
• In addition to the full model, a reduced model must be fit for every risk factor that is 

tested using the Likelihood Ratio statistic.  This may involve a significant amount of 
work. 

• The chi-square statistic for school has 4 degrees of freedom; the number of model 
terms (indicator variables) for that risk factor. 

16.5.2 Wald Test 
Alternatively, Wald tests can be used to test the significance of risk factors in the model.  
Results for the predictors in the first lung cancer risk model are given below. 
 

Variable Estimate SE Wald 
Chi-Square df p-value 

Intercept -5.7831 0.8658 44.62 1 <0.0001 
wlm20 0.0105 0.0096 1.18 1 0.2772 
age 0.0408 0.0097 17.57 1 <0.0001 
smkever 1.8477 0.1984 86.72 1 <0.0001 
smkcur 1.6116 0.1987 65.81 1 <0.0001 
school1 1.0773 0.5610 

5.50* 4 0.2398 school2 0.9014 0.5056 
school3 0.7424 0.5161 
school4 0.5238 0.5776 
* Obtained from SAS 
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The Wald statistics for Model 1 can be used to test the significance of a select risk factor, 
given the remaining terms in the model. 

• Based on the results, we see that wlm20 is not significant, given the other terms (p 
= 0.2772). 

• Likewise, school is not a significant risk factor, given the other terms (p = 0.2398).  
Note that the corresponding chi-square statistic has 4 degrees of freedom; the 
number of indicator variables. 

• Since the test statistics are conditional on the remaining terms in the model, it is not 
appropriate to omit both the risk factor for radon and school based on the 
associated p-values. 

• We might decide to omit wlm20 from the model since it is the most non-significant 
risk factor. 

 

SAS Program and Output 
proc genmod descending data=radon; 
 class school; 
 model case = wlm20 age smkever smkcur school / dist=binomial type3; 
 contrast 'school' school 1 0 0 0 -1, 
                     school 0 1 0 0 -1, 
                     school 0 0 1 0 -1, 
                     school 0 0 0 1 -1 / wald; 
run; 
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The GENMOD Procedure 
 
 
                   Contrast Results 
 
                         Chi- 
Contrast        DF     Square    Pr > ChiSq    Type 
 
school           4       5.50        0.2398    Wald 

 
In the results below for Model 2, school is not a significant risk factor, given the 
remaining terms in the model (p = 0.2429). 
 

Table 3.  Lung Cancer Model 2. 

Variable Estimate SE Wald 
Chi-Square df p-value 

Intercept -5.7462 0.8647 44.16 1 <0.0001 
age 0.0419 0.0097 18.64 1 <0.0001 
smkever 1.8369 0.1979 86.16 1 <0.0001 
smkcur 1.6207 0.1984 66.72 1 <0.0001 
school1 1.0675 0.5606 

5.46* 4 0.2429 school2 0.9097 0.5052 
school3 0.7499 0.5157 
school4 0.5292 0.5769 
* Obtained from SAS 
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Therefore, we might decide to remove education from the model. 
 

Table 4.  Lung Cancer Model 3. 

Variable Estimate SE Wald 
Chi-Square df p-value 

Intercept -4.9875 0.6966 51.27 1 <0.0001 
age 0.0428 0.0096 19.84 1 <0.0001 
smkever 1.8263 0.1970 85.93 1 <0.0001 
smkcur 1.6509 0.1972 70.12 1 <0.0001 

 

Notes 
• The same tests were carried out with both the Likelihood Ratio and Wald statistics. 
• Fifteen models had to be fit in the LRT example.  Only three were needed in the 

Wald example. 
• The conclusions were the same for this example. 
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16.5.3 Akiake Information Criterion 
The behavior of the AIC can be seen by comparing the three lung cancer models. 
 

Model Terms -2Log-Lik 2p AIC 
1 int + wlm20 + age + smkever + smkcur 

+ school1 + school2 + school3 + school4 
978.72 18 996.72 

2 int + age + smkeve r +smkcur 
+ school1 + school2 + school3 + school4 

979.91 16 995.91 

3 int + age + smkever + smkcur 985.54 8 993.54 

 
In this case the models are nested and the LRT or Wald test would be preferable.  
Nevertheless, note that 

• The value of the log-likelihood function can always be made larger by adding more 
variables.  Conversely, -2 times the log-likelihood function decreases as more 
variables are added.  Thus, our goodness-of-fit statistic should take into account the 
number of terms in the model. 

• The 2p term in the AIC statistic 
2ln 2AIC L p= − +  

represents a “penalty” for adding terms to the model.  Remember that we want the 
model with the lowest AIC value. 
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Suppose that there are two lung cancer models under consideration: 
 
Model 1: 

( )
β β β β β

π
β β β β
+ + + +

=⎡ ⎤⎣ ⎦ + + + +
0 1 2 3 4

5 6 7 8

20
logit

1 2 3 4
wlm age smkever smkcur

school school school school
x  

 
Model 4: 

( )π β β β β β β= + + + + +⎡ ⎤⎣ ⎦
1 4

0 1 2 3 4 5logit 20  x wlm age pyrrate smkquit school

 
Since the models are not nested, it is not appropriate to use the Likelihood Ratio or Wald 
test to compare the two.  The AIC can be used here. 
 

Model 2lnL− 2p AIC 
1 978.72 18 996.72 
4 912.65 12 924.65 

 
Based on the AIC, Model 4 clearly provides a better fit to the data than does Model 1.  
We cannot necessarily say that the difference is statistically significant.  Calculation of a 
p-value is complicated because the distribution of the AIC statistic is not known.  It can 
be done, but is beyond the scope of this course. 
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16.6 Points of Emphasis 
1. Understand the relative advantages and disadvantages of the Wald, LRT, and AIC 

statistics for comparing different regression models. 
2. Compute manually the LRT and AIC statistics. 
3. Know the distribution for the Wald and LRT test statistics and the form of their p-

value formulas. 
4. Use PROC GENMOD results to compare nested and non-nested models. 
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17.1 Introduction 
Confounding and interaction were first covered in the discussion of Mantel-Haenszel 
methods for estimating adjusted odds ratios and relative risks.  It was noted that 
whenever an epidemiologic study is designed or analyzed, the issues of 

• Confounding 
• Interaction 

need to be considered.  This is also true when using logistic regression methods to 
model the effects of predictor variables. 
 

17.2 Confounding 
Confounding is the bias in the risk estimate that can result when the exposure-disease 
relationship under study is partially or wholly explained by the effects of an extraneous 
variable. 

17.2.1 Iowa Radon Example 
Suppose that we are interested in the effect of previous lung disease (1=yes/0=no) on 
the odds of lung cancer.  The unadjusted effect can be modeled as 
 

( )π β β= +⎡ ⎤⎣ ⎦ 0 1logit prelungx  
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SAS Logistic Analysis of Prelung 
proc genmod data=raonmod descending; 
 model case = prelung / dist=binomial; 
run; 

 
The GENMOD Procedure 
 
 
                         Analysis Of Parameter Estimates 
 
                            Standard   Wald 95% Confidence      Chi- 
Parameter   DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept    1    -0.6604     0.0807    -0.8186    -0.5023     67.01       <.0001 
PRELUNG      1     0.7596     0.1349     0.4952     1.0240     31.71       <.0001 
Scale        0     1.0000     0.0000     1.0000     1.0000 

 
We see that there is an apparent effect of previous lung disease when modeled by 
alone. 
 

prelung Odds Ratio 95% Wald CI 
0 = no 1.00 - 
1 = yes 2.14 (1.64, 2.78) 

  
The following SAS analysis shows that previous lung disease is related to smoking. 
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SAS Tables Analysis of Prelung 
proc freq data=radonmod; 
 tables prelung*smkever prelung*case smkever*prelung*case / relrisk cmh nopercent norow nocol; 
run; 

 
 

The FREQ Procedure 
 
Table of PRELUNG by SMKEVER 
 
PRELUNG     SMKEVER 
 
Frequency‚       0‚       1‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       0 ‚    349 ‚    335 ‚    684 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       1 ‚    121 ‚    222 ‚    343 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         470      557     1027 
 
 
Statistics for Table of PRELUNG by SMKEVER 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      1.9114        1.4628        2.4975 
Cohort (Col1 Risk)             1.4464        1.2312        1.6991 
Cohort (Col2 Risk)             0.7567        0.6783        0.8441 
 
Sample Size = 1027 
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Note 
• The odds ratio between previous lung disease and smoking is 1.91 with a 95% 

confidence interval of (1.46, 2.50). 
• There is a significant, positive association between the two variables. 
• Smoking is known to be associated with lung cancer. 
 

Therefore, smoking may be confounding the crude relationship between previous lung 
disease and lung cancer that appears in the following SAS analysis where 

• The crude lung cancer odds ratio for previous lung is 2.14 with a 95% confidence 
interval of (1.64, 2.78). 

• The same estimate was obtained in the initial logistic regression analysis.  This will 
be the case when a single dichotomous predictor is in the model. 
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The FREQ Procedure 
 
Table of PRELUNG by CASE 
 
PRELUNG     CASE 
 
Frequency‚       0‚       1‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       0 ‚    451 ‚    233 ‚    684 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       1 ‚    163 ‚    180 ‚    343 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         614      413     1027 
 
 
Statistics for Table of PRELUNG by CASE 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      2.1375        1.6409        2.7844 
Cohort (Col1 Risk)             1.3875        1.2262        1.5700 
Cohort (Col2 Risk)             0.6491        0.5615        0.7504 
 
Sample Size = 1027 
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In the additional analyses that follow 
• Smoking is a potential confounder because it is related to previous lung disease as 

well as to lung cancer. 
• Further evidence of the confounding can be seen in the difference between the 

crude odds ratio (2.14) and the Mantel-Haenszel odds ratio (1.77). 
• The confounding effects of smoking should be controlled for in the logistic 

regression analysis. 
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The FREQ Procedure 
 
Table 1 of PRELUNG by CASE 
Controlling for SMKEVER=0 
 
PRELUNG     CASE 
 
Frequency‚       0‚       1‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       0 ‚    317 ‚     32 ‚    349 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       1 ‚     97 ‚     24 ‚    121 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         414       56      470 
 
 
Statistics for Table 1 of PRELUNG by CASE 
Controlling for SMKEVER=0 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      2.4510        1.3778        4.3604 
Cohort (Col1 Risk)             1.1330        1.0307        1.2456 
Cohort (Col2 Risk)             0.4623        0.2840        0.7525 
 
Sample Size = 470 
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The FREQ Procedure 
 
Table 2 of PRELUNG by CASE 
Controlling for SMKEVER=1 
 
PRELUNG     CASE 
 
Frequency‚       0‚       1‚  Total 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       0 ‚    134 ‚    201 ‚    335 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
       1 ‚     66 ‚    156 ‚    222 
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
Total         200      357      557 
 
 
Statistics for Table 2 of PRELUNG by CASE 
Controlling for SMKEVER=1 
 
           Estimates of the Relative Risk (Row1/Row2) 
 
Type of Study                   Value       95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control (Odds Ratio)      1.5758        1.0978        2.2617 
Cohort (Col1 Risk)             1.3455        1.0573        1.7122 
Cohort (Col2 Risk)             0.8538        0.7555        0.9650 
 
Sample Size = 557 
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The FREQ Procedure 
 
            Estimates of the Common Relative Risk (Row1/Row2) 
 
Type of Study     Method                  Value     95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control      Mantel-Haenszel        1.7658       1.2977       2.4027 
  (Odds Ratio)    Logit                  1.7852       1.3144       2.4245 
 
Cohort            Mantel-Haenszel        1.2085       1.0848       1.3463 
  (Col1 Risk)     Logit                  1.1594       1.0616       1.2662 
 
Cohort            Mantel-Haenszel        0.7913       0.7003       0.8942 
  (Col2 Risk)     Logit                  0.8233       0.7312       0.9271 
 
 
     Breslow-Day Test for 
Homogeneity of the Odds Ratios 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square              1.6334 
DF                           1 
Pr > ChiSq              0.2012 
 
 
Total Sample Size = 1027 
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17.2.2 Confounding in Logistic Regression 
Confounding is controlled for in logistic regression by including the relevant variables in 
the model.  For instance, to control for the confounding effects of smoking, we might fit 
the model 

( )π β β β= + +⎡ ⎤⎣ ⎦ 0 1 2logit prelung smkeverx . 

 
The parameter estimates for the two proposed models are compared in the table below. 
 

Model Term Estimate SE p-value 
1 Intercept -0.6604 0.0807 <0.0001 
 prelung 0.7596 0.1349 <0.0001 
     
2 Intercept -1.3616 0.1531 <0.0001 
 prelung 0.5786 0.1582 0.0003 
 smkever 2.4139 0.1685 <0.0001 

 
Notice the change in the parameter estimate for prelung after including the smoking 
variable.  After controlling for smoking, the effect of previous lung disease is not as 
pronounced.  The odds ratio for previous lung disease, adjusted for smoking is 1.78 with 
a 95% confidence interval of (1.31, 2.43).  Therefore, smoking accounts for some of the 
apparent association in the crude odds ratio of 2.14. 
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Since smoking is a confounder, it is important that we adequately control for this risk factor 
in order to get a clear picture of the true effect of previous lung disease.  A single 
dichotomous variable for smoking rarely provides adequate control.  Other possible choices 
for this example are 

 
Model Term Estimate SE p-value 
3 Intercept -2.1313 0.1526 <0.0001 
 prelung 0.4493 0.1659 0.0068 
 smkever 1.7846 0.1949 <0.0001 
 smkcur 1.4087 0.1893 <0.0001 
     
4 Intercept -2.0178 0.1441 <0.0001 
 prelung 0.2843 0.1737 0.1017 
 smkyrs 0.0707 0.0041 <0.0001 
 smkquit -0.0197 0.0086 0.0225 
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More comprehensive smoking variables are included in the subsequent models. 
• Model 2 simply includes a single dichotomous variable for ever-smokers; whereas, 

Model 4 includes continuous variables for years of smoking and years since 
smoking cessation. 

• As the control for smoking improves, the estimated effect for previous lung disease 
decreases and becomes less significant. 

• With better control for smoking, the effect of previous lung disease is non-significant 
(p = 0.1017). 

 

17.2.3 Identification of Confounders 
Controlling for confounding requires that you identify variables that potentially impact the 
estimated effect of the predictor of interest.  At times, there is a clearly defined set of 
confounding variables.  More often, though, the confounding variables are less clearly 
understood.  Furthermore, it may be too cumbersome to identify the important 
confounders through logistic regression modeling of every possible combination of the 
variables. 
 
One common method of screening for potential confounders is to look at correlations 
among the study variables.  Variables that are correlated with the predictor of interest as 
well as with the disease are potential confounders. 
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SAS Correlation Analysis 
proc corr spearman data=radon; 
 var case prelung age children pyr pyrrate school smkcur smkever smkquit smkyrs wlm20; 
run; 

 
Syntax 

• PROC CORR computes all pairwise correlations between the variables listed in the 
var statement. 

• The spearman option requests spearman rank correlations; appropriate for 
variables that may not be normally distributed. 
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The CORR Procedure 
 
  12  Variables:    CASE     PRELUNG  AGE      CHILDREN PYR      PYRRATE  SCHOOL 
                    SMKCUR   SMKEVER  SMKQUIT  SMKYRS   WLM20 
 
 
                                 Simple Statistics 
 
Variable          N         Mean      Std Dev       Median      Minimum      Maximum 
 
CASE           1027      0.40214      0.49057            0            0      1.00000 
PRELUNG        1027      0.33398      0.47186            0            0      1.00000 
AGE            1027     67.60617      8.67481     68.12320     44.16153     84.80493 
CHILDREN       1027      3.10906      1.95958      3.00000            0     13.00000 
PYR            1027     19.82656     25.65853      3.85000            0    138.45175 
PYRRATE        1027      0.32444      0.42056      0.05889            0      2.55702 
SCHOOL         1027      2.44985      0.87980      2.00000      1.00000      5.00000 
SMKCUR         1027      0.31646      0.46532            0            0      1.00000 
SMKEVER        1027      0.54236      0.49845      1.00000            0      1.00000 
SMKQUIT        1027      4.59826      9.97630            0            0     57.35489 
SMKYRS         1027     20.69620     21.58525     13.00000            0     67.00000 
WLM20          1027     10.64205      8.89201      8.17985      1.42265     91.53930 
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                  Spearman Correlation Coefficients, N = 1027 
                           Prob > |r| under H0: Rho=0 
 
                CASE     PRELUNG         AGE    CHILDREN         PYR     PYRRATE 
 
CASE         1.00000     0.17712     0.02672    -0.07303     0.60480     0.60098 
                          <.0001      0.3923      0.0192      <.0001      <.0001 
 
PRELUNG      0.17712     1.00000     0.05344    -0.05910     0.21111     0.20688 
              <.0001                  0.0870      0.0583      <.0001      <.0001 
 
AGE          0.02672     0.05344     1.00000    -0.15191    -0.07319    -0.12860 
              0.3923      0.0870                  <.0001      0.0190      <.0001 
 
                  Spearman Correlation Coefficients, N = 1027 
                           Prob > |r| under H0: Rho=0 
 
              SCHOOL      SMKCUR     SMKEVER     SMKQUIT      SMKYRS       WLM20 
 
CASE        -0.12006     0.52220     0.53016     0.16559     0.60422     0.03389 
              0.0001      <.0001      <.0001      <.0001      <.0001      0.2779 
 
PRELUNG     -0.03629     0.18846     0.14907     0.01838     0.20278     0.03916 
              0.2453      <.0001      <.0001      0.5562      <.0001      0.2098 
 
AGE         -0.05269    -0.17258    -0.10056     0.03142     0.02389     0.10819 
              0.0915      <.0001      0.0013      0.3144      0.4445      0.0005 
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The CORR Procedure 
 
                  Spearman Correlation Coefficients, N = 1027 
                           Prob > |r| under H0: Rho=0 
 
                CASE     PRELUNG         AGE    CHILDREN         PYR     PYRRATE 
 
CHILDREN    -0.07303    -0.05910    -0.15191     1.00000    -0.08336    -0.07456 
              0.0192      0.0583      <.0001                  0.0075      0.0169 
 
PYR          0.60480     0.21111    -0.07319    -0.08336     1.00000     0.99546 
              <.0001      <.0001      0.0190      0.0075                  <.0001 
 
PYRRATE      0.60098     0.20688    -0.12860    -0.07456     0.99546     1.00000 
              <.0001      <.0001      <.0001      0.0169      <.0001 
 
SCHOOL      -0.12006    -0.03629    -0.05269    -0.06213    -0.12055    -0.11955 
              0.0001      0.2453      0.0915      0.0465      0.0001      0.0001 
 
SMKCUR       0.52220     0.18846    -0.17258    -0.02568     0.70529     0.71950 
              <.0001      <.0001      <.0001      0.4111      <.0001      <.0001 
 
SMKEVER      0.53016     0.14907    -0.10056    -0.09816     0.90750     0.90750 
              <.0001      <.0001      0.0013      0.0016      <.0001      <.0001 
 
SMKQUIT      0.16559     0.01838     0.03142    -0.10883     0.44097     0.42785 
              <.0001      0.5562      0.3144      0.0005      <.0001      <.0001 
 
SMKYRS       0.60422     0.20278     0.02389    -0.10045     0.93653     0.92226 
              <.0001      <.0001      0.4445      0.0013      <.0001      <.0001 
 
WLM20        0.03389     0.03916     0.10819    -0.04412    -0.01560    -0.02468 
              0.2779      0.2098      0.0005      0.1577      0.6175      0.4294 
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                  Spearman Correlation Coefficients, N = 1027 
                           Prob > |r| under H0: Rho=0 
 
              SCHOOL      SMKCUR     SMKEVER     SMKQUIT      SMKYRS       WLM20 
 
CHILDREN    -0.06213    -0.02568    -0.09816    -0.10883    -0.10045    -0.04412 
              0.0465      0.4111      0.0016      0.0005      0.0013      0.1577 
 
PYR         -0.12055     0.70529     0.90750     0.44097     0.93653    -0.01560 
              0.0001      <.0001      <.0001      <.0001      <.0001      0.6175 
 
PYRRATE     -0.11955     0.71950     0.90750     0.42785     0.92226    -0.02468 
              0.0001      <.0001      <.0001      <.0001      <.0001      0.4294 
 
SCHOOL       1.00000    -0.11536    -0.07794     0.01298    -0.11644    -0.00661 
                          0.0002      0.0125      0.6778      0.0002      0.8325 
 
SMKCUR      -0.11536     1.00000     0.62502    -0.08948     0.75215    -0.01125 
              0.0002                  <.0001      0.0041      <.0001      0.7188 
 
SMKEVER     -0.07794     0.62502     1.00000     0.63811     0.90756    -0.01435 
              0.0125      <.0001                  <.0001      <.0001      0.6460 
 
SMKQUIT      0.01298    -0.08948     0.63811     1.00000     0.40405    -0.00084 
              0.6778      0.0041      <.0001                  <.0001      0.9786 
 
SMKYRS      -0.11644     0.75215     0.90756     0.40405     1.00000     0.00787 
              0.0002      <.0001      <.0001      <.0001                  0.8011 
 
WLM20       -0.00661    -0.01125    -0.01435    -0.00084     0.00787     1.00000 
              0.8325      0.7188      0.6460      0.9786      0.8011 
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Note 
• The first number is the correlation coefficient between the indicated row and column 

variable.  Positive values indicate a positive association. 
• The second number is the p-value testing if the correlation is significantly different 

from zero. 
• Prelung is significantly correlated with the smoking variables (except smkquit).  

The smoking variables, in turn, are correlated with case.  Thus, these results 
suggest that smoking is a potential confounder 

• The correlation analysis is an exploratory method for identifying potential 
confounders and is not guaranteed to uncover all confounding variables. 
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17.2.4 Summary 
Suppose that logistic regression is being used to estimate the effect of a predictor 
variable X. 

• A confounder is any variable associated with X as well as with the disease of 
interest. 

• A variable is a confounder if and only if its inclusion in the model changes the 
estimated effect of X.  The result could be to increase or decrease the estimate for 
X. 

• Any confounding variable that has an appreciable impact on the effect of X should 
be considered for inclusion, even if the confounder itself is not statistically 
significant in the model. 

• The confounder should be properly controlled for in the logistic regression model.  
This involves: 
1. Identifying potential confounders at the study design phase. 
2. Collecting detailed and complete information on the confounders during the data 

collection phase. 
3. Choosing among the available potential confounding variables and determining 

the functional form to use in the regression model during the data analysis 
phase. 
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• Control for confounding in logistic regression is analogous to the Mantel-Haenszel 
method for computing odds ratios.  In both cases, the odds ratio is assumed to be 
constant across the levels of the confounder.  In our logistic regression example, 
the odds ratio for those with previous lung disease is 

{ }1expOR β=  

at any given value of the confounder.  If the odds ratio varies across the levels of an 
extraneous variable, then we have interaction. 
 

17.3 Interaction 
A logistic regression model with only main effect terms implies that the variables do not 
interact in their effect on disease.  In other words, the odds ratio for a given predictor 
does not vary across the levels of an extraneous variable.  There are changes that can 
be made to the logistic model if this is not the case. 
 

17.3.1 Model 2 
Consider our model with main effects for previous lung disease and smoking, 
 

( )π = − + +⎡ ⎤⎣ ⎦logit 1.3616 0.4735 2.4139prelung smkeverx . 
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Among never-smokers, the estimated odds ratio for previous lung disease is 
( )
( ) ( ) ( ){ }

{ }

= =
= = − + −

= =

= =

ˆ 1, 0
exp 0.4735 1 0 2.4139 0 0

ˆ 0, 0

exp 0.4735 1.61

g prelung smkever
OR

g prelung smkever . 

 
Likewise, among ever-smokers, the estimated odds ratio is 

( )=

( ) ( ) ( ){ }

{ }

=
= = − + −

= =

ˆ 1, 1
exp 0.4735 1 0 2.4139 1 1

ˆ 0, 1
g prelung smkever

OR
g prelung smkever

= =exp 0.4735 1.61
. 

 
In other words, the form of this model implies that smoking status does not affect the 
estimated odds ratio for previous lung disease; that previous lung disease and smoking 
do not interact in their effect on lung cancer. 
 
This may not be the case.  In the earlier Mantel-Haenszel analysis, we obtained the 
following odds ratio estimates within the smoking strata: 
 

smkever OR 95% CI 
0 2.45 (1.38, 4.36) 
1 1.58 (1.10, 2.26) 
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he odds ratios did not differ significantly according to the Breslow-Day test (p = 0.2012).  

We could perform an analogous test using logistic regression.  Suppose that we fit the 

 

SAS Program and Output 

T

following model: 
 

( )π β β β β= + + + ×⎡ ⎤⎣ ⎦ 0 1 2 3log it prelung smkever prelung smkeverx  

proc genmod data=radonmod descending; 
 model case = prelung smkever prelung*smkever / dist=binomial; 
 estimate 'smkever=0:prelung' prelung 1 / exp; 
 estimate 'smkever=1:prelung' prelung 1 prelung*smkever 1 / exp; 
r n; u
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The GENMOD Procedure 
 
                        Analysis Of Parameter Estimates 
 
                               Standard       Wald 95%          Chi- 
Parameter        DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
Intercept         1   -2.2932    0.1855   -2.6567   -1.9296   152.85      <.0001 
PRELUNG           1    0.8965    0.2939    0.3205    1.4725     9.30      0.0023 
SMKEVER           1    2.6986    0.2164    2.2744    3.1228   155.47      <.0001 
PRELUNG*SMKEVER   1   -0.4418    0.3470   -1.1218    0.2383     1.62      0.2029 
Scale             0    1.0000    0.0000    1.0000    1.0000 
 
 
                             Contrast Estimate Results 
 
                                    Standard                                    Chi- 
Label                    Estimate      Error    Alpha    Confidence Limits    Square 
 
smkever=0:prelung          0.8965     0.2939     0.05     0.3205     1.4725     9.30 
Exp(smkever=0:prelung)     2.4510     0.7204     0.05     1.3778     4.3603 
smkever=1:prelung          0.4547     0.1844     0.05     0.0933     0.8161     6.08 
Exp(smkever=1:prelung)     1.5758     0.2906     0.05     1.0978     2.2617 
 
     Contrast Estimate Results 
 
Label                    Pr > ChiSq 
 
smkever=1:prelung            0.0137 
Exp(smkever=1:prelung) 
smkever=0:prelung            0.0023 
Exp(smkever=0:prelung) 
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Summary of Results 
 

Term Estimate SE p-value 
Intercept -2.2932 0.1855 <0.0001 
prelung 0.8965 0.2939 0.0023 
smkever 2.6986 0.2164 <0.0001 
prelung*smkever -0.4418 0.3470 0.2029 

 
The interaction term allows the odds ratio for previous lung disease to vary across levels 
of smoking, and vice versa. 
 

• Note the following values for the terms in the model 
 

Prior Lung Disease Smoker prelung smkever prelung*smkever
No No 0 0 0 
 Yes 0 1 0 
Yes No 1 0 0 
 Yes 1 1 1 
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• For never-smokers, the estimated odds ratio for previous lung disease is 
 

( )
( ) ( ){ }= = × =ˆ 1, 0, 0g prelung smkever prelung smkever

= = −
= = × =

=

exp 0.8965 1 0
ˆ 0, 0, 0
2.45

OR
g prelung smkever prelung smkever  

 
• For ever-smokers, the estimated odds ratio is 
 

( )
( )

( ) ( ){ }

ˆ 1, 1, 1
ˆ 0, 1, 0

exp 0.8965 1 0 0.4418 1 0

1.58

g prelung smkever prelung smkever
OR

g prelung smkever prelung smkever
= = × =

=
= = × =

= − − −

=

 

 
• Testing the significance of the interaction term is akin to testing if the odds ratio 

varies across the levels of the extraneous variable.  In this case, the Wald test 
indicates that the odds ratios do not differ significantly (p = 0.2029). 
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17.3.2 Model 3 
Our third model, 

( )π β β β β= + + +⎡ ⎤⎣ ⎦ 0 1 2 3logit prelung smkever smkcurx , 

contains two indicator variables for smoking in order to control for the effects of current, 
ex, and never-smokers.  Again, this model implies that the odds ratio for previous lung 
disease is constant across smoking status.  The following model would allow the odds 
ratios to vary: 

( )
β β β β

π
β β
+ + +

=⎡ ⎤⎣ ⎦ + × + ×
0 1 2 3

4 5

logit
prelung smkever smkcur

prelung smkever prelung smkcur
x . 

 

SAS Program and Output 
proc genmod data=radonmod descending; 
 model case = prelung smkever smkcur prelung*smkever prelung*smkcur / dist=binomial; 
 estimate 'smk nvr:prelung' prelung 1 / exp; 
 estimate 'smk ex:prelung' prelung 1 prelung*smkever 1 / exp; 
 estimate 'smk cur:prelung' prelung 1 prelung*smkever 1 prelung*smkcur 1/ exp; 
 contrast 'interaction' prelung*smkever 1, prelung*smkcur 1 / wald; 
 contrast 'interaction' prelung*smkever 1, prelung*smkcur 1; 
run; 
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The GENMOD Procedure 
 
                        Analysis Of Parameter Estimates 
 
                               Standard       Wald 95%          Chi- 
Parameter        DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
Intercept         1   -2.2932    0.1855   -2.6567   -1.9296   152.85      <.0001 
PRELUNG           1    0.8965    0.2939    0.3205    1.4725     9.30      0.0023 
SMKEVER           1    1.9032    0.2454    1.4223    2.3841    60.16      <.0001 
SMKCUR            1    1.6650    0.2439    1.1871    2.1430    46.62      <.0001 
PRELUNG*SMKEVER   1   -0.3087    0.4112   -1.1146    0.4972     0.56      0.4528 
PRELUNG*SMKCUR    1   -0.6270    0.3928   -1.3970    0.1429     2.55      0.1104 
Scale             0    1.0000    0.0000    1.0000    1.0000 
 
NOTE: The scale parameter was held fixed. 
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                            Contrast Estimate Results 
 
                                  Standard                                    Chi- 
Label                  Estimate      Error    Alpha    Confidence Limits    Square 
 
smk nvr:prelung          0.8965     0.2939     0.05     0.3205     1.4725     9.30 
Exp(smk nvr:prelung)     2.4510     0.7204     0.05     1.3778     4.3603 
smk ex:prelung           0.5878     0.2876     0.05     0.0242     1.1514     4.18 
Exp(smk ex:prelung)      1.8000     0.5176     0.05     1.0245     3.1626 
smk cur:prelung         -0.0393     0.2676     0.05    -0.5638     0.4853     0.02 
Exp(smk cur:prelung)     0.9615     0.2573     0.05     0.5690     1.6247 
 
    Contrast Estimate Results 
 
Label                  Pr > ChiSq 
 
smk nvr:prelung            0.0023 
Exp(smk nvr:prelung) 
smk ex:prelung             0.0410 
Exp(smk ex:prelung) 
smk cur:prelung            0.8834 
Exp(smk cur:prelung) 
 
 
                     Contrast Results 
 
                            Chi- 
Contrast           DF     Square    Pr > ChiSq    Type 
 
interaction         2       5.88        0.0529    Wald 
interaction         2       5.81        0.0549    LR 
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Summary of Results 
• For never-smokers (smkever = 0, smkcur = 0), the estimated odds ratio  for 

previous lung disease is 
( )
( ) ( ){ }=

= = −
=

=

ˆ 1
exp 0.8965 1 0

ˆ 0
2.45

g prelung
OR

g prelung . 

 
• For ex-smokers (smkever = 1, smkcur = 0), the estimated odds ratio is 

( )
( )

( ) ( ){ }

ˆ 1, 1
ˆ 0, 0

exp 0.8965 1 0 0.3087 1 0

1.80

g prelung prelung smkever
OR

g prelung prelung smkever
= × =

=
= × =

= − − −

=

. 

 
• For current smokers (smkever = 1, smkcur = 1), the estimated odds ratio is 

( )
( )

( ) ( ) ( ){ }

= × = × =
=

= × = × =

= − − − − −

=

ˆ 1, 1, 1
ˆ 0, 0, 0

exp 0.8965 1 0 0.3087 1 0 0.6270 1 0

0.9615

g prelung prelung smkever prelung smkcur
OR

g prelung prelung smkever prelung smkcur

.
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• A global test that the odds ratios are equal is performed by testing that the two 
interaction terms are simultaneously equal to zero.  This can be accomplished via 
the contrast statement in PROC GENMOD.  The interaction terms are marginally 
non-significant (Wald p = 0.0529, LR p = 0.0549). 

 

17.3.3 Model 4 
Continuous variables for smoking are included in the fourth model, 

( )π β β β β= + + +⎡ ⎤⎣ ⎦ 0 1 2 3logit prelung smkyrs smkquitx . 

Interaction terms could be added as follows: 

( )
β β β β

π
β β
+ + +

=⎡ ⎤⎣ ⎦ + × + ×
0 1 2 3

4 5

logit
prelung smkyrs smkquit

prelung smkyrs prelung smkquit
x . 

 

SAS Program and Output 
proc genmod data=radonmod descending; 
 model case = prelung smkyrs smkquit prelung*smkyrs prelung*smkquit / dist=binomial; 
 estimate 'smk0/0:prelung' prelung 1 / exp; 
 estimate 'smk10/5:prelung' prelung 1 prelung*smkyrs 10 prelung*smkquit 5 / exp; 
 estimate 'smk15/0:prelung' prelung 1 prelung*smkyrs 15 / exp; 
 contrast 'interaction' prelung*smkyrs 1, prelung*smkquit 1 / wald; 
run; 
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The GENMOD Procedure 
 
                        Analysis Of Parameter Estimates 
 
                               Standard       Wald 95%          Chi- 
Parameter        DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
Intercept         1   -2.2494    0.1757   -2.5938   -1.9050   163.87      <.0001 
PRELUNG           1    0.9372    0.2784    0.3915    1.4830    11.33      0.0008 
SMKYRS            1    0.0801    0.0055    0.0693    0.0910   210.83      <.0001 
SMKQUIT           1   -0.0173    0.0102   -0.0373    0.0027     2.87      0.0904 
PRELUNG*SMKYRS    1   -0.0236    0.0083   -0.0398   -0.0073     8.10      0.0044 
PRELUNG*SMKQUIT   1   -0.0108    0.0197   -0.0494    0.0278     0.30      0.5839 
Scale             0    1.0000    0.0000    1.0000    1.0000 
 
NOTE: The scale parameter was held fixed. 
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                            Contrast Estimate Results 
 
                                  Standard                                    Chi- 
Label                  Estimate      Error    Alpha    Confidence Limits    Square 
 
smk0/0:prelung           0.9372     0.2784     0.05     0.3915     1.4830    11.33 
Exp(smk0/0:prelung)      2.5529     0.7108     0.05     1.4792     4.4060 
smk10/5:prelung          0.6475     0.2122     0.05     0.2316     1.0634     9.31 
Exp(smk10/5:prelung)     1.9108     0.4055     0.05     1.2606     2.8963 
smk15/0:prelung          0.5836     0.2063     0.05     0.1793     0.9879     8.01 
Exp(smk15/0:prelung)     1.7925     0.3697     0.05     1.1964     2.6856 
 
    Contrast Estimate Results 
 
Label                  Pr > ChiSq 
 
smk0/0:prelung             0.0008 
Exp(smk0/0:prelung) 
smk10/5:prelung            0.0023 
Exp(smk10/5:prelung) 
smk15/0:prelung            0.0047 
Exp(smk15/0:prelung) 
 
 
                     Contrast Results 
 
                            Chi- 
Contrast           DF     Square    Pr > ChiSq    Type 
 
interaction         2       8.70        0.0129    Wald 
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Summary of Results 
• For never-smokers (smkyrs = 0, smkquit = 0), the estimated odds ratio for previous 

lung disease is 

{ } { }1̂exp exp 0.9372

2.55

OR β= =

=
. 

 
• For smokers, the odds ratio for previous lung disease is 

{ }1 4 5expOR smkyrs smkquitβ β β= + + . 

 
For example, the estimated odds ratio for previous lung disease among individuals 
who smoked for 10 years (smkyrs = 10) and quit five years ago (smkquit = 5) is 

{ } ( ) ( ){ }1 4 5
ˆ ˆ ˆexp 10 5 exp 0.9372 0.0236 10 0.0108 5

1.91

OR β β β= + + = − −

=
. 

 
The estimated odds ratio among current smokers (smkquit = 0) who smoked for 15 
years (smkyrs = 15) is 

{ } ( ){ }1 4 5
ˆ ˆ ˆexp 15 0 exp 0.9372 0.0236 15

1.79

OR β β β= + + = −

=
. 
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• The global test of the interaction terms is significant (p = 0.0129).  In particular, it 
appears that previous lung disease is more strongly associated with lung cancer 
among never-smokers.  Furthermore, the interaction term with smkquit is not 
significant (p = 0.5839) and could be omitted from the model. 

 

17.4 Points of Emphasis 
1. Definition of confounding.  The importance of including confounding variables in the 

logistic regression model.  How to identify confounders. 
2. Estimation and interpretation of the odds ratio with interaction terms in the model. 
3. Significance testing for interaction terms. 
4. Use PROC GENMOD to estimate odds ratios as well as fit and test the significance 

of interaction terms. 
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18.1 Introduction 

18.1.1 Residuals 
In linear regression, where the response variable iy  for each subjects is modeled as 

0 1 1 2 2i i i p iy x x xpiβ β β β ε= + + + + +… , 

the residuals are used to examine the fit of the model.  Recall that the residuals  are 
defined as the difference between the observed 

ir
iy  and the predicted ˆ iy .  In particular, 

0 1 1 2 2
ˆ ˆ ˆ ˆˆi i i i i i pr y y y x x xβ β β β= − = − − − − −… pi . 

Residuals provide estimates of the error terms iε  in the model.  Hence, they may be 
used to check the assumption that ( )2~ 0,i Nε σ ; i.e. that the error terms are 

• Normally distributed with 
• Constant variance. 

 

Systolic Blood Pressure Example 
In Section 10, simple linear regression was used to model systolic blood pressure (y) as 
a function of age (x).  The estimated regression model was 

ˆ 98.71 0.97i iy x= + . 
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A histogram plot of the residuals is given in Figure 1. 
• The non-symmetric shape of the histogram calls into question the normality 

assumption for the residuals. 
• A normal Q-Q plot of the residuals could be constructed as another visual check of 

normality.  Departures from normality can be tested with the Shapiro-Wilk statistic. 
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Figure 1.  Histogram plot of the residuals in the Blood Pressure Example. 
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Below, the residuals are plotted against the predicted blood pressures. 
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• The constant variance assumption does not appear to be severely violated.  There 

are more sophisticated residuals that can be computed to check the constant 
variance assumption, e.g. standardized residuals. 

• Note the one extreme residual value that shows up in both plots.  This is indicative 
of a model that provides a poor explanation of the relationship between age and 
blood pressure for the corresponding subject.  One should check that the data were 
entered correctly and possibly consider excluding this subject from the analysis. 
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18.1.2 Outliers 
Outliers are a concern in any analysis and are most easily illustrated in the context of 
linear regression. 
 
The solid lines in the following figures give the regression fit with the outlier in the 
analysis; the dashed lines give the fit without the outlier.  The first figure depicts an 
outlier whose response value is not explained well by the predictor in the model.  In other 
words, there is a relatively large difference between the observed and predicted 
response (the residual value). 
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The second figure with an influential outlier may or may not have a large residual value, 
but it does have a significant impact on the estimated effect of the predictor. 
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Influential Outlier

 

18.1.3 Goodness-of-fit 
The sum-of-squared errors 

( )2ˆi iSSE y y= −∑  

measures the aggregate deviation of the predicted values from the observed.  We would 
like for SSE to be small. 
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The  statistic 2R
 

2 SST SSER
SST
−

= , 

 
where 
 

( )2
iSST y y= −∑  and ( )2ˆ iSSR y y= −∑ , 

 
provides a measure of the overall fit of a linear regression model to the data.  
Specifically, it measures the amount of variability in the response variable explained by 
the predictors in the model.  In the blood pressure example, 
 

2 14787 8393.4 0.4324
14787

R −
= = . 

 
43.2% of the variation in the systolic blood pressures is explained by the linear effect of 
age. 
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18.2 Logistic Regression Diagnostics 
Iowa Radon Example 

Suppose that we fit the lung cancer risk model 
 

( )
( ) 0 1 2 3 4 5ln 20

1
age school smkyrs smkquit wlm

π
β β β β β β

π
⎡ ⎤

= + + + + +⎢ ⎥−⎣ ⎦

x
x

 

 
to obtain the following parameter estimates: 
 

Variable Estimate SE Wald 
Chi-Square df p-value 

Intercept -2.0776 0.7040 8.7095 1 0.0032 
age 0.00714 0.00956 0.5576 1 0.4552 
school -0.1743 0.0962 3.2821 1 0.0700 
smkyrs 0.0715 0.00412 301.5945 1 <0.0001 
smkquit -0.0211 0.00885 5.6768 1 0.0172 
wlm20 0.00876 0.00970 0.8149 1 0.3667 

 
Once a regression model has been formulated, the next step is to assess the fit of the 
model to the data.  In other words, examine how well the predictors explain the response 
variable. 
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NOTE:  Model diagnostics should always be undertaken when developing a 
regression model. 

18.2.1 Outliers 
An outlier is a data point that is located away from the majority of the data. 

• Outliers frequently result from errors in collecting or entering the data. 
• It may or may not be desirable to exclude outliers from the regression analysis. 
• Pearson and Deviance residuals are two types of standardized residuals that we 

will use to identify outliers that are not well explained by the model. 
• Delta-Beta plots will be used to identify influential outliers. 

18.2.2 Pearson and Deviance (Standardized) Residuals 
In multiple logistic regression we will continue to use residuals, but they will be defined 
differently than in linear regression.  The logistic regression model for the ith subject has 
the form 

0 1 1 2 2ln
1

i
i i pi pi

i

x x xπ β β β β
π

⎡ ⎤
= + + + +⎢ ⎥−⎣ ⎦

…  

such that the dichotomous response variable iy  is distributed as 

( )~ 1,i iy Binomial π . 
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Note that 
• i( )iE y π= ( ) ( )ar 1i iv y and iπ π= −

for which estimates are obtained by substituting in the predicted probability 

 

 
0 1 1

0 1 1

ˆ ˆ ˆ

ˆ ˆ ˆˆ
1

i p pi

i p pi

x x

i x x

e
e

β β β

β β β
π

+ + +

+ + +
=

+

…

…
. 

 
The Pearson residual is defined as 
 

l ( )
m ( ) ( )

ˆ
1ˆ ˆvar

i i i i
i

i ii

y E y yr
y

π
π π

− −
= =

−
. 

 
These play a similar role as the Pearson residuals in multiple linear regression.  
Deviance residuals are another type of residual commonly used in logistic regression 
analysis. 
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Notes 
• A more useful diagnostic is the standardized residual, defined as 

1si i ir r h= −  

where ( ) ( )ˆ1 varˆ ˆi i ih π π i′= − β x .  The  are diagonal entries of the so-called “hat 
matrix” and are referred to as leverage values. 

ih

• If the model provides an adequate fit to the data, the standardized residuals will 
have variance equal to one. 

• We would expect that 
o There are very few extreme positive or negative residuals. 
o About 95% of the residuals fall between -1.96 and +1.96. 
o About 99% of values fall between -2.32 and 2.32.  Values substantially outside 

of this range should be investigated as potential outliers. 
• Pearson and Deviance residuals are used analogously to identify outliers. 
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SAS Program for Pearson and Deviance Residuals 
proc logistic data=radon descending; 
 model case = age school smkyrs smkquit wlm20 / influence iplots; 
 output out=temp reschi=pearson resdev=deviance h=leverage; 
 
data resid; 
 set temp; 
 stpearson = pearson / sqrt(1 - leverage); 
 stdeviance = deviance / sqrt(1 - leverage); 
run; 

 
Syntax 

• The influence option produces regression diagnostics, including the Pearson and 
Deviance residuals 

• iplots generates plots for the results from the influence option. 
• The output statement saves the Pearson residuals (reschi) and the Deviance 

residuals (resdev) in the SAS data set resid under the variables names pearson 
and deviance, respectively.  Leverage values are produced with the h option and 
saved under the variable name leverage.  Residuals in the data set may be plotted 
in an appropriate graphing program. 
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The LOGISTIC Procedure 
 
                                     Regression Diagnostics 
 
                                                                         Pearson Residual 
                                Covariates 
    Case                                                                       (1 unit = 0.45) 
  Number        AGE     SCHOOL     SMKYRS    SMKQUIT      WLM20      Value    -8  -4  0 2 4 6 8 
 
       1    65.4784     1.0000    46.0000          0     4.6608     0.4618   |        |*       | 
       2    59.1595     4.0000     3.0000    37.6595    12.6913    -0.2440   |       *|        | 
       3    75.2580     5.0000          0          0    11.1445    -0.3144   |       *|        | 
       4    66.1793     2.0000    43.0000     5.6793     7.6886     0.5862   |        |*       | 
       5    81.0376     2.0000    64.0000          0     5.1764     0.2499   |        |*       | 
       6    65.9110     3.0000    45.0000     0.4110    14.8831     0.5463   |        |*       | 
       7    67.9452     2.0000          0          0     7.4349    -0.3914   |       *|        | 
       8    75.0500     3.0000    58.0000          0     6.1280     0.3437   |        |*       | 
       9    58.5352     2.0000    35.0000     3.0352    31.4134    -1.4228   |     *  |        | 
      10    66.8309     2.0000          0          0    10.3804    -0.3949   |       *|        | 
      11    67.2991     2.0000          0          0     3.6352    -0.3841   |       *|        | 
      12    74.6064     2.0000          0          0     5.8309    -0.3980   |       *|        | 
      13    72.6680     2.0000    46.0000     9.1680    10.0448     0.5283   |        |*       | 
      14    75.1869     2.0000    43.0000     6.6869    10.7479     0.5661   |        |*       | 
      15    73.1253     3.0000    49.0000     6.6253    14.5812     0.4934   |        |*       | 
      16    73.4073     2.0000          0          0    17.0475    -0.4163   |       *|        | 
      17    79.6167     3.0000    14.0000    24.1167     2.3264    -0.4678   |       *|        | 
      18    69.2320     2.0000    55.0000          0     8.4048     0.3545   |        |*       | 
      19    66.5927     2.0000          0          0     4.5858    -0.3847   |       *|        | 
      20    62.8994     3.0000          0          0    10.6503    -0.3574   |       *|        | 
      21    63.9754     2.0000     2.0000    43.4754    18.3045    -0.2749   |       *|        | 
      22    73.8097     3.0000    17.0000    14.3097     9.7403     1.7113   |        |   *    | 
      23    64.6352     3.0000    37.0000    10.1352     9.1496    -1.2049   |     *  |        | 
      24    72.4709     2.0000          0          0    15.1663    -0.4115   |       *|        | 
      25    59.8905     2.0000    21.0000    19.3905     4.5200     1.5422   |        |  *     | 
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All that is need to compute the Pearson residual is the case status, predictor values, and 
parameter estimates. 
 

 case intercept age school smkyrs smkquit wlm20 
Estimate - -2.0776 0.00714 -0.1743 0.0715 -0.0211 0.00876
Subject 1 1 1 65.48 1 46 0 4.66 

 
For Subject 1 

( ) ( ) ( )
( ) ( )

2.0776 0.00714 65.48 0.1743 1 0.0715 46

0.0211 0 0.00876 4.66
1.5455

1 0 1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ ˆ 20age school smkyrs smkquit wlmη β β β β β β= + + + + +

= − + − +

− +

=

, 

giving an estimated probability of 
1

1

1.5455

1 1.5455 0.8243
1 1

e e
e e

η

ηπ = = = . 
+ +

( )

Thus, the Pearson residual evaluates to 

( )
1 1 1 0.8243ˆ 0.4617y

1
1 11 0.8243 0.1757ˆ ˆ

r π
π π

− −
= . = =

−

which corresponds to the value returned by SAS. 
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The Pearson and Deviance residuals are summarized in Figure 2 and Figure 3.  None of 
the values here appear to be too extreme.  Nevertheless, this is an exploratory process, 
subject to interpretation.  
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Figure 2.  Pearson residuals for the logistic regression model in the Iowa Radon 

Example. 
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Figure 3.  Deviance residuals for the logistic regression model in the Iowa Radon 

Example. 
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18.2.3 Delta-Beta Plots for Influential Observations 
Delta-Beta plots are a method of checking the influence of each observation on the 
estimated model parameters.   

• The idea is to compare the estimate β̂  for a given parameter, with all observations 
in the analysis, to the estimate )(β̂ j  that results by excluding the jth observation. 

• This is done for every observation in the data set and the changes ( )

ˆ

ˆ ˆ
j

j
β

β β

σ

−
Δ =  are 

reported as standardized delta-beta values. 
• Observations that exert undue influence on the parameter estimates have large 

delta-betas. 
• A delta-beta plot may be constructed for each parameter in the regression model, 

including the intercept. 
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SAS Program for Delta-Beta Statistics 
proc logistic data=radonmod descending; 
 model case = age school smkyrs smkquit wlm20 / influence iplots; 
 output out=influence dfbetas=d_int d_age d_school d_smkyrs d_smkquit d_wlm20; 
 
proc gplot data=influence; 
 plot d_int*studyid; 
 plot d_age*studyid; 
 plot d_school*studyid; 
 plot d_smkyrs*studyid; 
 plot d_smkquit*studyid; 
 plot d_wlm20*studyid; 
run; 

 
Syntax 

• Delta-beta values are included in the output specified by the influence and iplots 
options. 

• Delta-betas are generated for each parameter in the model, including the intercept. 
• The output statement saves the delta-betas in the SAS data set influence.  Note 

that variable names must be given to the values for the intercept (d_int) as well as 
the terms listed to the right of the equal sign in the model statement. 

• Abbreviated SAS output is given on the following pages. 
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The LOGISTIC Procedure 
 
 
                              Regression Diagnostics 
 
           Intercept                                  AGE 
    Case      DfBeta       (1 unit = 0.02)         DfBeta       (1 unit = 0.02) 
  Number       Value      -8  -4  0 2 4 6 8         Value      -8  -4  0 2 4 6 8 
 
       1     0.00926     |        *        |     -0.00025     |        *        | 
       2    -0.00444     |        *        |      0.00737     |        *        | 
       3      0.0128     |        |*       |     -0.00842     |        *        | 
       4     0.00456     |        *        |     -0.00071     |        *        | 
       5    -0.00802     |        *        |      0.00928     |        *        | 
       6    -0.00670     |        *        |     0.000700     |        *        | 
       7    -0.00451     |        *        |     -0.00147     |        *        | 
       8     -0.0122     |       *|        |       0.0109     |        |*       | 
       9     -0.0495     |      * |        |       0.0639     |        |  *     | 
      10    -0.00564     |        *        |     0.000291     |        *        | 
      11    -0.00541     |        *        |     -0.00105     |        *        | 
      12     0.00318     |        *        |      -0.0104     |       *|        | 
      13    -0.00848     |        *        |       0.0114     |        |*       | 
      14     -0.0150     |       *|        |       0.0193     |        |*       | 
      15     -0.0172     |       *|        |       0.0124     |        |*       | 
      16     0.00297     |        *        |     -0.00815     |        *        | 
      17      0.0151     |        |*       |      -0.0173     |       *|        | 
      18    -0.00303     |        *        |      0.00437     |        *        | 
      19    -0.00614     |        *        |     -0.00007     |        *        | 
      20    -0.00450     |        *        |      0.00397     |        *        | 
      21    -0.00804     |        *        |      0.00774     |        *        | 
      22     -0.0393     |      * |        |       0.0382     |        | *      | 
      23    -0.00294     |        *        |       0.0137     |        |*       | 
      24     0.00154     |        *        |     -0.00692     |        *        | 
      25      0.0789     |        |  *     |      -0.0638     |     *  |        | 
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The LOGISTIC Procedure 
 
 
                             Regression Diagnostics 
 
             SCHOOL                               SMKYRS 
    Case     DfBeta       (1 unit = 0.03)         DfBeta       (1 unit = 0.02) 
  Number      Value      -8  -4  0 2 4 6 8         Value      -8  -4  0 2 4 6 8 
 
       1    -0.0232     |       *|        |       0.0153     |        |*       | 
       2   -0.00718     |        *        |      0.00646     |        *        | 
       3    -0.0229     |       *|        |      0.00748     |        *        | 
       4   -0.00985     |        *        |       0.0190     |        |*       | 
       5   -0.00147     |        *        |       0.0103     |        |*       | 
       6     0.0138     |        *        |       0.0211     |        |*       | 
       7    0.00527     |        *        |       0.0130     |        |*       | 
       8    0.00716     |        *        |       0.0158     |        |*       | 
       9     0.0305     |        |*       |      -0.0304     |      * |        | 
      10    0.00548     |        *        |       0.0131     |        |*       | 
      11    0.00508     |        *        |       0.0127     |        |*       | 
      12    0.00494     |        *        |       0.0128     |        |*       | 
      13   -0.00812     |        *        |       0.0194     |        |*       | 
      14   -0.00850     |        *        |       0.0196     |        |*       | 
      15     0.0119     |        *        |       0.0212     |        |*       | 
      16    0.00565     |        *        |       0.0134     |        |*       | 
      17   -0.00928     |        *        |      0.00898     |        *        | 
      18   -0.00362     |        *        |       0.0146     |        |*       | 
      19    0.00515     |        *        |       0.0128     |        |*       | 
      20   -0.00609     |        *        |       0.0110     |        |*       | 
      21    0.00477     |        *        |      0.00878     |        *        | 
      22     0.0399     |        |*       |      -0.0234     |       *|        | 
      23    -0.0318     |       *|        |      -0.0285     |       *|        | 
      24    0.00557     |        *        |       0.0133     |        |*       | 
      25    -0.0366     |       *|        |      -0.0234     |       *|        | 
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The LOGISTIC Procedure 
 
 
                             Regression Diagnostics 
 
            SMKQUIT                                WLM20 
    Case     DfBeta       (1 unit = 0.04)         DfBeta       (1 unit = 0.03) 
  Number      Value      -8  -4  0 2 4 6 8         Value      -8  -4  0 2 4 6 8 
 
       1   -0.00775     |        *        |     -0.00933     |        *        | 
       2    -0.0170     |        *        |     -0.00162     |        *        | 
       3    0.00612     |        *        |     0.000824     |        *        | 
       4   0.000207     |        *        |     -0.00630     |        *        | 
       5   -0.00501     |        *        |     -0.00354     |        *        | 
       6    -0.0117     |        *        |       0.0100     |        *        | 
       7    0.00488     |        *        |      0.00465     |        *        | 
       8   -0.00825     |        *        |     -0.00507     |        *        | 
       9   0.000377     |        *        |      -0.1429     |    *   |        | 
      10    0.00459     |        *        |     0.000731     |        *        | 
      11    0.00467     |        *        |      0.00919     |        *        | 
      12    0.00674     |        *        |      0.00770     |        *        | 
      13    0.00421     |        *        |     -0.00134     |        *        | 
      14   -0.00148     |        *        |     -0.00056     |        *        | 
      15   -0.00205     |        *        |      0.00709     |        *        | 
      16    0.00660     |        *        |     -0.00796     |        *        | 
      17    -0.0259     |       *|        |       0.0162     |        *        | 
      18   -0.00665     |        *        |     -0.00222     |        *        | 
      19    0.00449     |        *        |      0.00794     |        *        | 
      20    0.00373     |        *        |     0.000089     |        *        | 
      21    -0.0253     |       *|        |     -0.00586     |        *        | 
      22     0.0504     |        |*       |      -0.0104     |        *        | 
      23    -0.0235     |       *|        |      0.00610     |        *        | 
      24    0.00628     |        *        |     -0.00527     |        *        | 
      25     0.1002     |        | *      |      -0.0355     |       *|        | 
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The delta-betas are summarized in the plots of Figure 4. 
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Figure 4.  Delta-Beta plots for the logistic regression model in the Iowa Radon Example 
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18.2.4 Dealing with Outliers 
If a subject appears to be an outlier, there are several steps that should be taken. 

1. Verify that the data were collected and entered correctly for the subject in question. 
2. Examine the covariate values for the subject.  If the covariate pattern falls within the 

population to which the results will be generalized, then the subject is often included 
in the analysis.  On the other hand, if there is no interest in generalizing the results 
to individuals with similar covariate patterns, then the subject is often excluded. 

3. Assess the influence of this subject on the parameter estimates.  If an influential 
outlier is to be retained in the analysis, modifications to the model may be needed. 

18.2.5 Hosmer and Lemeshow Goodness-of-Fit 
Hosmer and Lemeshow proposed a statistic for testing if a given logistic regression 
model provides an adequate fit to the data.  Their null and alternative hypotheses are 
 

0 : model provides an adequate fit
: model does not fit the dataA

H
H

. 

 
The test is commonly referred to as a “goodness-of-fit” or “lack-of-fit” test. 
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It has the following interpretation: 
• If the null hypothesis is rejected, then the model does not fit the data, and a better 

model should be sought. 
• If the null is not rejected, then the test provides no evidence that the model does not 

fit the data. 
 
The test statistic is computed by first grouping the subjects into 10 categories.  Fewer 
categories are used for small sample sizes.  The categories are based on the predicted 
probabilities 
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from the fitted model. 
 
There are two common methods for defining the categories: 

1. Subjects are partitioning into deciles.  The result is an equal number of subjects 
within each category. 

2. Equal width categories based on the values of the predicted probabilities.  For 
instance, cutpoints of ( )0.1,0.2, ,0.9…  would be used to define the 10 categories if 
the predicted probabilities range from 0 to 1. 
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A general summary of the number of subjects within each category is given in the table 
below. 
 

Category Cases Controls Totals 
1 1,1n  1,0n  1n  
2 2,1n  2,0n  2n  
# # # #
10 10,1n  10,0n  10n  

 
The expected number of subjects  within each cell of the table is calculated from the 
sum of the predicted probabilities over the corresponding row, 

,ˆi jn

 

π
= =

=

= −

∑∑
,1

,1 , ,
0 1

,0 ,1

ˆ ˆ

ˆ ˆ

i jn

i i j k
j k

i i i

n

n n n
 

 
where , ,ˆi j kπ  is the predicted probability for the kth subject within the (i, j) cell. 
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The test statistic is given by 
 

( )2
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for which the p-value is 2 2
8Pr HLp Xχ⎡ ⎤= ≥⎣ ⎦ . 

 
In the general case of g categories, the Hosmer and Lemeshow test statistic is 
 

( )2
1

, ,2 2
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i j i j

HL g
i j i j
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−
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SAS Program for Hosmer and Lemeshow Test  
proc logistic data=radon descending; 
 model case = age school smkyrs smkquit wlm20 / lackfit; 
run; 

 
Syntax 

• The lackfit option requests the Hosmer and Lemeshow goodness-of-fit test.  SAS 
groups the subjects into deciles. 

 
The LOGISTIC Procedure 
 
 
             Partition for the Hosmer and Lemeshow Test 
 
                              CASE = 1                CASE = 0 
   Group       Total    Observed    Expected    Observed    Expected 
 
       1         103           6        9.26          97       93.74 
       2         103          15       11.89          88       91.11 
       3         103           8       13.08          95       89.92 
       4         104          13       14.32          91       89.68 
       5         103          18       16.07          85       86.93 
       6         103          45       38.56          58       64.44 
       7         103          64       63.80          39       39.20 
       8         103          77       75.00          26       28.00 
       9         103          84       82.93          19       20.07 
      10          99          83       88.07          16       10.93 
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Hosmer and Lemeshow Goodness-of-Fit Test 
 
Chi-Square       DF     Pr > ChiSq 
 
    9.4888        8         0.3028 

 
At the 5% level of significance, the Hosmer and Lemeshow test does not provide 
evidence of a lack of fit to the data (p = 0.3028). 
 

18.2.6 R2 Statistic 
Several authors have proposed methods for computing an R2 statistic for generalized 
linear regression models.  One method due to Nagelkerke (1991) defines the R2 statistic 
as 
 

( ) ( )( )β⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

2 2 ˆ1 exp ln ln 0R L L
n

 

 

where ( )ˆlnL β  and ( )ln 0L  denote the likelihoods for the regression models with and 
without covariates, respectively.  The R2 given by this definition has the following 
properties: 
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1. It has the same interpretation as the R2 in linear regression.  Specifically, it 
measures the proportion of variation explained by the model, or rather, 1 – R2 is the 
proportion of unexplained variation. 

2. For a given model, it achieves the largest value at the maximum likelihood 
estimates. 

3. It is independent of the sample size n. 
4. It is independent of the units used for the response and predictor variables. 

 

SAS Program for R2 Statistic 
proc logistic data=bios241.irlcs descending; 
 model case = age school smkyrs smkquit wlm20 / rsquare; 
run; 

 
         Model Fit Statistics 
 
                             Intercept 
              Intercept            and 
Criterion          Only     Covariates 
 
AIC            1386.130        954.345 
SC             1391.065        983.951 
-2 Log L       1384.130        942.345 
 
 
R-Square    0.3496    Max-rescaled R-Square    0.4723 
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18.2.7 Predictive Ability 
SAS provides three statistics 

• Somer’s D 
• Goodman-Kruskal Gamma 
• Kendall’s Tau-α 

that measure the correlation between the predicted probabilities and the observed 
dichotomous response variable.  A value of -1 or +1 indicates perfect agreement; zero 
indicates no agreement. 
 
Technical Notes 

• Let n be the total number of subjects in the data set.  There are ( )1 2n n −  distinct 
pairs of subjects that can be formed. 

• Let t denote the number of pairs with different values for the response variable 
(case/control pairs).  

• A given pair is said to be tied if the two predicted probabilities are within 0.002 of 
one-another. 

• A pair is concordant if the subject with the higher predicted probability has the 
higher value for the response variable. 

• A pair is discordant if the subject with the higher predicted probability has the lower 
value for the response variable. 
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• Let cn  denote the number of concordant pairs and  the number of discordant 
pairs. 

dn

• The three correlation statistics are computed as 

( )
( ) ( )

( ) ( )( )

Sumer's D

Gamma

Tau- 1 2

c d

c d c d

c d

n n t

n n n n

n n n nα

= −

= − +

= − −

. 

• Kendall’s Tau-α is the most conservative of the three and closest in spirit to the R2 
statistic in linear regression. 

 

SAS Program for Correlation Statistics 
proc logistic data=radon descending; 
 model case = age school smkyrs smkquit wlm20; 
run; 

 
Syntax 

• The correlation statistics are given in the standard output for the logistic regression 
analysis. 
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Association of Predicted Probabilities and Observed Responses 
 
Percent Concordant      84.9    Somers' D    0.701 
Percent Discordant      14.8    Gamma        0.704 
Percent Tied             0.4    Tau-a        0.337 
Pairs                 253582    c            0.851 

 
Conclusion 

• 84.9% of the 253,582 case/control pairs are concordant. 
• Kendall’s Tau-α statistics is 0.337 indicating a moderate, positive association 

between the predicted probabilities and the response variable. 
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18.3  Points of Emphasis 
1. Use PROC GENMOD to examine model diagnostics and goodness-of-fit statistics. 
2. Computation of Pearson standardized residuals. 
3.  Interpretation of model diagnostics and goodness-of-fit statistics. 
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19.1 Introduction 
There are three main categories of variables to consider for inclusion in a regression 
model: 
 

1. Predictors – variables for which risk estimates are desired. 
2. Confounders – variables that are confounded with the predictors. 
3. Effect Modifiers – variables that interact or modify the effect of the predictors. 

 
Goal:  Select the set of covariates that results in the “best” model within the scientific 
context of the problem. 
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In our approach, we will try to strike a balance between the following two objectives: 
1. Traditional – Seek the most parsimonious model that “explains” the data. 

• Smaller models are more likely to be numerically stable.  The standard errors for 
the parameter estimates tend to increase as additional variables are added to the 
model. 

• The dependence of the model on the data set increases with the number of 
variables.  Consequently, large models are less generalizable. 

• Parsimonious models are easier to interpret. 
2. Biological – Include all scientifically relevant variables in the model. 

• We want to ensure that confounding and interaction are accounted for in the 
model; e.g. covariates may not show confounding individually, but do so when 
analyzed together. 

 
Advise:  Beware of over-fitting, especially when there are a large number of covariates 
relative to the number of cases and controls.  Also, think about the interpretation of the 
variables in the models that you are fitting. 
 

Iowa Radon Example 
Table 1 lists several of the variables collected on the 1027 subjects in the Iowa Radon 
Lung Cancer Study.  Suppose that we would like to select among these variables to 
produce a lung cancer risk model.  
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Table 1.  Iowa Radon Study variables. 

Variable Description Values 
case Lung cancer indicator 1 = case, 0 = control 
age Age at enrollment (control) or 

diagnosis (case) 
continuous 

bmi Body mass index continuous 
children Number of children 0 = none 

1 = one 
2 = two or more 

city Subject lived within city limits 1 = yes, 0 = no 
pyr Cigarette pack-years continuous 
pyrrate Cigarette pack-year rate continuous 
school Attained education level 1 = grade school 

2 = high school 
3 = some college 
4 = college degree 
5 = beyond college 

smkcur Current smoker 1 = yes, 0 = no 
smkever Ever-smoker 1 = yes, 0 = no 
smkex Ex-smoker 1 = yes, 0 = no 
smkquit Years since smoking cessation continuous 
smkyrs Years of cigarette smoking continuous 
wlm20 20-year radon exposure continuous 
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19.2 Variable Selection Routines 
The same variable selection methods used for linear regression are applicable to the 
logistic regression setting.  The three most common automated selection algorithms are: 

1. Forward variable selection 
• Variables are added to the model one-at-a-time, provided that their p-value is 

smaller than some prespecified cutoff. 
• The variable with the smallest univariate p-value is the first to be added. 
• At each step, the remaining variable with the smallest p-value is added to the 

model. 
• This process iterates until all of the p-values for the remaining variables are 

greater than the prespecified cutoff. 
2. Backward variable selection 

• Variables are removed from the model one-at-a-time, provided that their p-value 
is larger than some prespecified cutoff. 

• An initial model is fit with all of the variables. 
• At each step, the variable in the model with the largest p-value is removed. 
• This process iterates until all of the p-values for the variables in the model are 

less than the prespecified cutoff. 
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3. Stepwise variable selection 
• Starts like forward selection. 
• At each subsequent step, variables may either enter or leave the model. 
• p-value cutoffs for variable entry into the model and variable removal from the 

model must be specified. 
• Common choices of p-value cutoffs are 0.20, 0.15, 0.10, and 0.05.  A larger 

value for the cutoff to enter or the cutoff to remove will result in more variables in 
the model.  The same cutoff is typically used for both. 
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SAS Programs for Automated Variable Selection 
proc logistic data=radon descending; 
 class children (param=ref); 
 model case = wlm20 age bmi children city pyr pyrrate school smkcur smkever smkquit smkyrs 
  / include=1 selection=forward slentry=0.15 details; 
 
proc logistic data=radon descending; 
 class children (param=ref); 
 model case = wlm20 age bmi children city pyr pyrrate school smkcur smkever smkquit smkyrs 
  / include=1 selection=backward slstay=0.15 details; 
 
proc logistic data=radon descending; 
 class children (param=ref); 
 model case = wlm20 age bmi children city pyr pyrrate school smkcur smkever smkquit smkyrs 
  / include=1 selection=stepwise slentry=0.15 slstay=0.15 details; 

 
Syntax 

• The three PROC LOGISTIC commands perform forward, backward, and stepwise 
variable selection, respectively. 

• Variables listed in the class statement will be treated as nominal categorical 
variables in the analysis. 

• The type of variable selection is specified with the selection option. 
• slentry defines the p-value cutoff for variables to enter the model; slstay defines 

the cutoff for variables to stay in the model. 
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• The include=n option forces the first n predictors in the model statement to be 
included in every model.  By default, no variables are forced to be included. 

• The parameter estimates at each step of the selection routine will be printed if the 
details option is specified; otherwise, only the estimates for the final model are 
given in the output. 

 

Forward Variable Selection Output 
 
                    Summary of Forward Selection 
 
            Effect                Number         Score 
    Step    Entered       DF          In    Chi-Square    Pr > ChiSq 
 
       1    SMKYRS         1           2      377.3595        <.0001 
       2    PYRRATE        1           3       15.6466        <.0001 
       3    AGE            1           4        3.7119        0.0540 
       4    PYR            1           5        7.7404        0.0054 
 
              Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -5.3689      1.0063       28.4679        <.0001 
WLM20           1      0.0146     0.00999        2.1268        0.1447 
AGE             1      0.0454      0.0142       10.1923        0.0014 
PYR             1     -0.0813      0.0294        7.6579        0.0057 
PYRRATE         1      6.3593      1.7867       12.6678        0.0004 
SMKYRS          1      0.0538     0.00726       54.8003        <.0001 

 462



Backward Variable Selection Output 
 
                   Summary of Backward Elimination 
 
            Effect                Number          Wald 
    Step    Removed       DF          In    Chi-Square    Pr > ChiSq 
 
       1    BMI            1          11        0.0028        0.9579 
       2    SMKCUR         1          10        0.0514        0.8207 
       3    CITY           1           9        0.2104        0.6465 
       4    SCHOOL         1           8        1.4896        0.2223 
       5    SMKEVER        1           7        1.5323        0.2158 
 
 
              Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -5.1721      1.0077       26.3450        <.0001 
WLM20           1      0.0136     0.00996        1.8619        0.1724 
AGE             1      0.0427      0.0143        8.9301        0.0028 
CHILDREN  0     1      0.4847      0.3257        2.2143        0.1367 
CHILDREN  1     1      0.4803      0.2877        2.7866        0.0951 
PYR             1     -0.0788      0.0296        7.0911        0.0077 
PYRRATE         1      6.1381      1.7992       11.6384        0.0006 
SMKQUIT         1     -0.0149     0.00885        2.8264        0.0927 
SMKYRS          1      0.0545     0.00732       55.4199        <.0001 
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Note 
• An advantage of the backward selection method is that you can examine the 

estimated effect for the predictor of interest WLM20 at each step of the routine (not 
shown).  A substantial change in the parameter estimate during the backward 
elimination would suggest that the removed variable is an important confounder. 

 

Stepwise Variable Selection Output 
 
                          Summary of Stepwise Selection 
 
                Effect                Number       Score        Wald 
    Step  Entered   Removed     DF        In  Chi-Square  Chi-Square  Pr > ChiSq 
 
       1  SMKYRS                 1         2    377.3595       .          <.0001 
       2  PYRRATE                1         3     15.6466       .          <.0001 
       3  AGE                    1         4      3.7119       .          0.0540 
       4  PYR                    1         5      7.7404       .          0.0054 
 
 
              Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -5.3689      1.0063       28.4679        <.0001 
WLM20           1      0.0146     0.00999        2.1268        0.1447 
AGE             1      0.0454      0.0142       10.1923        0.0014 
PYR             1     -0.0813      0.0294        7.6579        0.0057 
PYRRATE         1      6.3593      1.7867       12.6678        0.0004 
SMKYRS          1      0.0538     0.00726       54.8003        <.0001 
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Notes 
• In this example, the stepwise routine gives the same results as forward selection.  

This will not always be the case.  It happens here because all of the variables that 
entered the model stayed in for the duration of the selection process.  In general, 
entered variables may be removed at later steps. 

• These routines automate the task of selecting variables for inclusion in the model. 
• However, they can lead to biologically implausible models that include irrelevant 

variables. 
• For example, the variable selection routines in the Iowa Radon Example produced 

final models that include effects for PYR that are negative.  Hence, the models 
imply that an increase in cigarette pack-years is associated with a decrease in lung 
cancer risk; a nonsensical assertion. 

• The analyst, not the computer, is responsible for the final model. 
• Automated variable selection routines are tools to aid in model building.  However, 

you should not expect that these routines will produce scientifically valid models.  
Care should be taken when developing a final model.  Discussions with the 
investigator about the research problem and the modeling process are important. 

• Furthermore, automated selection routines may not address the issues of 
confounding and interaction. 
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19.3 Model Building 
We will follow the following steps in our construction of the regression model: 

Step 1.  Descriptive summaries of the data. 
Step 2.  Univariate analyses. 
Step 3.  Variable selection. 
Step 4.  Consideration of interaction. 
Step 5.  Model Diagnostics 

If problems with the model fit are identified in Step 5, then start back at Step 3 and iterate 
through until the model diagnostics are satisfactory. 
 

19.3.1 Descriptive Statistics 
Summary statistics are provided in Table 2 and Table 3 for the categorical and 
continuous variables in the Iowa Radon Example. 
 

Table 2.  Summary of the categorical variables in the Iowa Radon Example. 
Variable Levels N Percents 
case 1 = yes 

0 = no 
413 
614 

40.2% 
59.8% 
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Variable Levels N Percents 
children 0 = none 

1 = one 
2 = two or more 

83 
94 

850 

8.1% 
9.2% 

82.7% 
city 1 = yes 

1 = no 
780 
247 

76.0% 
24.0% 

school 1 = grade school 
2 = high school 
3 = some college 
4 = college degree 
5 = beyond college 

89 
535 
288 
82 
33 

8.7% 
52.1% 
28.0% 
8.0% 
3.2% 

smkcur 1 = yes 
0 = no 

702 
325 

68.3% 
31.7% 

smkever 1 = yes 
0 = no 

470 
557 

45.8% 
54.2% 

smkex 1 = yes 
0 = no 

232 
795 

22.6% 
77.4% 

 
Table 3.  Summary of the continuous variables in the Iowa Radon Example. 

Variable Mean Std. Dev. Min Max 
age 67.61 8.67 44.16 84.80 
bmi 24.39 4.01 15.45 41.60 
pyr 19.83 25.66 0 138.45 
pyrrate 0.324 0.421 0 2.56 
smkquit 4.60 9.98 0 57.35 
smkyrs 20.70 21.59 0 67.00 
wlm20 10.64 8.89 1.42 91.54 
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19.3.2 Univariate Analysis 
The goal in model building is to identify a set of variables that offers a satisfactory 
explanation of the disease occurrence in the study population. 

• Our final model should be scientifically valid; that is, there should be a biologically 
plausible explanation for the effect of our chosen variables on the disease.   

• We begin with a pool of variables that will be considered for inclusion in the final 
model.  Any of the variables in this pool could end up in the model. 

• Therefore, it is at the beginning, before any statistical tests are performed, that we 
should narrow our pool to only those variables for which an association with the 
disease makes sense. 

• Another way to frame this problem is to ask, “How will the effect of variable x be 
explained if it ends up in the model?” 

 
Once a pool of scientifically relevant variables has been identified, it is often helpful to 
further narrow the pool by examining the effect of each variable individually in a 
univariate logistic regression model. 
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Table 4.  Estimated effect for each variable based on separate univariate logistic 
regression models. 

Variable Estimate SE OR 95% CI p-value 
age 0.00586 0.00735 1.006 (0.991,1.020) 0.4257 
bmi -0.0499 0.0169 0.951 (0.920, 0.983) 0.0032 
children† * * * * 0.0002 
children‡ -0.3213 0.1061 0.725 (0.589, 0.893) 0.0025 
city 0.6106 0.1570 1.842 (1.354, 2.505) 0.0001 
pyr 0.0640 0.00412 1.066 (1.058, 1.075) <0.0001 
pyrrate 3.8535 0.2488 47.16 (28.96, 76.79) <0.0001 
school† * * * * 0.0029 
school‡ -0.2988 0.0761 0.742 (0.639, 0.861) <0.0001 
smkcur 2.4768 0.1610 11.90 (8.68, 16.32) <0.0001 
smkever 2.5799 0.1676 13.20 (9.50, 18.33 <0.0001 
smkex 0.2452 0.1507 1.278 (0.951, 1.717) 0.1038 
smkquit -0.0114 0.0067 0.989 (0.976, 1.002) 0.0881 
smkyrs 0.0716 0.0041 1.074 (1.066, 1.083) <0.0001 
wlm20 0.0085 0.0071 1.009 (0.995, 1.023) 0.2295 
† Nominal categorical variable used in the model. 
‡ Integer scores used for the variable in the model. 
* Separate estimates are available for each level of the categorical variables (not shown).
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At this stage, the issue of how to include categorical variables in the regression 
analyses is often addressed. 
• Recall that children and school are ordinal variables in the data set. 
• We could include these as categorical (using indicator variables) or continuous 

(using a single variable with integer scores for the categories) variables in the 
analyses. 

• To decide, we can compare the univariate models with both types of variables to 
determine if there is a significant difference in their fit to the data. 
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SAS Univariate Analysis of CHILDREN 
proc logistic data=radon descending; 
 class children (param=ref); 
 model case = children; 
 
proc logistic data=radon descending; 
 model case = children; 
run; 

 

children −2lnL  p 
Likelihood Ratio Test 

2
LRX  df p-value

Categorical 1367.25 3 - - - 
Continuous 1374.95 2 7.7 1 0.0055

 
There is a significant difference between the categorical and continuous effects for 
children (p = 0.0055).  Therefore, it would be desirable to use the categorical effect. 
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SAS Univariate Analysis of SCHOOL 
proc logistic data=radon descending; 
 class school (param=ref); 
 model case = school; 
 
proc logistic data=radon descending; 
 model case = school; 
run; 

 

school −2lnL  p 
Likelihood Ratio Test 

2
LRX  df p-value

Categorical 1367.12 5 - - - 
Continuous 1368.03 2 0.91 3 0.8230

 
There is not a significant difference between the categorical and continuous effects for 
school (p = 0.8230).  Therefore, it would be desirable to use the continuous effect. 
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Notes 
• Univariate analysis is a screening method used to reduce the number of variables 

to be considered for the final model. 
• At this stage, we would be conservative in excluding variables; perhaps removing 

variables whose univariate p-value is greater than 0.20 or 0.25.  Based on this 
criterion, we would exclude age (p = 0.4257) from the analysis.  wlm20 (p = 
0.2295) would also be excluded if it was not the predictor of interest. 

• It is common practice to use the univariate models to determine the best form of the 
categorical variables (e.g. nominal versus integer scores) to include in the analyses.  
You may want to look at non-linear effects for the continuous variables as well. 
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19.4 Variable Selection 
There is no one right way to do variable selection, nor is there one method that is best in 
all situations.  A custom modeling strategy is often developed based on the biologic 
understanding of the disease, the interests of the investigators, and the specific aims of 
the study. 
 
Suppose that the following information is available to help guide the model development 
for the Iowa Radon Example: 

• The primary aim of the study is to determine if radon exposure has a significant 
effect on lung cancer risk, after controlling for other important covariates. 

• A secondary aim is to determine if radon exposure interacts with smoking in its 
effect on lung cancer risk. 

• Smoking is the leading risk factor for lung cancer.  It is important to adequately 
control for smoking in the regression analysis. 

• Socio-economic status is a potential confounder and should be considered for 
inclusion in the model. 

• Cases and controls were frequency match within 5-year age strata.  It may or may 
not be necessary to control for age in the analysis. 
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Consequently, our strategy will be to 
1. Include wlm20 in all multivariate models. 
2. Determine the “best” set of smoking variables to add to the model. 
3. Add any of the remaining variables that are significant, given that radon and 

smoking are in the model. 
 

19.4.1 Smoking 
In section 17.2, we saw that the automated variable selection routines led to 
unsatisfactory models for smoking.  Thus, we need to take a more deliberate approach 
with the smoking variables. 
 
The smoking variables can be classified as either a measure of duration, intensity, or 
cessation.  

Duration Intensity Cessation 
pyr 

smkyrs 
pyrrate 

 
smkquit 
smkex 
smkcur smkever  

Experience with these variables and with logistic models for smoking suggests that no 
more than one variable in each of the three categories be included in the same model. 
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Thus, we might compare models with different combinations of the smoking duration, 
intensity, and cessation variables to find the “best” fit. 
 

Model wlm20 AIC Est SE 
wlm20 0.00852 0.00709 1386.69 
wlm20+smkever+smkcur 0.0139 0.00928 1011.92 
wlm20+pyr+smkex 0.0148 0.00858 999.82 
wlm20+pyr+smkquit 0.0148 0.00857 999.85 
wlm20+pyr+pyrrate+smkex 0.0151 0.00862 1001.61 
wlm20+pyr+pyrrate+smkquit 0.0151 0.00860 1000.68 
wlm20+smkyrs+smkex 0.00894 0.00969 955.62 
wlm20+smkyrs+smkquit 0.00935 0.00963 954.38 
wlm20+smkyrs+pyrrate+smkex 0.0115 0.00960 942.09 
wlm20+smkyrs+pyrrate+smkquit 0.0118 0.00956 941.78 

 
Among the smoking models listed in the previous table, the last one with smkyrs, 
pyrrate, and smkquit provides the best fit based on the AIC statistic. 
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The abbreviated model results from SAS are given below. 
 
             Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept     1     -2.0927      0.1728      146.6536        <.0001 
WLM20         1      0.0118     0.00956        1.5170        0.2181 
SMKYRS        1      0.0523     0.00651       64.6556        <.0001 
PYRRATE       1      1.2857      0.3563       13.0224        0.0003 
SMKQUIT       1     -0.0155     0.00861        3.2272        0.0724 
 
 
           Odds Ratio Estimates 
 
              Point          95% Wald 
Effect     Estimate      Confidence Limits 
 
WLM20         1.012       0.993       1.031 
SMKYRS        1.054       1.040       1.067 
PYRRATE       3.617       1.799       7.272 
SMKQUIT       0.985       0.968       1.001 
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Hosmer and Lemeshow Goodness-of-Fit Test 
 
Chi-Square       DF     Pr > ChiSq 
 
    7.1249        8         0.5232 

 
At the 5% level of significance, the Hosmer and Lemeshow test does not indicate a lack 
of fit to the data (p = 0.5232).  The parameter estimates make biologic sense – positive 
associations for smoking duration and intensity; negative for cessation.  Therefore, we 
will include these smoking variables in our subsequent models. 
 

19.4.2 Socio-Economic Status 
The remaining socio-economic variables are bmi, children, city, and school.  If there is 
no preference as to which ones should be included, then it is perfectly acceptable to use 
one of the variable selection routines. 
 

SAS Stepwise Selection of Socio-Economic Factors 
proc logistic data=radon descending; 
 class children (param=ref); 
 model case = wlm20 smkyrs pyrrate smkquit bmi children city school 
  / include=4 selection=stepwise slentry=0.10 slstay=0.10; 
run; 
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Note 
• In the univariate analysis, it was decided to treat children as a categorical variable 

and school as a continuous variable.  Hence, children appears in the class 
statement, but school does not. 

• The p-value cutoff is set somewhat high at 0.10; thus, the included variables may 
not be significant at the 5% level.   This is often done to catch any important 
confounders that might be marginally non-significant in the model. 

• As the output shows, only the children variable is selected.  The resulting change 
in the radon estimate, 0.0118 to 0.0144, is not appreciable. 

 
                          Summary of Stepwise Selection 
 
                Effect                Number       Score        Wald 
    Step  Entered   Removed     DF        In  Chi-Square  Chi-Square  Pr > ChiSq 
 
       1  CHILDREN               2         5      5.8381       .          0.0540 
 
     
          Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -2.2323      0.1826      149.3933        <.0001 
WLM20           1      0.0144     0.00973        2.1874        0.1391 
SMKYRS          1      0.0515     0.00677       57.7907        <.0001 
PYRRATE         1      1.3705      0.3714       13.6201        0.0002 
SMKQUIT         1     -0.0151     0.00874        2.9687        0.0849 
CHILDREN  0     1      0.6116      0.3266        3.5063        0.0611 
CHILDREN  1     1      0.4911      0.2877        2.9133        0.0879 
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19.4.3 Age 
Recall that in the univariate analysis, age was found to be non-significant (p = 0.4257).  
This is not unusual since cases and controls were frequency match within 5-year age 
strata.  Frequency matching is not as effective as exact matching, so we may want to 
add age to the model to check its significance. 
 
              Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -3.3791      0.7133       22.4399        <.0001 
WLM20           1     0.00959     0.00960        0.9987        0.3176 
SMKYRS          1      0.0490     0.00677       52.4123        <.0001 
PYRRATE         1      1.5315      0.3853       15.7980        <.0001 
SMKQUIT         1     -0.0205     0.00886        5.3290        0.0210 
CHILDREN  0     1      0.5454      0.3182        2.9374        0.0865 
CHILDREN  1     1      0.5491      0.2866        3.6720        0.0553 
AGE             1      0.0184      0.0104        3.1298        0.0769 

 
Age is marginally non-significant, which suggests that the frequency matching did not 
remove the effects of age.  At this point we may want to re-apply the stepwise selection 
routine to the socio-economic factors and age. 
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SAS Stepwise Selection with the Addition of AGE 
proc logistic data=radon descending; 
 class children (param=ref); 
 model case = wlm20 smkyrs pyrrate smkquit age bmi children city school 
  / include=4 selection=stepwise slentry=0.10 slstay=0.10; 
run; 

 
                          Summary of Stepwise Selection 
 
                Effect                Number       Score        Wald 
    Step  Entered   Removed     DF        In  Chi-Square  Chi-Square  Pr > ChiSq 
 
       1  AGE                    1         5      4.5153       .          0.0336 
 
 
              Analysis of Maximum Likelihood Estimates 
 
                                 Standard          Wald 
Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept       1     -3.6541      0.7299       25.0607        <.0001 
WLM20           1      0.0138     0.00979        1.9910        0.1582 
SMKYRS          1      0.0486     0.00695       48.8403        <.0001 
PYRRATE         1      1.6094      0.3984       16.3161        <.0001 
SMKQUIT         1     -0.0146     0.00889        2.6799        0.1016 
AGE             1      0.0225      0.0106        4.4891        0.0341 

 
This time age is added to the model and children is not. 
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We have considered all of the variables of interest and will use as our tentative main 
effects model 
 

0 1 2 3 4 5ln 20
1

wlm smkyrs pyrrate smkquit ageπ β β β β β β
π

⎡ ⎤ = + + + + +⎢ ⎥−⎣ ⎦
. 

 

19.5 Interaction 
Ideally, you would work with the investigators to come up with a list of interactions that 
make biologic sense.  These would then be added to the model for significance testing. 
 
A secondary aim of the Radon Study was to determine if radon interacts with smoking in 
its effect on lung cancer risk.  To address this aim, we would add radon-smoking 
interaction terms. 
 

SAS Program for Radon-Smoking Interaction 
proc logistic data=radon descending; 
 model case = wlm20 smkyrs pyrrate smkquit age wlm20*smkyrs wlm20*pyrrate wlm20*smkquit; 
run; 
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               Analysis of Maximum Likelihood Estimates 
 
                                   Standard          Wald 
Parameter        DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept         1     -3.5454      0.7244       23.9531        <.0001 
WLM20             1    0.000834      0.0153        0.0030        0.9566 
SMKYRS            1      0.0408      0.0119       11.7968        0.0006 
PYRRATE           1      1.5048      0.6759        4.9572        0.0260 
SMKQUIT           1     0.00510      0.0157        0.1053        0.7456 
AGE               1      0.0233      0.0103        5.1498        0.0232 
WLM20*SMKYRS      1    0.000779    0.000939        0.6892        0.4064 
WLM20*PYRRATE     1     0.00888      0.0554        0.0257        0.8727 
WLM20*SMKQUIT     1    -0.00238     0.00140        2.9109        0.0880 

 
The likelihood ratio test for the three interaction terms in the model is summarized in the 
following table. 
 

Model −2lnL  p 
Likelihood Ratio Test 

2
LRX  df p-value

Interaction 921.93 9 - - - 
No Interaction 927.07 6 5.14 3 0.1618

 
At the 5% level of significance, radon does not interact with smoking in its effect on lung 
cancer risk (p = 0.1618). 
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19.6 Final Radon Model 
Based on the previous results, the proposed lung cancer risk model for our Radon 
Example would be 
 

0 1 2 3 4 5ln 20
1

wlm smkyrs pyrrate smkquit ageπ β β β β β β
π

⎡ ⎤ = + + + + +⎢ ⎥−⎣ ⎦
. 

 
There are other valid model building approaches that could lead to different final models.  
Note that we are not done.  The next step is to perform model diagnostics in order to 
answer the questions: 

• Are there outliers in the data set that need to be excluded from the analysis 
(Pearson and Deviance Residual and Delta-Beta Plots)? 

• Does the model fit the data (Hosmer and Lemeshow Goodness-of-fit Test)? 
• Is there a reasonable degree of agreement between the predicted probabilities and 

the disease response variable (Kendall’s Tau-α)? 
If subjects are excluded or problems are identified with the fit of the model at the 
diagnostic stage, then the model building process will need to be repeated. 
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19.7 Points of Emphasis 
1. Model building aims to strike a balance between including scientifically plausible 

variables and statistically significant variables.  We seek the most parsimonious 
model that adequately describes the risk of disease in the study population. 

2. Five general steps for developing a final regression model were outlined. 
3. A variable selection strategy should be developed based on the biology of the 

disease, information provided by the investigator, and the specific study aims to be 
answered. 

4. Understand when to force variables in the model, when to compare subsets of 
models, and when to use variable selection routines. 

5. Be able to apply variable selection routines (forward, backward, and stepwise 
selection) in SAS.  Know their advantages/disadvantages. 
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20.1 Introduction 
In a case-control study where subjects are matched on a covariate(s), the matching 
should be accounted for in the logistic regression analysis.  This is particularly important 
in the analysis of 1:n or m:n matched studies. 
 

Endometrial Cancer Example 
Consider the study of estrogen usage on the risk of endometrial cancer reported by 
Mack et al. (1976).  Each of 63 incident endometrial cancer cases was matched to four 
controls that were born within one year, had the same marital status, and were still at risk 
for the disease.  The following variables were collected: 
 

Variable Description Levels 
case Endometrial cancer indicator 0 = Control, 1 = Case 
set Matched set index 1,2,…,63 
age Age in years 55-83 
gall Gallbladder disease 0 = No, 1 = Yes 
hyp Hypertension 0 = No, 1 = Yes 
ob Obesity 0 = No, 1 = Yes 
est Estrogen usage 0 = No, 1 = Yes 
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Variable Description Levels 
dose Dose of estrogen 0 = 0 

1 = 0.3 
2 = 0.301-0.624 
3 = 0.625 
4 = 0.626-1.249 
5 = 1.25 
6 = 1.26-2.50 

dur Duration of estrogen usage 0-96 (96 = 96+) 
non Non-estrogen drug usage 0 = No, 1 = Yes 

 

20.2 Mantel-Haenszel Method for Matching 
Previously we used Mantel-Haenszel methods to analyze matched data.  Suppose that 
the disease odds ratio for estrogen usage is of interest in the Endometrial Cancer 
Example.  If no other covariates need be controlled for in the analysis, then the Mantel-
Haenszel method may be used. 
 

SAS Mantel-Haenszel Analysis 
proc freq data=endometrial; 
 tables set*est*case / cmh; 
run; 
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            Estimates of the Common Relative Risk (Row1/Row2) 
 
Type of Study     Method                  Value     95% Confidence Limits 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Case-Control      Mantel-Haenszel        8.4615       3.4115      20.9870 
  (Odds Ratio)    Logit **               2.6382       1.6149       4.3099 
 
Cohort            Mantel-Haenszel        1.5052       1.2992       1.7439 
  (Col1 Risk)     Logit **               1.3057       1.1790       1.4460 
 
Cohort            Mantel-Haenszel        0.1182       0.0480       0.2909 
  (Col2 Risk)     Logit **               0.5035       0.3487       0.7268 
 
 
     Breslow-Day Test for 
Homogeneity of the Odds Ratios 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Chi-Square             61.9425 
DF                          57 
Pr > ChiSq              0.3042 
 
 
Total Sample Size = 315 

 
The Mantel-Haenszel odds ratio, which controls for matching, is 8.46 with a 95% 
confidence interval of (3.41, 20.99).  The odds of endometrial cancer for women using 
estrogen is an estimated 8.46 times that for women not using estrogen. 
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20.3 Conditional Logistic Regression 
A method analogous to that of Mantel-Haenszel is available for estimating the effect of 
covariates in logistic regression.  To control for matching in the logistic regression 
setting, the model parameters are estimated by comparing the covariate values between 
the matched cases and controls.  In other words, the comparison of subjects is made 
conditional on the matching set.  This approach to estimating the model parameters is 
referred to as conditional logistic regression. 

20.3.1 Univariate Model 
Conditional logistic regression provides a means of controlling for matching that is 
analogous to the Mantel-Haenszel method.  We could similarly use conditional logistic 
regression to estimate the effect of estrogen usage on the risk of endometrial cancer. 

SAS Conditional Logistic Regression 
proc logistic descending data=endometrial; 
 strata set; 
 model case = est; 
run; 
 

Syntax 
• PROC GENMOD will not perform conditional logistic regression, so LOGISTIC must 

be used instead. 
• The matching variable (set) must be given in the strata statement. 
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The LOGISTIC Procedure 
 
Conditional Analysis 
 
        Testing Global Null Hypothesis: BETA=0 
 
Test                 Chi-Square       DF     Pr > ChiSq 
 
Likelihood Ratio        35.3460        1         <.0001 
Score                   31.1556        1         <.0001 
Wald                    24.2837        1         <.0001 
 
 
             Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
EST           1      2.0738      0.4208       24.2837        <.0001 
 
 
           Odds Ratio Estimates 
 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
 
EST          7.955       3.487      18.148 
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Summary of Results 
 

Variable Estimate SE Chi-Square df p-value 
est 2.0738 0.4208 24.28 1 <0.0001

 
Note 

• The parameter estimates are interpreted as in any other logistic regression 
analysis. 

• PROC LOGISTIC does not provide an estimate for the intercept. 
• The regression model is 
 

0 1ln
1

m
m

m

estπ β β
π

⎡ ⎤
= +⎢ ⎥−⎣ ⎦

 

 
where m indexes the matching sets. 

• The estimated odds ratio for estrogen use is 
 

( )
( ) { } { }1

ˆ 1 ˆexp exp 2.0738 7.95
ˆ 0
g est

OR
g est

β
=

= = = =  
=
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• The associated 95% Wald confidence interval is 

( ){ }
( ){ }

( )

1 1
ˆ ˆexp 1.96se

exp 2.0738 1.96 0.4208

3.49,18.15

β β±

± . 

Note that these estimates are given in the SAS output. 
 

Comparison to Unconditional Logistic Regression 
Unconditional logistic regression refers to analyses for which there is no consideration of 
matching when estimating the model parameters.  For instance, we could use standard 
logistic regression routines to fit an unconditional model in our Endometrial Cancer 
Example. 
 

SAS Unconditional Logistic Regression 
proc logistic descending data=endometrial; 
 model case = est; 
run; 
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The LOGISTIC Procedure 
 
             Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
Intercept     1     -2.8824      0.3884       55.0738        <.0001 
EST           1      2.0636      0.4202       24.1143        <.0001 
 
 
           Odds Ratio Estimates 
 
             Point          95% Wald 
Effect    Estimate      Confidence Limits 
 
EST          7.874       3.455      17.942 

 
Note 

• In this case, the unconditional risk estimate (2.0636) is similar to that from the 
conditional logistic regression model (2.0738). 

• The results will differ if the matching variables are confounders.  It is not usually 
possible to check this condition in practice, and so conditional logistic regression is 
recommended if subjects are matched according to the study design. 
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20.3.2 Multivariate Model 
The following code shows how to fit a conditional logistic regression model with variables 
for estrogen usage, gallbladder disease, and their interaction. 
 

SAS Analysis 
proc logistic descending data=endometrial; 
 strata set; 
 model case = est gall est*gall; 
run; 

 
             Analysis of Maximum Likelihood Estimates 
 
                               Standard          Wald 
Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
EST           1      2.7001      0.6118       19.4804        <.0001 
GALL          1      2.8943      0.8831       10.7430        0.0010 
EST*GALL      1     -2.0527      0.9950        4.2564        0.0391 
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Results 
• The interaction term est*gall is significant (p = 0.0391).  Thus, estrogen usage and 

gallbladder disease interact in their effect on endometrial cancer. 
• The logistic regression model is 

0 1 2 3ln
1

m
m

m

est gall est gallπ β β β β
π

⎛ ⎞
= + + + ×⎜ ⎟−⎝ ⎠

 

where m indexes the matching set. 
• Interaction implies that the cancer risk associated with estrogen usage differs 

between subjects with and without gallbladder disease. 
• Among subjects who have not had gallbladder disease, the odds ratio for estrogen 

usage is 

( )
( ) ( ){ } { } { }β β

= =
= = − = = =

= = 1 1

ˆ 1, 0 ˆ ˆexp 1 0 exp exp 2.70014 14.88
ˆ 0, 0
g est gall

OR
g est gall

 

with a 95% confidence interval of 

( ){ }
( ){ }

( )

1 1
ˆ ˆexp 1.96se

exp 2.70014 1.96 0.61177

4.49,49.36

β β±

± . 

 495



• Among subjects who have had gallbladder disease, the odds ratio for estrogen 
usage is 

 

( )
( ) ( ) ( ) ( ){ }

{ } { } { }

β β β

β β

= =
= = − + − + −

= =

= + = − =

=

1 2 3

1 3

ˆ 1, 1 ˆ ˆ ˆexp 1 0 1 1 1 0
ˆ 0, 1

ˆ ˆexp exp 2.70014 2.05275 exp 0.64739

1.91

g est gall
OR

g est gall

 

 
with a 95% confidence interval of 
 

( ) ( ){ }1 3 1 3
ˆ ˆ ˆ ˆexp 1.96seβ β β β+ ± + . 

 
The standard error must be obtained from SAS in order to compute this confidence 
interval. 
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SAS Standard Error Estimates 
proc logistic descending data=endometrial; 
 strata set; 
 model case = est gall est*gall; 
 contrast 'est1' est 1 est*gall 1 / estimate=parm; 
run; 

 
Syntax 

• The contrast statement in PROC LOGISTIC may be used to obtain standard error 
estimates for any linear combination of the model parameters. 

• The statement begins with a label to appear in the SAS output, followed by the 
parameters and the corresponding coefficients involved in the linear combination. 

• estimate will display the estimate for the linear combination along with its standard 
error. 
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The LOGISTIC Procedure 
 
                          Contrast Rows Estimation and Testing Results 
 
                                    Standard                                    Wald 
Contrast  Type       Row  Estimate     Error   Alpha   Confidence Limits  Chi-Square  Pr > ChiSq 
 
est1      PARM         1    0.6474    0.7942    0.05   -0.9093    2.2041      0.6644      0.4150 

 
• The estimate for our linear combination is 

1 3
ˆ ˆ 0.6474β β+ =  

• The standard error is 

( )1 3
ˆ ˆse 0.7942β β+ =  

• Thus, the 95% confidence interval is 

( ) ( ){ }
( ){ }

( )

1 3 1 3
ˆ ˆ ˆ ˆexp 1.96se

exp 0.6474 1.96 0.7942

0.40,9.06

β β β β+ ± +

± . 

At the 5% level of significance, the odds ratio is not different from one (p = 0.4150).  
Estrogen usage is not a significant risk factor among individuals who have had 
gallbladder disease. 
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20.4 Points of Emphasis 
1. Difference between unconditional and conditional logistic regression. 
2. Conditional logistic regression in SAS.  Estimation of odds ratios and confidence 

intervals. 
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21.1 Introduction 
Thus far, we have mainly discussed statistical methods for outcome measures that are 
assumed to be independent.  Specifically, each observed response is unrelated to the 
other responses in the data set.  There are, however, many study designs that give rise 
to correlated or clustered data; i.e. data that can be grouped into clusters such that the 
observed responses within clusters are more alike than the responses between clusters.  
The following are examples of clustered data: 

• A study of water-borne diseases in several African villages.  We would expect a 
positive correlation among the disease statuses of subjects using the same well. 

• A study of high cholesterol in a community.  We would expect correlation among 
the cholesterol levels of subjects from the same family. 

• A study of the flu in eighth grade classrooms across Iowa.  We would expect 
correlation among the students from the same classroom. 

• Outcome variables measured on twins or husbands and wives are typically treated 
as correlated data.  In general, studies involving matching give rise to correlated 
data. 

Longitudinal data is a common type of clustered data in which subjects are repeatedly 
measured at different points in time.  For example, 

• A cohort of ninth graders was identified and followed through high school.  Subjects 
were interviewed yearly to monitor marijuana usage and to collect data on potential 
risk factors.  We would expect correlation in the reported usage at grades 9, 10, 11, 
and 12 for a given subject. 
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Residential Fires Example 
Consider the longitudinal study, reported by Keane et al. (1996), of post-traumatic stress 
disorder among survivors of residential fires in the Philadelphia area.  Each of 316 
subjects was interviewed at month 3, 6, and 12 after surviving a residential fire.  The 
following variables were collected: 
 

Table 1.  Description of variables in the Residential Fire Example. 
Variable Description Levels 
ptsd Indicator for post-traumatic stress disorder 0 = No, 1 = Yes 
subjid Subject study identifier  
time Index for the interview time 1 = 3 months 

2 = 6 months 
3 = 12 months 

control Perceived control over several areas of life 1.83-4.00 
problems Problems reported in several areas of life 1.00-9.75 
sevent Stressful events reported since last interview 0-5 
cohes Family cohesion 0-9 

 
The data for the first few subjects are displayed in the following table.  Note that 

• Data were collected at three time points (time: 1 = 3 months, 2 = 6 months, 3 = 12 
months). 

• The variables ptsd, control, problems, and sevent were measured at each of the 
time points and, thus, may vary over time. 
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• The variable cohes was only measured at study enrollment (baseline) and does not 
change over time. 

• We are interested in modeling the risk of post-traumatic stress disorder as a 
function of time, ptsd, control, problems, sevent, and cohes. 

 
Table 2.  Excerpt from the data set in the Residential Fire Example.  

subjid ptsd control problems sevent cohes time 
15 0 3.222 5.625 1 8 1 
15 0 3.167 5.375 0 8 2 
15 0 3.278 3.75 1 8 3 
18 1 2.556 9.25 0 8 1 
18 0 3.444 4.375 0 8 2 
18 0 3.333 2.375 0 8 3 
19 1 2.722 7.75 1 7 1 
19 1 2.778 7.75 1 7 2 
19 0 2.778 7.5 1 7 3 

  
571 0 3.556 3 0 7 1 
571 0 2.944 1.875 0 7 2 
571 0 3.500 2.75 0 7 3 
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21.1.1 Standard Logistic Regression 
Suppose that we were to ignore the longitudinal nature of the data and use standard 
logistic regression to model the risk of post-traumatic stress disorder. 
 
data ptsdmod; 
 set bios241.ptsd; 
 time1 = (time = 1); 
 time2 = (time = 2); 
 time3 = (time = 3); 
 
  

proc genmod data=ptsdmod descending; 
 model ptsd = time1 time2 control problems sevent cohes / 
                dist=binomial; 
 
proc genmod data=ptsdmod descending; 
 class time; 
 model ptsd = time control problems sevent cohes / 
                dist=binomial;

 
Syntax 

• The two calls to GENMOD yield the same results.  They are given here to illustrate 
the use of the class statement. 

• GENMOD will automatically create indicator variables for the variables given in the 
class statement.  The indicator variable for the last category is excluded from the 
model.  Thus, the time = 3 category will be excluded in this example. 

• The class statement in PROC LOGISTIC works differently and will result in a 
different set of parameter estimates. 

 



The GENMOD Procedure 
 
 
       Response Profile 
 
 Ordered                Total 
   Value    ptsd    Frequency 
 
       1    1             294 
       2    0             654 
 
 
                           Analysis Of Parameter Estimates 
 
                                Standard   Wald 95% Confidence      Chi- 
Parameter       DF   Estimate      Error          Limits          Square   Pr > ChiSq 
 
Intercept        1     1.4246     0.8287    -0.1996     3.0488      2.96       0.0856 
time        1    1     0.3566     0.2055    -0.0461     0.7593      3.01       0.0827 
time        2    1     0.2499     0.2041    -0.1501     0.6499      1.50       0.2208 
time        3    0     0.0000     0.0000     0.0000     0.0000       .          . 
control          1    -0.9594     0.2047    -1.3605    -0.5583     21.98       <.0001 
problems         1     0.2956     0.0505     0.1967     0.3945     34.31       <.0001 
sevent           1     0.3557     0.0804     0.1982     0.5132     19.59       <.0001 
cohes            1    -0.1782     0.0373    -0.2513    -0.1052     22.86       <.0001 
Scale            0     1.0000     0.0000     1.0000     1.0000 

 
The problem with a standard logistic regression approach is that it assumes each of the 
316 × 3 = 948 observed responses for the ptsd variable are independent.  This is not 
appropriate since we would expect the measured responses for a given subject to be 
correlated over time. 
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21.2 Correlation Structures 
The key to analyzing clustered data is to characterize the correlation structure in the 
measured response variable.  We will assume the following: 

1. The data can be arranged into clusters such that there is correlation among the 
observed responses within clusters, but not between clusters.  In the Residential 
Fire Example, the clusters are defined by the individual subjects; i.e. the variable 
subjid.  We assume that observations from a given subject are correlated over 
time, but that they are not correlated with the observations from other subjects. 

2. The correlation structure is the same within each cluster.  The correlations between 
each of month 3 and 6, month 3 and 12, and month 6 and 12 are the same from 
subject-to-subject. 

 
In general, we can summarize all the pairwise correlations within a cluster using a 
correlation matrix.  For each subject in our example, we would have the following 3×3 
correlation matrix: 
 

12 13

21 23

31 32

1
1

1
R

ρ ρ
ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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The correlation terms correspond to the following: 
 

Notation Correlation between observations at… 
1 The same month 

12 21ρ ρ=  Months 3 (time 1) and 6 (time 2) 

13 31ρ ρ=  Months 3 (time 1) and 12 (time 3) 

23 32ρ ρ=  Months 6 (time 2) and 12 (time 3) 

 
Note that the correlation matrix is symmetric.  Depending on the study design, we may 
decide to make various assumptions about the structure of the correlation matrix.  There 
are many different types of correlation structures; we will discuss four of the more 
popular choices. 
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21.2.1 Independence Correlation Structure 
An independence correlation assumption implies that there is no correlation within 
clusters.  This would led to a matrix with the form, 
 

1 0 0
0 1 0
0 0 1

R
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
which is the usual assumption that all observations are independent.  Useful when 

• All observations truly are independent. 
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21.2.2 Exchangeable Correlation Structure 
An exchangeable or compound symmetric structure implies a constant correlation within 
clusters.  That is, any given pair of observations is no more or less correlated than any 
other pair.  In terms of the example, this would imply that the correlations are equal 
between all time points. 
 

1
1

1
R

ρ ρ
ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
This is a rather strong assumption for longitudinal data.  It essentially implies that the 
correlation between observations taken at adjacent time points is the same as those 
taken 2, 3, or more time points apart.  Useful when 

• There is no distinct ordering within clusters. 
• Observations can be considered a random sample within a cluster. 
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21.2.3 Auto-Regressive Correlation Structure 
The auto-regressive structure allows the correlation to vary as a function of the 
“distance” between the observations within a cluster.  This is attractive for longitudinal 
data since it allows for the correlation to decrease as observations are taken further 
apart in time.  For the Residential Fire Example, 
 

1 2

1 1

2 1

1
1

1
R

ρ ρ
ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

In general, the correlation between the observation in the ith row and jth column is i jρ − .  
Useful when 

• There is a natural ordering to the observations within clusters. 
• Assuming a constant correlation between adjacent observations. 
• The correlation strictly decreases as a function of the “distance” between 

observations. 
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21.2.4 Unstructured Correlation Structure 
An unstructured correlation assumption places no restrictions on the correlation matrix.  
In essence, the correlation is allowed to vary between all observations in the cluster.  
The correlation matrix has the form 
 

12 13

21 23

31 32

1
1

1
R

ρ ρ
ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Useful when 

• There is a natural ordering to the observations within clusters. 
• Do not want to assume a constant correlation between adjacent observations. 
• Do not want to specify a functional form that relates the correlation to the “distance” 

between observations. 
 

Notes 
Regardless of the structure, the correlation matrix and parameters are assumed to be 
the same for each cluster. 
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21.3 Statistical Models for Clustered Data 
There are many different models that may be used to account for clustered data when 
the response is dichotomous.  Among the more popular choices are 

• Conditional Logistic Regression (PROC LOGISTIC) 
• Logistic Regression using the method of Generalized Estimating Equations (PROC 

GEMMOD) 
• Mixed-Effects Logistic Regression (PROC NLMIXED and GLIMMIX macro) 
• Bayesian Hierarchical Logistic Regression (WinBUGS) 

We will discuss the Generalized Estimating Equations approach for fitting logistic 
regression models in the presence of clustered data. 
 

21.3.1 Generalized Estimating Equations 
Generalized Estimating Equations (GEE) is a general algorithm that may be used to 
estimate regression parameters and standard errors for clustered data. 

• Maximum likelihood may also be used for clustered data and, when feasible, is the 
preferable method.  However, maximum likelihood is difficult when the response 
variable is not normally distributed, as in the case of a binary outcome. 

• Fitting a logistic regression model to clustered data is most easily accomplished 
using the method of GEE. 
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SAS Logistic Regression using GEE (Unstructured) 
proc genmod data=ptsdmod descending; 
 class subjid time; 
 model ptsd = time control problems sevent cohes / dist=binomial; 
 repeated subject=subjid / within=time type=un modelse corrw; 
run; 

 
Syntax 

• Clustering is indicated with the repeated statement.  When this statement is given, 
GENMOD will use GEE to fit the model. 

• The variable that defines the clusters (subjid) must be specified in the class 
statement and as the argument to the subject option. 

• within is optional and may be used to enumerate the observations within the 
clusters.  This is typically used when there is a natural ordering to the observations. 

• The correlation structure is specified with the type options.  Among the options are 
the independence (ind), exchangeable (exch), auto-regressive (ar), and 
unstructured (un) correlation structures. 

• By default, GENMOD generates robust estimates of the standard errors, that are 
valid even if the wrong correlation structure is specified.  Standard errors that are 
based on the specified correlation structure may be obtained with the modelse 
option. 

• corrw requests that the estimated correlation matrix be printed. 

 512



The GENMOD Procedure 
 
               GEE Model Information 
 
Correlation Structure                  Unstructured 
Within-Subject Effect               time (3 levels) 
Subject Effect                  subjid (316 levels) 
Number of Clusters                              316 
Correlation Matrix Dimension                      3 
Maximum Cluster Size                              3 
Minimum Cluster Size                              3 
 
 
        Working Correlation Matrix 
 
             Col1         Col2         Col3 
 
Row1       1.0000       0.1891       0.2538 
Row2       0.1891       1.0000       0.3878 
Row3       0.2538       0.3878       1.0000 
 
 
              Analysis Of GEE Parameter Estimates 
               Empirical Standard Error Estimates 
 
                     Standard   95% Confidence 
Parameter   Estimate    Error       Limits            Z Pr > |Z| 
 
Intercept     1.6078   0.8689  -0.0952   3.3108    1.85   0.0643 
time      1   0.4164   0.1781   0.0673   0.7656    2.34   0.0194 
time      2   0.2717   0.1664  -0.0544   0.5978    1.63   0.1024 
time      3   0.0000   0.0000   0.0000   0.0000     .      . 
control      -0.9071   0.2159  -1.3302  -0.4840   -4.20   <.0001 
problems      0.2559   0.0501   0.1577   0.3540    5.11   <.0001 
sevent        0.2740   0.0867   0.1041   0.4439    3.16   0.0016 
cohes        -0.1911   0.0455  -0.2803  -0.1018   -4.20   <.0001 
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              Analysis Of GEE Parameter Estimates 
              Model-Based Standard Error Estimates 
 
                     Standard   95% Confidence 
Parameter   Estimate    Error       Limits            Z Pr > |Z| 
 
Intercept     1.6078   0.8502  -0.0585   3.2741    1.89   0.0586 
time      1   0.4164   0.1815   0.0607   0.7721    2.29   0.0218 
time      2   0.2717   0.1595  -0.0409   0.5844    1.70   0.0884 
time      3   0.0000   0.0000   0.0000   0.0000     .      . 
control      -0.9071   0.2082  -1.3150  -0.4991   -4.36   <.0001 
problems      0.2559   0.0520   0.1540   0.3577    4.92   <.0001 
sevent        0.2740   0.0777   0.1217   0.4263    3.53   0.0004 
cohes        -0.1911   0.0454  -0.2801  -0.1020   -4.21   <.0001 
Scale         1.0000    .        .        .         .      . 

 

Summary of Results 
 

Table 3.  Comparison of standard and GEE parameter estimates (standard errors). 

Term Standard Logistic GEE (Unstructured Correlation) 
Robust Model-Based 

time=1 0.3566 (0.2055) 0.4164 (0.1781) 0.4164 (0.1815) 
time=2 0.2499 (0.2041) 0.2717 (0.1664) 0.2717 (0.1595) 
control -0.9594 (0.2047) -0.9071 (0.2159) -0.9071 (0.2082) 
problems 0.2956 (0.0505) 0.2559 (0.0501) 0.2559 (0.0520) 
sevent 0.3557 (0.0804) 0.2740 (0.0867) 0.2740 (0.0777) 
cohes -0.1782 (0.0373) -0.1911 (0.0455) -0.1911 (0.0454) 
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• In this example, the standard logistic regression model is similar to the model 
obtained from GEE.  In general, though, methods that ignore important clustering 
tend to under-estimate the standard errors. 

• The GENMOD results labeled “Empirical Standard Error Estimates” are referred to 
as robust estimates.  These standard errors are valid even if the specified 
correlation structure is not appropriate for the given data set. 

• The GENMOD results labeled “Model-Based Standard Error Estimates” are based 
directly on the specified correlation structure.  If the correlation structure is correct, 
then the model-based standard errors will be smaller than the robust estimates. 

• The estimated correlations between time points are given in the working correlation 
matrix.  They are 

 
Time Points Estimated Correlation 

1 and 2 0.1861 
1 and 3 0.2500 
2 and 3 0.3819 
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SAS Logistic Regression using GEE (Auto-Regressive) 
proc genmod data=ptsdmod descending; 
 class subjid time; 
 model ptsd = time control problems sevent cohes / dist=binomial; 
 repeated subject=subjid / within=time type=ar corrw modelse; 
run; 

 
The GENMOD Procedure 
 
        Working Correlation Matrix 
 
             Col1         Col2         Col3 
 
Row1       1.0000       0.2840       0.0807 
Row2       0.2840       1.0000       0.2840 
Row3       0.0807       0.2840       1.0000 
 
 
              Analysis Of GEE Parameter Estimates 
               Empirical Standard Error Estimates 
 
                     Standard   95% Confidence 
Parameter   Estimate    Error       Limits            Z Pr > |Z| 
 
Intercept     1.5982   0.8618  -0.0909   3.2872    1.85   0.0637 
time      1   0.4103   0.1797   0.0581   0.7625    2.28   0.0224 
time      2   0.2697   0.1666  -0.0567   0.5962    1.62   0.1054 
time      3   0.0000   0.0000   0.0000   0.0000     .      . 
control      -0.9200   0.2167  -1.3447  -0.4954   -4.25   <.0001 
problems      0.2580   0.0489   0.1621   0.3538    5.27   <.0001 
sevent        0.2780   0.0861   0.1092   0.4468    3.23   0.0013 
cohes        -0.1848   0.0455  -0.2739  -0.0957   -4.06   <.0001 
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              Analysis Of GEE Parameter Estimates 
              Model-Based Standard Error Estimates 
 
                     Standard   95% Confidence 
Parameter   Estimate    Error       Limits            Z Pr > |Z| 
 
Intercept     1.5982   0.8579  -0.0832   3.2795    1.86   0.0625 
time      1   0.4103   0.1979   0.0224   0.7983    2.07   0.0382 
time      2   0.2697   0.1719  -0.0672   0.6067    1.57   0.1167 
time      3   0.0000   0.0000   0.0000   0.0000     .      . 
control      -0.9200   0.2111  -1.3338  -0.5062   -4.36   <.0001 
problems      0.2580   0.0523   0.1555   0.3605    4.93   <.0001 
sevent        0.2780   0.0784   0.1244   0.4316    3.55   0.0004 
cohes        -0.1848   0.0438  -0.2706  -0.0990   -4.22   <.0001 
Scale         1.0000    .        .        .         .      . 
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SAS Logistic Regression using GEE (Exchangeable) 
proc genmod data=ptsdmod descending; 
 class subjid time; 
 model ptsd = time control problems sevent cohes / dist=binomial; 
 repeated subject=subjid / within=time type=exch corrw modelse; 
run; 

 
The GENMOD Procedure 
 
        Working Correlation Matrix 
 
             Col1         Col2         Col3 
 
Row1       1.0000       0.2727       0.2727 
Row2       0.2727       1.0000       0.2727 
Row3       0.2727       0.2727       1.0000 
              Analysis Of GEE Parameter Estimates 
               Empirical Standard Error Estimates 
 
                     Standard   95% Confidence 
Parameter   Estimate    Error       Limits            Z Pr > |Z| 
 
Intercept     1.7927   0.8619   0.1033   3.4820    2.08   0.0375 
time      1   0.4100   0.1782   0.0607   0.7593    2.30   0.0214 
time      2   0.2699   0.1662  -0.0558   0.5955    1.62   0.1043 
time      3   0.0000   0.0000   0.0000   0.0000     .      . 
control      -0.9601   0.2147  -1.3809  -0.5393   -4.47   <.0001 
problems      0.2497   0.0497   0.1523   0.3471    5.02   <.0001 
sevent        0.2810   0.0864   0.1116   0.4503    3.25   0.0011 
cohes        -0.1871   0.0451  -0.2755  -0.0987   -4.15   <.0001 

 518



              Analysis Of GEE Parameter Estimates 
              Model-Based Standard Error Estimates 
 
                     Standard   95% Confidence 
Parameter   Estimate    Error       Limits            Z Pr > |Z| 
 
Intercept     1.7927   0.8622   0.1028   3.4825    2.08   0.0376 
time      1   0.4100   0.1802   0.0568   0.7633    2.28   0.0229 
time      2   0.2699   0.1732  -0.0696   0.6093    1.56   0.1192 
time      3   0.0000   0.0000   0.0000   0.0000     .      . 
control      -0.9601   0.2115  -1.3747  -0.5455   -4.54   <.0001 
problems      0.2497   0.0521   0.1475   0.3519    4.79   <.0001 
sevent        0.2810   0.0787   0.1268   0.4352    3.57   0.0004 
cohes        -0.1871   0.0454  -0.2762  -0.0981   -4.12   <.0001 
Scale         1.0000    .        .        .         .      . 
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SAS Logistic Regression using GEE (Independence) 
proc genmod data=ptsdmod descending; 
 class subjid time; 
 model ptsd = time control problems sevent cohes / dist=binomial; 
 repeated subject=subjid / within=time type=ind corrw modelse; 
run; 

 
The GENMOD Procedure 
 
        Working Correlation Matrix 
 
             Col1         Col2         Col3 
 
Row1       1.0000       0.0000       0.0000 
Row2       0.0000       1.0000       0.0000 
Row3       0.0000       0.0000       1.0000 
 
 
              Analysis Of GEE Parameter Estimates 
               Empirical Standard Error Estimates 
 
                     Standard   95% Confidence 
Parameter   Estimate    Error       Limits            Z Pr > |Z| 
 
Intercept     1.4246   0.9022  -0.3438   3.1929    1.58   0.1143 
time      1   0.3566   0.1838  -0.0037   0.7169    1.94   0.0524 
time      2   0.2499   0.1720  -0.0872   0.5870    1.45   0.1463 
time      3   0.0000   0.0000   0.0000   0.0000     .      . 
control      -0.9594   0.2270  -1.4044  -0.5144   -4.23   <.0001 
problems      0.2956   0.0515   0.1947   0.3964    5.74   <.0001 
sevent        0.3557   0.0900   0.1793   0.5321    3.95   <.0001 
cohes        -0.1782   0.0466  -0.2696  -0.0868   -3.82   0.0001 
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              Analysis Of GEE Parameter Estimates 
              Model-Based Standard Error Estimates 
 
                     Standard   95% Confidence 
Parameter   Estimate    Error       Limits            Z Pr > |Z| 
 
Intercept     1.4246   0.8287  -0.1996   3.0488    1.72   0.0856 
time      1   0.3566   0.2055  -0.0461   0.7593    1.74   0.0827 
time      2   0.2499   0.2041  -0.1501   0.6499    1.22   0.2208 
time      3   0.0000   0.0000   0.0000   0.0000     .      . 
control      -0.9594   0.2047  -1.3605  -0.5583   -4.69   <.0001 
problems      0.2956   0.0505   0.1967   0.3945    5.86   <.0001 
sevent        0.3557   0.0804   0.1982   0.5132    4.43   <.0001 
cohes        -0.1782   0.0373  -0.2513  -0.1052   -4.78   <.0001 
Scale         1.0000    .        .        .         .      . 

 

Notes 
• In the presence of clustering, specification of the independence correlation structure 

seems like a poor choice.  Indeed, it is the least desirable option for describing 
within-cluster correlation.  However, when working with large or complex data sets, 
it is not always possible to obtain GEE estimates for all of the correlation structures.  
In practice, the independence structure may be the only structure for which GEE 
estimates can be obtained. 
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• GEE Advantages: 
o The algorithm is easily accessible in PROC GENMOD and may be used with 

any of the regression models available in the procedure (e.g. linear, logistic, 
and Poisson).  

o Estimates are valid even if the wrong correlation structure is specified. 
• GEE Disadvantages 

o The parameter estimates are population-averaged rather than subject-specific. 
o Does not provide standard error estimates for the parameters in the correlation 

matrix. 
o The auto-regressive structure in GENMOD assumes that longitudinal 

observations are made at fixed, equally-spaced time points. 
• The disadvantages of GEE could be overcome by using a mixed-effects model.  

Mixed models, however, are sensitive to the chosen correlation structure.  Mixed 
logistic regression parameters are also more difficult to estimate analytically.  
Available software routines are not as reliable as those for GEE. 
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21.4 Points of Emphasis 
1. Why correlation or clustering should be accounted for in the regression analysis. 
2. Know the form of the four correlation structures that were discussed and how to 

select among them based on the study design. 
3. Using GEE in PROC GENMOD. 
4. The difference between robust and model-based standard error estimates. 
5. Advantages and disadvantages of GEE. 
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22.1 Diagnostic Tests 
We will discuss “diagnostic tests” in a broad sense that includes any type of information 
that might be used to determine a health outcome of interest.  This includes medical 
screening tests, such as mammography, PSA tests, and home pregnancy tests.  It also 
includes the study of associations between a dichotomous risk factors and a health 
outcome. 

Goal 
The purpose of a diagnostic test is to provide a means of classifying individuals as 
diseased or non-diseased. 

• We will discuss diagnostic tests as being either positive or negative. 
• Individuals are classified as diseased if they have a positive test result.  This does 

not necessarily mean that they are truly diseased. 
• Statistics are needed to measure the ability of a given diagnostic test to correctly 

determine an individual’s disease status. 
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Notation 
2x2 tables will be used to summarize the relationship between the results of a diagnostic 
test and the true disease status. 
 

 Diseased 
Test Yes (D+) No (D-) 
Positive (T+) True Positive False Positive 
Negative (T-) False Negative True Negative 

 

Thyroid Cancer Example 
Allelotype studies suggest that chromosome 1q and 1p are sites of frequent gains and 
losses, respectively, in thyroid cancers.  The purpose of this study was to assess the role 
of cancer markers ECM1 (located on 1q21) and RIZ1 (located on 1p36) in thyroid 
carcinogenesis and their utility in distinguishing malignant from benign thyroid 
neoplasms. 
 
Fifty (50) patients with thyroid neoplasms were enrolled in a cross-sectional study of 
cancer markers ECM1 and RIZ1.  Neoplasms were identified as benign (19) or malignant 
(31) based on surgical resection.  Observed gene expression levels are summarized in 
the plots below by marker and neoplasm type. 
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Goal:  Assess the performance of each marker as a screening tool for distinguishing 
malignant from benign neoplasms.  Determine the “best” threshold values (t) of ECM1 
and RIZ1 for predicting neoplasm type.   
 

ECM1 Neoplasm Totals Malignant (D+) Benign (D-) 
≥ tE (T+) a b a+b 
< tE (T-) c d c+d 
Totals 31 19 50 

 

RIZ1 Neoplasm Totals Malignant (D+) Benign (D-) 
≤ tR (T+) a b a+b 
> tR (T-) c d c+d 
Totals 31 19 50 
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22.1.1 Performance Measures 
Naturally, there is interest in measuring the agreement between the result from a 
diagnostic test and the true disease status.  The following are common statistics used in 
diagnostic testing: 
 

1. Sensitivity = Pr[T+|D+] 
2. Specificity = Pr[T-|D-] 
3. Predictive Value Positive = Pr[D+|T+] 
4. Predictive Value Negative = Pr[D-|T-] 
 

Larger values are indicative of better performance.  In the Thyroid example, the 
sensitivity and specificity are functions of the threshold value 
 

[ ]
[ ]

Pr | 31

Pr | 19

sensitivity T D a

specificity T D d

= + + =

= − − =
. 
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22.2 Receiver Operating Characteristics (ROC) Analysis 

22.2.1 Introduction 
The sensitivity and specificity of a diagnostic test often depend on more than just the 
quality of the test; they can also depend on how one defines a “positive test”. 
 
In the previous section, we noted that sensitivity and specificity depend on gene 
expression threshold values.  Consider a threshold value of 2.0 for ECM1 expression. 
 

ECM1 Neoplasm Totals Malignant (D+) Benign (D-) 
≥ 2.0 (T+) 23 4 27 
< 2.0 (T-) 8 15 23 
Totals 31 19 50 

 

[ ]
[ ]

Pr | 23 31 74.2%

Pr | 15 19 78.9%

sensitivity T D

specificity T D

= + + = =

= − − = =
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Note that sensitivity and specificity are a function of the choice of cut-point to use for 
ECM1 expression. 
 

ECM1 Sensitivity Specificity T- T+ 
< 0.5 ≥ 0.5 96.8% 5.3% 
< 1.0 ≥ 1.0 90.3% 21.1% 
< 2.0 ≥ 2.0 74.2% 78.9% 
< 3.0 ≥ 3.0 51.6% 84.2% 
< 4.0 ≥ 4.0 41.9% 94.7% 
< 5.0 ≥ 5.0 38.7% 100% 
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Figure 1.  Distribution of ECM1 expression for benign and malignant neoplasms. 
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22.2.2 ROC Curves 
The ROC curve is simply the true positive rate (sensitivity) plotted against the false 
positive rate (1 - specificity). 
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Figure 2.  ROC curve for ECM1 as a predictor of neoplasm type. 
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Notes 
1. The ROC curve shows the tradeoff between sensitivity and specificity (any increase 

in sensitivity will be accompanied by a decrease in specificity). 
2. The closer the curve follows the left-hand border and then the top border of the 

ROC space, the better the test. 
3. The closer the curve comes to the 45-degree diagonal of the ROC space, the worse 

the test performs. 

22.2.3 Area Under the ROC Curve 
General Comments 

• A good diagnostic test would produce an ROC curve that climbs rapidly towards 
upper left hand corner of the graph. This means that the true positive rate is high 
and the false positive rate is low. 

• An uninformative diagnostic test would produce an ROC curve that follows a 
diagonal path from the lower left hand corner to the upper right hand corner. This 
means that every improvement in the false positive rate is matched by a 
corresponding decline in the true positive rate. 

• A common measure of how quickly the ROC curve rises to the upper left hand 
corner is the area under the curve.  The closer the area is to 1.0, the better the test 
is, and the closer the area is to 0.5, the worse the test is. 
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Estimation 
The Mann-Whitney U statistic provides an estimate of the area under the ROC curve: 

( ), ,
1 1

,
D Dn n

D i D j
i j

U S x x
+ −

+ −
= =

= ∑∑  

where 

( )
1

, 0.5
0

D D

D D D D

D D

if x x
S x x if x x

if x x

+ −

+ − + −

+ −

>⎧
⎪= =⎨
⎪ <⎩

. 

The area is then estimated as 

D D

UAUC
n n+ −

= . 

 

Example 
For the comparison of ECM1 expression between malignant and benign patients, the 
Mann-Whitney U statistic is 459.  Since there are 31 malignant and 19 benign patients, 

( )459 31 19 0.779 77.9%AUC = × = = . 
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Interpretation 
• 1.0 = Ideal Test:  100% sensitivity and 100% specificity. 
• 0.50 = Chance Results:  50% sensitivity and 50% specificity. 
• General Guideline: 

o 0.97 to 1.00 = excellent 
o 0.92 to 0.97 = very good 
o 0.75 to 0.92 = good 
o 0.50 to 0.75 = fair. 

• If you take a random healthy patient with a score of Dx −  and a random diseased 
patient with a score of Dx + , then the area under the curve is an estimate of 

[ ]Pr D Dx x+ > −  (assuming that large values of the test are indicative of disease). 

 

Reference 
Hanley, JA and McNeil, BJ. (1982) The Meaning and Use of the Area under a Receiver 

Operating Characteristic (ROC) Curve.  Radiology 143(1):29-36. 
DeLong, ER, DeLong, DM, and Clarke-Pearson, DL. (1988) Comparing the Areas under 

Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric 
Approach.  Biometrics 44(3):837-845. 
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22.3 Logistic Regression c Statistic 
Recall that the following logistic regression model was fit in Section 18 to the Radon 
data: 
 

( )
( )

π
β β β β β β

π
⎡ ⎤

= + + + + +⎢ ⎥−⎣ ⎦
0 1 2 3 4 5ln 20

1
age school smkyrs smkquit wlm

x
x

. 

 
Somer’s D, Goodman-Kruskal Gamma, and Kendall’s Tau-α statistics were introduced 
as measures of the predictive ability of the logistic regression model.  In this section we 
will discuss another, related measure of predictive ability – the c statistic. 
 

Predicted Probabilities 
The c statistic is computed as the area under the ROC curve using the predicted 
probabilities π̂  from the logistic regression model to predict disease status. 
 

Subject 1 2 3 ... 1024 
Case 1 0 0 ... 1 
π̂  0.824 0.056 0.090 ... 0.456 
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Given a cut-point for the predicted probabilities, subjects can be cross-classified by 
disease status.  For example, 
 

Predicted 
Probability 

Lung Cancer Totals Yes (D+) No (D-) 
0.20π̂ ≥  (T+) 352 151 503 
0.20π̂ <  (T-) 61 463 524 

Totals 413 614 1027 
 

[ ]
[ ]

Pr | 352 413 85.2%

Pr | 463 614 75.4%

sensitivity T D

specificity T D

= + + = =

= − − = =
 

 

Definition 
In logistic regression, the c statistic is the area under the ROC curve constructed using 
the predicted probabilities to predict the observed values of the response variable. 
 
As usual, the area under the ROC curve provides a measure of the likelihood of a correct 
classification from the diagnostic test (predicted probabilities).  In the radon example, the 
area under the ROC curve, shown in Figure 3, is 0.85.  Thus, the predicted probabilities 
from the logistic regression model are a “good” indicator of disease status. 
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Figure 3.  Lung cancer ROC curve for the predicted probability of lung cancer. 
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SAS Program for the c Statistic 
proc logistic descending data=irlcs; 
 model case = age school smkyrs smkquit wlm20 / outroc=roc; 
 
proc print data=roc; 

 
Syntax 

• The c statistics is included in the standard output from the logistic regression 
analysis. 

 
Association of Predicted Probabilities and Observed Responses 
 
Percent Concordant      84.9    Somers' D    0.701 
Percent Discordant      14.8    Gamma        0.704 
Percent Tied             0.4    Tau-a        0.337 
Pairs                 253582    c            0.851 

 
• The sensitivity and specificity values for each predicted probability needed to 

construct the ROC curve can be saved to a SAS dataset with the outroc option.  In 
this example, the values are saved to “roc” and printed.  The first page from the 
SAS output is given below.  SAS assigns the labels of _PROB_, _SENSIT_, and 
_1MSPEC_ to the predicted probability, sensitivity, and 1 – specificity in the 
dataset. 
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Obs     _PROB_    _POS_    _NEG_    _FALPOS_    _FALNEG_    _SENSIT_    _1MSPEC_ 
 
  1    0.95661       1      614         0          412       0.00242    0.000000 
  2    0.95128       2      614         0          411       0.00484    0.000000 
  3    0.94289       3      614         0          410       0.00726    0.000000 
  4    0.94122       4      614         0          409       0.00969    0.000000 
  5    0.94052       5      614         0          408       0.01211    0.000000 
  6    0.93357       6      614         0          407       0.01453    0.000000 
  7    0.93326       7      614         0          406       0.01695    0.000000 
  8    0.93277       8      614         0          405       0.01937    0.000000 
  9    0.93144       9      614         0          404       0.02179    0.000000 
 10    0.92749       9      613         1          404       0.02179    0.001629 
 11    0.92685      10      613         1          403       0.02421    0.001629 
 12    0.92383      11      613         1          402       0.02663    0.001629 
 13    0.92132      12      613         1          401       0.02906    0.001629 
 14    0.92019      13      612         2          400       0.03148    0.003257 
 15    0.91859      13      611         3          400       0.03148    0.004886 
 16    0.91776      14      611         3          399       0.03390    0.004886 
 17    0.91675      15      611         3          398       0.03632    0.004886 
 18    0.91518      17      611         3          396       0.04116    0.004886 
 19    0.91503      19      611         3          394       0.04600    0.004886 
 20    0.91462      20      611         3          393       0.04843    0.004886 
 21    0.91420      21      611         3          392       0.05085    0.004886 
 22    0.91242      21      610         4          392       0.05085    0.006515 
 23    0.91097      22      610         4          391       0.05327    0.006515 
 24    0.90997      23      610         4          390       0.05569    0.006515 
 25    0.90909      24      610         4          389       0.05811    0.006515 
 26    0.90898      25      610         4          388       0.06053    0.006515 
 27    0.90782      25      609         5          388       0.06053    0.008143 
 28    0.90186      26      609         5          387       0.06295    0.008143 
 29    0.90119      27      609         5          386       0.06538    0.008143 
 30    0.90070      28      609         5          385       0.06780    0.008143 
 31    0.90055      29      609         5          384       0.07022    0.008143 
 32    0.89978      29      608         6          384       0.07022    0.009772 
 33    0.89934      29      607         7          384       0.07022    0.011401 
 34    0.89836      30      607         7          383       0.07264    0.011401 
 35    0.89789      31      607         7          382       0.07506    0.011401 
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22.4 Points of Emphasis 
1. Understand the definitions for sensitivity, specificity, PV+, and PV-. 
2. Interpretation of the ROC curve and c-statistic. 
3. Use SAS to obtain the values needed to construct an ROC curve. 
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