Dynamic Elite Partisanship: Party Loyalty and Agenda Setting in the U.S. House

René Lindstädt & Ryan J. Vander Wielen

Abstract

Legislators and legislative parties must strike a balance between collective and member-level goals. While there are legislative and reputational returns to coordinated behavior, party loyalty has a detrimental effect on members’ electoral success. We argue that members and parties navigate these competing forces by pursuing partisan legislation when the threat of electoral repercussions is relatively low — when elections are distant. We test our theory by examining House members’ likelihood of casting a party vote over the election cycle in order to assess whether members strategically alter their levels of party loyalty as elections approach. We also explore whether majority parties strategically structure the agenda according to variation in members’ electoral constraints. Our approach allows elite partisanship to follow a dynamic process, which we term dynamic elite partisanship. We find that as elections approach, members are less likely to cast party votes, and parties are less inclined to schedule votes that divide the parties.

*Please send all correspondence to Ryan J. Vander Wielen. Email: vanderwielen@temple.edu; Phone: 215.204.1466; Post: Department of Political Science, Temple University, Philadelphia, PA 19122.

†René Lindstädt is Reader in the Department of Government and Director, Essex Summer School in Social Science Data Analysis, University of Essex. Ryan J. Vander Wielen is Assistant Professor of Political Science at Temple University.
Dynamic Elite Partisanship: Party Loyalty and Agenda Setting in the U.S. House

“Americans should know where their Representatives stand on the issues before going into the voting booth. But Speaker Pelosi and Senator Reid have delayed dealing with a number of far-reaching and controversial issues until after Election Day precisely so Democrats do not have to reveal to the electorate their support for more trillion dollar deficits, tax hikes on families and small businesses, and a job-killing national energy tax.”
—Statement by Rep. Tom Price (R-GA) in support of a resolution he introduced to block the use of the lame-duck session to pass non-emergency legislation

Introduction

Political parties have a conflicted existence in many democratic systems (Carey, 2007; Lebo, McGlynn and Koger, 2007). On the one hand, voters rely heavily upon party labels at the voting booth (Markus and Converse, 1979), and reward parties for legislative successes (Bowler, Farrell and Katz, ed., 1999; Cox and McCubbins, 2007). Thus, there are clear incentives for party coalescence. Yet, at the same time, voters punish individual legislators for partisan behavior (Soroka and Wlezien, 2010; Carson, Koger, Lebo and Young, 2010), which in turn discourages party cooperation. How, then, do legislators navigate these countervailing incentives? We theorize that legislators, both individually and collectively, balance these competing demands by adopting a dynamic approach to partisanship.

In this study, we investigate the effects of competing demands on elite partisanship in the context of the U.S. House of Representatives. We find that legislators, at the individual and collective levels, balance competing demands by strategically adjusting their levels of partisanship relative to elections. Specifically, legislators place greater weight on partisan goals when elections are distant, and are increasingly attentive to constituency demands as elections approach. While our substantive focus is the U.S. House, this should not distract from the much broader theoretical argument: the presence of countervailing incentives encourages partisan behavior that is sensitive to the variable costs and benefits of cooperation across time. This basic framework provides leverage in understanding legislative behavior in numerous other contexts. Indeed, recent comparative studies have offered evidence that politicians across various political systems face analogous competing
demands that place party and electoral goals at odds with one another (e.g., Carey, 2008; Tavits, 2011).

Our empirical findings point to two related forms of dynamic partisanship in the U.S. House — decreasing party loyalty among individual members and corresponding conflict avoidance in the selection of roll call votes by majority parties as elections approach. As a result, parties in the U.S. House start out with a high level of conflict at the beginning of the election cycle that dissipates as elections approach and the costs of partisan behavior rise. These findings directly contribute to the important and growing literature on the linkages between elections and legislative behavior (e.g., Canes-Wrone, Brady and Cogan, 2002; Ansolabehere, Snyder, Jr. and Stewart, III, 2001). At the same time, we identify dynamics that have important implications for policy formation.

The paper proceeds as follows. The next section places our study within the research on congressional parties. In particular, we believe that the literature has overlooked an important form of partisan variation — changes occurring between congressional elections. In the subsequent section, we make the theoretical case for time-dependent variation in partisanship and derive testable hypotheses. We then examine partisan behavior as a function of election proximity. The empirical evidence shows that members are less likely to exhibit partisan behavior, and parties are less likely to schedule votes that divide the parties, as elections approach. We proceed to offer some concluding remarks and suggest avenues for future research.

1 Dynamic Elite Partisanship

One of the central puzzles of legislative research is the varying role of parties in the U.S. Congress. The influence and cohesion of congressional parties varies greatly over time (Cooper and Brady, 1981; Rohde, 1991; Theriault, 2008), across issues and vote types (Crespin, Rohde and Vander Wielen, n.d.; Snyder, Jr. and Groseclose, 2000), and between members (Smith, 2007). In the U.S., changes in the prominence of parties over time have been attributed to variation in the internal homogeneity of party members’ policy preferences and the level of disagreement across the parties (Rohde, 1991; Aldrich, 1995; Aldrich and Rohde, 2000). According to the conditional party government thesis, these factors are said to have important implications for the influence of party leaders in particular and the party organization in general (Rohde, 1991). Another perspective, which emerged in response to criticism of the conditional party government framework (e.g., Krehbiel,
1999), highlights legislators’ electoral incentives to cooperate with their party and to empower party leaders (Cox and McCubbins, 2007, 2005; Lebo, McGlynn and Koger, 2007; Patty, 2008). By this account, parties do not seek to maximize policy returns per se, but rather seek to advance the electoral fortunes of their members by cultivating a favorable party “brand.”

Regardless of whether one conceptualizes parties as primarily legislative or electoral coalitions, the prominent partisan accounts acknowledge the importance of both policy and electoral goals to members and parties alike (Smith, 2007). Despite the well-documented tension between policy and electoral goals (Canes-Wrone, Brady and Cogan, 2002; Carson et al., 2010), in which the collective pursuit of these goals (via parties) may prove detrimental to their realization at the individual level and vice versa, most studies do not examine the implications that these potentially conflicting goals have for partisan behavior (but see Lebo, McGlynn and Koger, 2007). In fact, Smith (2007, 25) contends that partisan theories that fail to fully account for the existence of multiple goals “do not capture central activities of congressional parties.” It is then quite possible that, in addition to other catalysts of partisan change, partisan behavior reflects the strategic balancing of these goals over time. According to this logic, parties shift emphasis from collective to individual goals and vice versa as a function of the comparative costs of pursuing these goals at any given point in time, by which, crucially, we mean not just across Congresses, but also within congressional terms. In the following paragraphs, we make the case for studying changes in partisanship in a more explicitly dynamic fashion than previously explored in the existing literature.

[Figure 1 About Here.]

Before detailing the theoretical underpinnings of dynamic elite partisanship, we briefly present some preliminary evidence that points to the importance of a dynamic account of partisanship. Figure 1(a) graphically presents the conventional measure of “party unity” — the percentage of votes in which a majority of one party votes in opposition to a majority of the other party (hereafter these votes are referred to as “party votes”) over two-year congressional terms (e.g., Cooper and Brady, 1981; Cox and McCubbins, 1991; Rohde, 1991). We then look at the differences in party unity scores between the first year following a House election and the year preceding the next election [Figure 1(b)]. It is evident from a comparison of these two figures that measuring party unity over two-year congressional terms obscures important variation across time. Based on Figure
1(b), we conclude that there is substantial and systematic change in party unity scores across years in election cycles. Scores in the first year tend to be considerably higher than in the second year, and often the differences achieve statistical significance. In fact, the changes in party unity across years within election cycles identified in Figure 1(b) are often larger than the changes across Congresses identified in Figure 1(a). This pattern provides some initial support for the supposition that partisanship is related to variable electoral demands within terms, and not just across them.

We argue that such variation in elite partisanship between elections is the product of both individual and collective considerations. Member-level party support is likely to wane as elections approach due to individual electoral motivations. Moreover, we also expect parties to reinforce this behavior by strategically setting the agenda to accommodate their members’ concerns about casting difficult votes when the electoral costs of doing so are highest.

As a step toward explaining the time-dependency of elite partisanship, we begin by considering the various constraints present in legislative decision-making. In particular, members encounter multiple, potentially competing, demands in the pursuit of their goals (Maltzman, 1997). Foremost among these are demands by voters, to whom individual members must appeal in order to gain reelection. Political parties also play a central role in members’ decision-making by serving as the collective units that (i) facilitate policy goals via repeated coordination (Aldrich, 1995; Schwartz, 1989) and (ii) forge reputations that offer members collective electoral benefits (Cox and McCubbins, 2007). Moreover, party loyalty is also a key determinant of institutional advancement (Coker and Crain, 1994), which further bolsters members’ legislative and electoral successes. Despite these advantages to party support, there is compelling evidence that party loyalty has damaging effects on electoral prospects at the level of the individual member (e.g., Carson et al., 2010). Thus, members are forced to strategically balance their levels of partisanship across time so as to capitalize on the returns to partisan behavior without incurring the associated electoral sanctions.

How members go about balancing these competing forces is logically related to the proposition that electoral penalties for partisan behavior are dynamic. Specifically, a legislator’s cost for partisan behavior is likely to be higher when voters more closely monitor her legislative activities (Lindstädt and Vander Wielen, 2011). Generally speaking, monitoring by voters is imperfect due to collective action problems, information costs, and memory decay (Bednar, 2006). However, elections increase the visibility of legislative behavior, which in turn facilitates monitoring by reducing
the associated costs (e.g., Kalt and Zupan, 1990). Therefore, we arrive at the assumption that monitoring of legislative voting by voters increases as the time until the next election decreases.

This is a variation on the “What have you done for me lately?” principle identified by Shepsle, Van Houweling, Abrams and Hanson (2009). Just as voters pay more attention and give more credit to legislators for pork projects provided in close proximity to elections, they pay more attention to legislative votes as elections draw near. Previous research has also shown that voters assign greater weight to more recent votes when assessing a member’s performance (Weingast, Shepsle and Johnsen, 1981). Accordingly, voters may not only recall recent legislative activity more easily, but they might also consider recent votes a more reliable measure of a member’s future behavior than more removed activity. While variation in legislative behavior that reflects a sensitivity to elections has been documented in the Senate (e.g., Elling, 1982), comparatively little research of this variety has studied the House because of the much shorter terms (but see Tien, 2001). Yet, we can study this phenomenon in the House by moving away from the convention of using congressional terms as the unit of analysis and towards a more refined measure of time. An examination of the House arguably presents the more demanding test of our theoretical account, given that conventional wisdom holds that House members “must constantly abide by the preferences of their constituents, since the need to secure reelection is always right around the corner” (Ahuja, 1994, 105). Furthermore, we suggest that a complete picture of the balancing of competing demands must go beyond the traditional focus on member-level voting by also considering collective behavior.

We assume that some policy questions that come before Congress force individual members to choose between the position that is most marketable to their constituents and the position preferred by party leaders and party-connected donors/interest groups. Of course, there will be fewer such votes for members whose districts have clear partisan tendencies that align with their party. However, even under such harmonious conditions, we would still expect cross-cleaving issues to arise as parties struggle to pass (or block) major initiatives (e.g., health care reform in 2009–2010), to enact legislation that is necessary but not popular (e.g., the stimulus package in 2009), to satisfy major interest groups aligned with the party, or to follow through on intra-party log-rolls.

While we do not further investigate the mechanism responsible for variation in monitoring, we assume that the rise in voter attentiveness as elections approach results from such factors as increased scrutiny from local media and efforts by challengers to draw attention to votes they consider inconsistent with voter preferences.
Given that voter monitoring fluctuates over time, the costs to legislators of party loyalty on divisive votes such as these likewise vary.

Collectively, votes that generate inter-party disagreement confer benefits to political parties and the majority party in particular. Not only are these votes the outgrowth of parties pursuing the legislative goals of a majority of their members, but they also contribute to the parties’ collective reputations. Specifically, candidates and parties reap some electoral benefits from providing voters with clearly defined and distinctive policy positions (Hinich and Munger, 1989; Snyder, Jr. and Groseclose, 2000).

Yet, research indicates that party voting is harmful to members’ individual electoral prospects (Carson et al., 2010). Thus, as party leaders pursue the advancement of collective goals, they must be sensitive to member-level constraints (Sinclair, 1998). In particular, party leaders, as agents of the rank-and-file membership, must be judicious in demanding legislative behavior that is contrary to members’ electoral interests (Lebo, McGlynn and Koger, 2007). The majority party is likely to incur electoral and/or legislative losses if its party leaders make excessive and indiscriminate requests for party support from rank-and-file members, not to mention the possibility that party leaders will lose their coveted leadership posts. Thus, party leaders, like individual members, have to balance competing forces by adopting a strategy that maximizes the collective gains from party support while minimizing the member-level repercussions.2

In 2010, for instance, the Democratic leadership quite openly postponed consideration of an inevitably contentious vote on extending the Bush tax cuts until after the election, in an effort to protect party members from having to make a potentially unpopular decision with elections right around the corner (Dixon and Cornwell, 2010). Instead, the issue was voted on soon after the elections. Rep. Tom Price’s (R-GA) call for abandoning the lame-duck session (see quote at the beginning of the paper) was made in response to the Democratic leadership’s strategic

2We suggest that any benefits the minority party receives from the majority party’s strategic adjustment of the agenda are merely a by-product of the considerations made by the majority regarding its own constraints. After all, the majority party stands more to lose than the minority party, both in terms of seats and institutional advantages, by engaging in electorally risky behavior. Moreover, voters tend to penalize the majority party more severely for what they perceive to be unfavorable legislative activity (Jones and McDermott, 2009). Thus, the comparative electoral benefits of a more consensual agenda as elections approach would appear far greater for the majority party than the minority party.
agenda-setting decisions with respect to the Bush tax cuts and other legislative initiatives. Price’s comments reflect an awareness of the time-sensitivity of legislative decisions (relative to elections). In the next section, we explore the above theoretical arguments in a decision-theoretic framework. The models we develop allow us to clearly identify the mechanisms driving variation in partisanship and to generate empirically testable hypotheses.

2 Theoretical Models of Dynamic Elite Partisanship

We begin by introducing a decision-theoretic model that can be used to examine the effect that duration to election has on the probability that an individual member will support her party on a vote that generates inter-party division (i.e., party vote). For a given divisive measure and member \(i \), let \(\omega_i \) denote the non-electoral policy returns associated with voting for the given measure. Thus, \(\omega_i \) represents the extent to which a policy outcome aligns with member \(i \)’s preferences. Let \(\beta_i \) denote the (positive) electoral benefits received by member \(i \) for promoting partisan division. In particular, inter-party disagreement fosters distinction in the parties’ reputations, a collective good that indirectly contributes to member-level electoral success (Hinich and Munger, 1989; Cox and McCubbins, 2007). Conversely, voters respond negatively to overtly partisan behavior, and thus partisan division has a direct adverse electoral effect on members. We denote this (negative) electoral sanction by the coefficient \(\psi_i \). Also, let \(T \in [1, 2, \ldots, 730] \) represent the duration of time (in days) to the next election, such that increasing values represent greater distance to election. Therefore, letting \(v_i = 1 \) denote the choice by member \(i \) to vote for a divisive measure and \(v_i = 0 \) denote the choice to vote against the bill, we arrive at member \(i \)’s payoff (see Equation 1).

\[
U_i(v_i; T, \omega_i, \beta_i, \psi_i) = \begin{cases}
\omega_i + \beta_i(T) - \psi_i(T) & \text{if } v_i = 1, \\
0 & \text{if } v_i = 0.
\end{cases}
\quad (1)
\]

Suppose that the \(\omega_i \in \mathbb{R} \) are independently distributed across members. Also assume that \(\beta_i \) and \(\psi_i \) are twice continuously differentiable and that \(\psi_i > \beta_i \geq 0 \), since we anticipate that the electoral costs incurred by member \(i \) for party voting will outweigh the indirect electoral benefits. This is consistent with the extant literature that finds that party voting has harmful consequences for electoral success. If this assumption is not met, then the electoral cost-benefit structure of the utility function would not reflect these results. Moreover, let \(\psi_i - \beta_i \) be monotonically decreasing in \(T \), indicating that the direct electoral sanction weighs more heavily in the utility function as
time until election decreases. This assumption reflects increasing voter attentiveness as elections approach (Gelman and King, 1993). That is, with increasing election proximity, voters will more harshly penalize members for party support without offsetting collective benefits. As is standard in decision-theoretic models, member i will vote for the measure if and only if $U_i(v_i; \cdot) \geq 0$.

Let F_i denote member i's continuously differentiable cumulative distribution function (CDF) of ω_i. We operationalize ω_i as a random variable, distributed F_i, to represent the uncertainty that exists between legislative decisions and policy outcomes (Gilligan and Krehbiel, 1990). Since members are permitted to have different preferences and expectations for policy outcomes, each member i may have a unique distribution over ω_i. The probability that member i votes with her party on a divisive vote in period T is then given in Equation 2.

$$
Pr\{\omega_i : U_i(v_i; T, \omega_i, \beta_i, \psi_i) \geq 0\} = \int_{\psi_i(T) - \beta_i(T)}^{\infty} dF_i(\omega_i) = 1 - F_i(\psi_i(T) - \beta_i(T))
$$

(2)

Given that $\psi_i - \beta_i$ is monotonically decreasing in T, the probability of party support decreases monotonically as elections approach. Stated another way, as elections near, there is strictly decreasing probability that member i will draw an ω_i that outweighs the effect of $\psi_i(T)$ so as to produce a non-negative utility. To further explore this result, we examine the marginal effect of time on the probability of member i casting a party vote (see Equation 3).

$$
\frac{\partial}{\partial T}Pr\{\omega_i : U_i(v_i; T, \omega_i, \beta_i, \psi_i) \geq 0\} = \frac{\partial}{\partial T}(1 - F_i(\psi_i(T) - \beta_i(T)))
$$

$$
= -f_i(\psi_i(T) - \beta_i(T)) \frac{\partial[\psi_i(T) - \beta_i(T)]}{\partial T}
$$

(3)

We find that the marginal effect of time on the probability of a non-negative utility is positive over all changes in time. This follows from the product of a strictly negative partial derivative and a negative value (involving the probability density function), yielding a positive result for all T. We thus confirm that as T increases in value, indicating greater distance from election, the probability that member i votes with her party likewise increases. The precise rate of change in this probability across time is dependent upon both the distribution F_i, determined by member i's preferences and expectations over policy outcomes, and the functional form of $\psi_i(T) - \beta_i(T)$, which is determined
by the variability in voter monitoring over the course of the election cycle. We leave these matters for future discussion, and emphasize the central result of the member-level model articulated in the party support proposition below.

Party Support Proposition: As the time to election decreases, legislators will be less likely to side with their party on votes that divide the parties.

We now explore the implications of the member-level effects described above for party-level considerations. Given that party leaders are agents of their party members, we theorize that party leaders seek to jointly maximize the utility of the members whom they collectively serve. Therefore, party \(p \)'s decision to schedule a divisive measure can be conceptualized as dependent on the utility functions of all members \(i \in p \). We arrive at the party-level model essentially by aggregating the individual-level model detailed above.

Let \(\Omega_p \) denote the collective policy return of a divisive measure to party \(p \), and \(G_p \) the continuously differentiable CDF of \(\Omega_p \), defined as the univariate marginal distribution of \(\Omega_p \) resulting from the transformation of the random variables \(\omega_i \) for all \(i \in p \). One must integrate over the individual \(f_i \) to remove the individual member effects that contribute to \(\Omega_p \). Thus, \(G_p \) incorporates the expectations for all party members over their independent \(\omega_i \). Furthermore, let \(B_p(T) \) and \(\Psi_p(T) \) denote the arithmetic mean of \(\beta_i(T) \) and \(\psi_i(T) \) over all \(i \in p \) at time \(T \), respectively. That is, \(B_p(T) = n^{-1}\sum_{i=1}^{n}\beta_i(T) \) and \(\Psi_p(T) = n^{-1}\sum_{i=1}^{n}\psi_i(T) \), where \(n \) denotes the number of members in \(p \). \(B_p(T) \) and \(\Psi_p(T) \) maintain the relationships on \(\beta_i(T) \) and \(\psi_i(T) \) detailed in the member-level model above, given the basic properties of the arithmetic mean. Then, letting \(\alpha_p = 1 \) denote the choice by party \(p \) to forward a divisive measure to the agenda and \(\alpha_p = 0 \) denote the choice against scheduling a divisive measure, we arrive at party \(p \)'s payoff (see Equation 4).

\[
U_p(\alpha_p; T, \Omega_p, B_p, \Psi_p) = \begin{cases}
\Omega_p + B_p(T) - \Psi_p(T) & \text{if } \alpha_p = 1, \\
0 & \text{if } \alpha_p = 0.
\end{cases}
\]

(4)

It then follows that the probability that party \(p \) schedules a divisive measure in period \(T \) is given in Equation 5, and the corresponding marginal effect of time is given in Equation 6.

See Hogg and Craig (1978) for a general discussion of the transformations necessary to derive the distribution \(G_p \) from the individual \(F_i \). The technique is similar to that used for transformations between coordinate systems for multiple integrals (see, in particular, chapter 4).
\begin{equation}
Pr[\{\Omega_p : U_p(\alpha_p; T, \Omega_p, B_p, \Psi_p) \geq 0\}] = 1 - G_p [\Psi_p(T) - B_p(T)]
\end{equation}

\begin{equation}
\frac{\partial}{\partial T} Pr[\{\Omega_p : U_p(\alpha_p; T, \Omega_p, B_p, \Psi_p) \geq 0\}] = -g_p [\Psi_p(T) - B_p(T)] \frac{\partial [\Psi_p(T) - B_p(T)]}{\partial T}
\end{equation}

We, therefore, find that the probability of party \(p \) scheduling a divisive measure decreases as elections approach (see Equation 5). That is, given that \(\Psi_p(T) - B_p(T) \) is monotonically decreasing in \(T \), the probability of \(p \) drawing a \(\Omega_p \) that offsets the increasing member-level sanctions for party support as elections approach likewise decreases monotonically. Using the same logic as above, we also find from Equation 6 that the marginal effect of time on the probability of a non-negative utility is strictly positive across all time periods, implying that as the duration to election increases, so too does the probability of scheduling divisive measures. Therefore, from the party-level model we arrive at the following agenda setting proposition.

\textit{Agenda Setting Proposition:} As elections approach, majority party leaders will be less likely to schedule proposals that divide the parties.

We find that both the member and party-level propositions posit a decline in partisan behavior as elections approach. In the next section, we discuss the empirical models we use to test our theoretical propositions.

3 Data and Methods

We examine temporal variation in House members’ support for their party, and search for evidence of corresponding agenda-setting adjustments made by House majorities between the 84th and 108th Congresses (1955–2004). In the following subsection, we address the member-level effects, before turning our attention to the agenda-setting effects in the subsequent subsection.

3.1 Member-level Analysis

As a first step, we explore whether members modify their party support on divisive votes according to election proximity. In particular, we test for variation in party support that reflects an awareness of the collective benefits and electoral costs of party loyalty. Our focus is on roll call votes in which a majority of one party votes in opposition to a majority of the other party (i.e., party votes). Party
votes are widely used as the basis for various measures of congressional partisanship (e.g., party unity scores). Unlike other votes, they establish discernible and conflicting party positions. Since party votes generate party divisions, signifying core party differences [i.e., issues motivating party coalescence] (Poole and Rosenthal, 2007), the outcomes of these votes have meaningful implications for the parties’ collective reputations. For both policy and electoral reasons, party leaders have an incentive to exert greater pressure on rank-and-file members on these votes than less divisive ones. Yet, we also know that party votes heavily influence voters’ appraisal of members’ party loyalty, and increasing aggregate party support on these votes has been shown to negatively affect members’ electoral prospects (Carson et al., 2010).

Therefore, members’ voting behavior on party votes offers valuable insight into the balance that members strike between competing collective (i.e., party) and individual (i.e., constituent) demands over the course of an election cycle. To explore temporal variation in party support, we first isolate all party votes during the period of analysis \((n = 9,867) \).\(^4\) We then construct our dependent variable by identifying whether members voted with or against the majority of their party on these votes, coding party support as 1 and defection as 0.\(^5\) For the purpose of this study, a particular advantage of examining party support on party votes is that it allows us to study variation in voting behavior while minimizing the effects of agenda change. That is, this design models the probability of party support given the occurrence of a party vote. Therefore, fluctuations in party votes across a term, which may be a function of both variation in the party support and agenda-setting considerations, do not affect our inferences. Perhaps most importantly, we remove votes that do not involve clearly defined opposition between the parties (i.e., non-party votes) because they fail to present legislators and parties with the tension between collective and individual-level behavior that we theorize about. That is, if a member supports the majority of her party on a non-party vote, then she is, by definition, supporting a majority of her opposing party. Thus, we cannot expect party support on such votes to generate the negative electoral effects identified in previous studies. We analyze all decisions on party votes, as opposed to, say, aggregating party

\[\text{We use the roll call data made available on Keith Poole's Voteview website (at } \text{http://voteview.com/).} \]

\[\text{We code absences and other unrecorded activity as missing data, since we cannot definitively determine party support.} \]
support on party votes over arbitrary time periods within the election cycle, since this allows us to conduct a more refined analysis of the effects of proximity to election.

The key independent variable(s) throughout this and later stages of the analysis are polynomial terms for the duration of time (measured in days) between the vote and the next election.\(^6\) Jointly, these variables provide information regarding the extent to which party support varies with election proximity. To identify the appropriate functional relationship between party support and the timing of votes, we use the Akaike Information Criterion (AIC) to determine the order of the polynomial for days until election that best fits the data.\(^7\) We note that, despite using the same evaluation process across all models, the optimal order of the time polynomial will vary across models due to differences in the underlying data structure. We further note that using splines instead of polynomials yields functional forms on the predicted probabilities of party support that are substantively similar to the results shown below (results from alternative specifications available upon request).

We also include a number of control variables that account for differences in members’ levels of electoral insulation/vulnerability. The variable Retirement identifies members who decided to retire during the Congress of observation. When members decide to retire, they sever both electoral and partisan connections, which may have previously compelled them to behave differently than they do in the absence of such constraints (Rothenberg and Sanders, 2000).

In addition, we include a variable to tap members’ ideological extremism (Ideological Extremism), operationalized as the absolute value of their first-dimension DW-NOMINATE score (Poole and Rosenthal, 2007). The variable accounts for the different policy costs that members incur when voting with their party on divisive votes. Since the first dimension is most closely associated with inter-party conflict, it effectively captures how (in)consistent a member’s (potentially induced) preferences are with the center of her party on measures that divide the parties. Members situated near the center of the policy continuum have preferences that are at odds with the majority of their fellow partisans. Conversely, we would expect ideological extremists to have fewer electoral constraints associated with party voting, given the natural congruence that exists between their

\(^{6}\)We used Poole’s Voteview codebooks to collect the dates on which votes occurred, and relied on the House Clerk’s website (at \url{http://clerk.house.gov}) to determine the dates of elections.

\(^{7}\)We also use the Bayesian Information Criterion (BIC) and likelihood ratio tests to confirm the model selections based on the AIC.
policy preferences and their party’s policy positions.

The variable *Seniority* measures a member’s chamber seniority and accounts for the possibility that members accrue greater electoral insulation with service. We also include a number of variables that capture the competitiveness of a member’s previous election. *Lagged Vote Share* measures the incumbent’s percentage share of the two-party vote received in the previous election. *Lagged Quality Challenger* is a dichotomous measure indicating whether the incumbent faced a quality challenger — defined as a candidate who has held previous elective office (Jacobson, 1989) — in the previous election. *Lagged Spending Gap* is measured as the natural logarithm of challenger expenditures less the natural logarithm of incumbent expenditures.\(^8\)

Lagged District Partisanship is measured as the share of the two-party vote that the presidential candidate belonging to the member’s party received in her congressional district in the previous presidential election. This is an often used measure of district partisanship (see e.g., Ansolabehere, Snyder, Jr. and Stewart, III, 2001; Carson et al., 2010). While voters broadly oppose overtly partisan behavior, we account for district partisanship since some legislators are surely more susceptible to reprisal than others. We also include an indicator variable, termed *In-party Midterm*, that accounts for membership in the president’s party in midterm election cycles. This captures any adjustments in partisan behavior that in-party members make in anticipation of the well-documented midterm loss (Bafumi, Erikson and Wlezien, 2010). Each of these member-level variables can be considered a signal to members regarding their relative electoral security.

In one of the member-level models reported below, we use a composite factor score of these measures, termed *Member-level Characteristics (Factor Score)*, instead of including each of the individual variables. Increasing values of this measure represent increasing electoral insulation.\(^9\)

To explore whether electoral vulnerability enhances the effect of time on the probability of casting a party vote, we interact the composite factor score with the polynomial terms of time. This

\(^8\)Use of the natural logarithm captures the nonlinear relationship between money and votes identified by Jacobson (1980). Spending data are not available for the period preceding 1978. Excluding this variable from the analysis, however, does not substantively affect the results.

\(^9\)Specifically, the composite score has a strong positive relationship to *Ideological Extremism*, *Seniority*, *Lagged Vote Share*, and *Lagged District Partisanship*, and a strong negative relationship to *Lagged Quality Challenger* and *Lagged Spending Gap*. The composite score exhibits a considerably weaker (positive) relationship to both *Retirement* and *In-party Midterm*.
approach provides for more easily interpretable results, since it significantly reduces the number of interaction terms needed (i.e., we avoid having to interact every member-level measure with the three polynomial terms of time).10

Since one might suspect that party adjustments of the agenda that are consistent with our expectations could affect our measurement of member-level behavior, we include additional controls to account for variation in the agenda. In other words, if parties, as hypothesized, schedule more consensual votes as elections approach, then it is conceivable that we might observe declining party support on party votes as a result of the types of votes being considered. While we account for agenda change by exclusively considering party votes, it is nevertheless possible that a model that fails to fully control for the agenda could overstate a decline in member support. Using observed voting divisions to control for variation in the divisiveness of the agenda would, by definition, obscure the effect we seek to examine.

Instead, we know that some types of votes are more likely than others to generate inter-party disagreement. Suspension of the rules, for instance, requires two-thirds support for passage, which is why these votes tend to occur on measures that are relatively non-controversial. We include dummy variables (\textit{Vote Type Fixed Effects}) for the six vote type categories (minus a reference category) introduced by Crespin, Rohde and Vander Wielen (n.d.). The vote type categories include regular passage of bills, passage under suspension of the rules, miscellaneous passage (final passage of measures that do not require the president’s signature), amendments, partisan procedural votes (e.g., special rules and motions to recommit), and miscellaneous procedural votes (see the appendix for additional information on the vote categories). Crespin, Rohde and Vander Wielen show that these categories are substantially related to levels of observed inter-party conflict. By controlling for vote type, as opposed to controlling for observed voting behavior, we employ a measure of inter-party conflict that is exogenous to the behavior of interest. Moreover, it has also been shown that variation in party cohesion is related to changes in the issue content of the agenda (Lee, 2008), and so we likewise include dummy variables (\textit{Issue Type Fixed Effects}) for the 19 major topic categories

10We estimate numerous models with a wide variety of control variables, lagging schemes, and interactions with the polynomial terms of time, and find that the following results are highly robust to their selection.
identified by the Policy Agendas Project.

Finally, we include dummy variables for Congresses (Congress Fixed Effects). These fixed effects are designed to capture any systematic differences in partisan behavior that might be due to circumstances specific to particular Congresses. An additional advantage of including Congress fixed effects is the ability to explore whether legislative behavior has systematically changed over the period of analysis.

We estimate the probit model of member i's party support on vote v, shown in Equation 7, both with and without control variables, where α is the intercept term, x_i denotes the vector of control variables for member i (with corresponding vector of coefficients, β) and z_v the control variables for vote v (with corresponding vector of coefficients, γ). The model corrects the standard errors for clustering, which is necessary due to the presence of repeated measurements (i.e., individual members occur multiple times in the data set). The benefit of the staged inclusion of the control variables is that we can observe any changes in the marginal effects of the polynomial terms that occur when accounting for additional factors. Note that for this model the cubic function of time (DaysToElection in Equation 7) best fits the data. The second and third-degree polynomial terms of DaysToElection allow for non-linear effects of time (the corresponding coefficients are ζ_2 and ζ_3, respectively), and are again included because model selection criteria dictate this specification.

In line with our theoretical proposition, we expect the polynomial terms to collectively produce increasing probabilities of party support with distance from election. While this can occur in a

11 The data used for coding issue types were originally collected by Frank R. Baumgartner and Bryan D. Jones, with the support of National Science Foundation (NSF) grant numbers SBR 9320922 and 0111611. We note that alternatively using the issue type categories identified in the Political Institutions and Public Choice (PIPC) data produces substantively similar results.

12 Using fixed effects for election cycles, rather than Congresses, produces substantively similar results. We believe that there is strong theoretical rationale for accounting for Congresses, since doing so captures variation in both membership and partisan structures.

13 We find evidence that the probit link offers subtle improvements in model fit compared to the logit link for some of the member-level models, whereas the reverse is true for the agenda setting models. For both sets of models, either specification of the link function arrives at substantively similar results.

14 Due to the size of the data matrix, we are unable to estimate a hierarchical model for the entire data set to account for repeated measures. However, we estimated a hierarchical model for samples of the data, and arrived at substantively similar results to those below.
number of ways, should the polynomial exhibit alternating signs, then the result most consistent with this supposition is one in which the first and third-degree terms are positive (ζ₁ and ζ₃, respectively) and the second-degree term is negative (ζ₂). The vector of coefficients for the Congress fixed effects is denoted as ξ in Equation 7.

\[
Pr(\text{PartySupport}_{i,v} = 1) = \Phi \left(\alpha + \sum_{k=1}^{3} \zeta_k \text{DaysToElection}_k + \beta' x_i + \gamma' z_v + \xi' \text{Congress} \right)
\]

(7)

Since we find evidence of systematic changes in party support related to election proximity (results discussed below), the next step in the empirical analysis is to investigate whether majority parties structure the agenda by scheduling divisive (consensual) votes when members are most (least) insulated from the negative electoral effects of partisan behavior.

3.2 Agenda Setting Analysis

Next, we explore the proposition that the occurrence of divisive votes and duration to election are positively related. To study this question, we examine all House votes during the period of analysis (\(n = 20,450\)).¹⁵ We begin by exploring the timing of both divisive and consensual votes. The dependent variable for one model is a dichotomous measure of whether a vote generated party voting. This is a natural extension of our analysis of members’ party support, since the above analysis examines voting behavior on party votes but not the timing of these votes (by design). For a separate model, we construct a dichotomous dependent variable measuring whether a vote resulted in at least 90% of the membership voting in the same fashion (hereafter referred to as “ultra-consensual” votes). We would expect to see a decreasing probability of party votes and increasing probability of ultra-consensual votes as elections approach. As an additional gauge of changes in inter-party division relative to elections, we also examine trends in the differences across parties’ vote distributions (hereafter referred to as the “disagreement score”). We measure the disagreement score as the absolute difference in the proportion of participating Democrats and Republicans voting “yea,” where values approaching 1 indicate increasing inter-party disagreement.

¹⁵We use the Political Institutions and Public Choice (PIPC) roll call database (at http://www.poli.duke.edu/pipc/data.html).

16
the disagreement score decreases as elections approach.

The key independent variables for each of these models are the polynomial terms for the duration of time (again measured in days) between the vote and the next election. The order of polynomial is determined using the model selection process described above. We find that the models of party and ultra-consensual votes are best fit using a quadratic function of time, and the model for the disagreement score with a cubic function. Since we cannot expect every vote to generate equivalent inter-party divisions, we again include control variables for the vote type categories introduced by Crespin, Rohde and Vander Wielen (n.d.). In a separate model, we also include issue type fixed effects, which further account for differences across votes in terms of their propensity to produce inter-party disagreement.

We might also anticipate some variation in the occurrence of divisive/consensual votes on the basis of the preference composition of the membership. For one, we would expect partisan disagreement to rise naturally with increasing party polarization. In addition, it has been argued elsewhere that central party leaders are granted broader license by rank-and-file members to pursue partisan outcomes as the two legislative parties become increasingly polarized [i.e., as intra-party homogeneity and inter-party distance increase] (Rohde, 1991; Aldrich and Rohde, 2000). Therefore, it is important that we account for the preference distribution of partisans as we examine variation in the scheduling of divisive/consensual votes. We estimate a separate model including the measure of polarization introduced by Vander Wielen and Smith (2011), which is shown in Equation 8. This single measure accounts for the polarization conditions articulated by Rohde (1991), while avoiding collinearity between the separate components during the period of analysis. This measure of polarization increases with distance between party medians and as standard deviations for the parties get smaller, all else equal. Stated differently, the greater the inter-party disagreement and intra-party cohesion, the greater the value of the polarization measure. We measure the input variables (i.e., party medians and standard deviations) using first-dimension DW-NOMINATE scores.\footnote{We note that this measure of polarization varies across, and not within, Congresses. This measure captures important across-Congress variation in party preferences that theoretically affects agenda-setting strategies. While members’ observed policy positions may strategically vary across time, it is exceedingly unlikely that their preferences would systematically vary according to elections. Therefore, we use first-dimension DW-NOMINATE scores, which are based on a scaling technique that accounts for all recorded votes, to capture member preferences and polarization at the Congress level. Clearly, some of the strategic decisions theorized about could affect members’}
\[
\frac{|\text{Party Median}_{\text{Majority}} - \text{Party Median}_{\text{Minority}}|}{\sqrt{\left(\sigma^2_{\text{Majority}} + \sigma^2_{\text{Minority}}\right)/2}}
\]

Equations 9 and 10 show the models for this step of the analysis, where \(x_i \) denotes the vector of control variables for vote \(i \) (with corresponding vector of coefficients, \(\beta \)). Since the party and ultra-consensual vote models have the same specifications, we present them in the same equation (Equation 9), where \(y \) denotes the occurrence of the operative votes. Following from our theoretical proposition, as the duration of time until the next election decreases, we expect the likelihood of party votes to decrease, the likelihood of ultra-consensual votes to increase, and the disagreement score to decline.

\[
\text{Pr}(y_i = 1) = \logit^{-1}\left(\alpha_j[i] + \sum_{k=1}^{2} \zeta_{j[i]k}\text{DaysToElection}^k_i + \beta'x_i\right)
\]

\[
\alpha_j \sim N(\mu_\alpha, \sigma^2_{\text{congress}})
\]

\[
\beta_j \sim N(\mu_\beta, \sigma^2_\beta)
\]

\[
\text{DisagreementScore} = \alpha_j[i] + \sum_{k=1}^{3} \zeta_{j[i]k}\text{DaysToElection}^k_i + \beta'x_i
\]

\[
\alpha_j \sim N(\mu_\alpha, \sigma^2_{\text{congress}})
\]

\[
\beta_j \sim N(\mu_\beta, \sigma^2_\beta)
\]

Given the hierarchical nature of the data, with votes nested within Congresses, we estimate hierarchical logit models for the analysis of party and ultra-consensual votes, and a hierarchical linear model for the analysis of disagreement scores. Two alternative estimation strategies to using hierarchical models include estimating standard logit and linear models with Congress fixed effects, or standard models without Congress fixed effects. Models with a fixed effects structure make the assumption of no pooling, while models without fixed effects assume complete pooling (Gelman and Hill, 2007). Stated differently, inclusion of Congress fixed effects assumes that Congresses do not share any common characteristics (hence, no pooling), while exclusion of Congress fixed effects implies that there are no differences across Congresses, such that all votes can be treated as if scores at the margins. However, we are confident that these scores offer a reasonable basis for assessing Congress-by-Congress variation in polarization.
they come from the same Congress (hence, complete pooling). Not only are these assumptions
very strong ones, but they are also likely to be unrealistic. Conversely, hierarchical models offer
a compromise of partial pooling, where the level of similarity (difference) across Congresses is not
assumed but rather estimated as part of the model.

In particular, we group on Congresses in the hierarchical models to account for changes in the
agenda that result from variation in the composition of the membership across time.17 In each
case, we include a random intercept to permit different baseline effects across Congresses ($\alpha_{ij[i]}$ in
Equations 9 and 10). We also account for differences across Congresses in the effect of election
proximity on the probability of observing a particular vote type by including random slope coeffi-
cients for the polynomial terms of time ($\zeta_{ij[i]k}$ in Equations 9 and 10). By including random slope
coefficients, we allow for the possibility that the effect of time on, for example, the probability of
a party vote is not the same in each Congress. The standard deviations corresponding to the ran-
dom intercept and random slope coefficient(s) provide information regarding the variation in effects
across Congresses, with higher standard deviations signifying greater across-Congress differences.
We include only those random slope terms that improve the fit of the model, using the aforemen-
tioned model specification approach.18 The random intercept and random slope coefficients are
distributed normally with unknown mean and variance.

Since Equations 9 and 10 examine observed voting divisions, temporal variation in party sup-
port surely influences the timing of inter-party disagreement. For instance, a sufficient decrease
(increase) in members’ party support consistent with expectations could produce a corresponding
decrease (increase) in the occurrence of party votes under conditions of a static agenda. Therefore,
we take the additional step of examining the timing of votes that we have \textit{a priori} reason to believe
are systematically divisive/consensual. This extension avoids reliance on vote outcomes, which are
affected by members’ party support, for uncovering strategic manipulation of the agenda. We know

17As an alternative, we also grouped votes on election cycles — the votes occurring between
elections — as opposed to Congresses, and found substantively similar results. This is not entirely
surprising considering that the variables that categorize votes according to Congress and election
cycle correlate at 0.9998. Since Congresses capture the bulk of the duration effects, as evidenced by
the correlation with election cycles, and avoid (potentially sizeable) incongruities in membership,
we believe there is strong theoretical rationale for grouping on Congresses.

18We note that the models are highly robust to alternative specifications of both fixed and random
effects.
that certain votes are predisposed to high/low levels of inter-party disagreement. That is, some votes systematically occur on matters of high/low inter-party conflict. For instance, amendments are more likely to expose partisan conflict over the content of the bill than final passage votes that offer a choice between the bill and the status quo (Roberts and Smith, 2003). Furthermore, evidence suggests that party leaders strategically consider the implications that vote types have for inter-party disagreement (Finocchiaro and Rohde, 2008).

We study the occurrence of four vote types that have clearly identifiable associations with inter-party conflict — regular passage votes, suspensions, amendments, and partisan procedural votes. Both regular passage and suspension votes customarily occur on measures that are relatively non-controversial, whereas amendment and partisan procedural votes occur on more divisive measures (Crespin, Rohde and Vander Wielen, n.d.). We examine whether the occurrence of these votes systematically varies over the course of election cycles. For that purpose, we estimate a hierarchical logit model for each of the vote categories, in which the dependent variable is a dichotomous measure of whether the vote is of the vote category of interest. As with earlier models, the key independent variables are the polynomial terms of the number of days until the next election. We also estimate separate models including the polarization measure and issue type fixed effects. We again include random intercepts and random slope coefficients for the polynomial terms of time. The order of the polynomial of time and the random components are determined using the model fit specifications discussed above.

\begin{equation}
\Pr(y_i = 1) = logit^{-1}\left(\alpha_{j[i]} + \sum_{k=1}^{K} \zeta_{j[i]k} DaysToElection^k_i + \beta Polarization_i \right)
\end{equation}

\begin{align}
\alpha_j & \sim N(\mu_{\alpha}, \sigma_{\text{congress}}^2) \\
\beta_j & \sim N(\mu_{\beta}, \sigma_{\beta}^2)
\end{align}

The notation for the models is shown in Equation 11, where $K = 1$ for the regular passage and partisan procedural models and $K = 2$ for the other vote types. If majority parties strategically adjust the agenda, as suggested by our theoretical proposition, then we should see more regular passage votes and suspensions and fewer amendments and partisan procedural votes as elections approach. Such a finding would constitute additional evidence that majorities schedule

19 The miscellaneous categories are omitted from this analysis since they offer less conclusive predictions for partisan divisions.
more consensual votes in response to members’ electoral constraints.

4 Results

We begin our discussion of the results in the next subsection by interpreting the member-level effects. We then use these results to make a case for why member-level effects are only part of the dynamic elite partisanship story. The following subsection is devoted to the discussion of the agenda-setting effects.

4.1 Evidence for Dynamic Member-level Partisanship

Table 1 presents the results for the model shown in Equation 7, both with and without member and vote-specific control variables included.\(^{20}\) Notably, in these estimations we find that all of the coefficients for the polynomial terms are statistically significant, with the first and third degrees exhibiting positive signs. This finding points to a trend of an increasing probability of party support as the number of days to election increases. Moreover, the magnitudes of the coefficients are impressively consistent across the estimations, implying that the effects are robust to the inclusion of myriad controls.

\[\text{Table 1 About Here.}\]

As expected, we also find a strong, positive effect of Ideological Extremism (Models 2 and 3). Namely, members whose preferences are more aligned with their party’s position (i.e., members who are located away from the center of the ideological continuum) exhibit a higher probability of party support, as predicted. We also find a positive and statistically significant effect of Lagged Quality Challenger on party voting (Models 2 and 3), indicating that members who face quality challengers are more likely to vote with their party on divisive votes. This finding does not lend itself to an unambiguous interpretation. It is conceivable that members who faced a quality challenger in the previous election relied heavily upon the assistance of the party to win reelection, and thus feel compelled to support their party on subsequent legislative votes. We are, however, reluctant to draw such a conclusion, especially considering that the Lagged Quality Challenger variable is

\(^{20}\) As a robustness check, we also estimated each of the models in our analysis excluding those votes taking place during the lame-duck sessions. The results we report below are not substantively changed by excluding lame-duck votes.
highly correlated with other member-level variables. In fact, this variable assumes the predicted (negative) sign when excluding other member-level variables from Models 2 and 3. The negative and statistically significant effect of In-party Midterm Election (Models 2 and 3) has a straightforward interpretation: members of the president’s party are less likely to support their party in a midterm election cycle. This is an intuitive result, suggesting that members attempt to escape the midterm decline by exhibiting greater party independence. The effects on both Ideological Extremism and In-party Midterm Election are highly robust.

The other member-specific control variables are not statistically significant when correcting the standard errors for clustering. Model 4 in Table 1 builds on Model 3 and replaces the various member-level variables with a single composite factor score. In addition, we include interaction terms between the factor score and the polynomial terms of time to investigate the possibility that the slope is dependent on electoral insulation. Stated differently, it is conceivable that the effect of time on party voting is functionally dependent on a member’s electoral circumstances. As indicated by the interaction terms failing to achieve statistical significance, there is no such variation in the effect of time across levels of electoral insulation. However, the composite factor score on its own is positive and statistically significant. Since higher values indicate greater electoral insulation, this finding, quite intuitively, suggests that more secure members are afforded greater liberty to support their party on party votes. This finding confirms our supposition that a member’s predisposition toward party support is contingent on her electoral circumstances.

To facilitate interpretation of the central findings, we simulate the 95% confidence intervals for the probability of party support on party votes across the two-year election cycle for the models in Table 1 (see Figure 2). Panel (a) shows a member’s predicted probability of supporting her party on a party vote by the number of days to the next election for Model 1, holding all variables at their mean, Panel (b) shows the predicted probability for Model 2, holding all variables at their mean, Panel (c) shows the predicted probabilities for Model 3 for the Congresses with the highest (103d

21 Each of the member-specific control variables is statistically significant in models that do not account for clustering on individual members. This suggests that intra-cluster correlation in errors is driving the statistical effects on the control variables in the uncorrected models.

22 These simulations, and others, are conducted using the Zelig package (Imai, King and Lau, 2008) in R (R Development Core Team, 2012).
Congress) and lowest (96th Congress) predicted baseline party support, holding all other variables at their mean, and Panel (d) shows the predicted probabilities for Model 4 for the 99th percentile of the factor score (“insulated member”) and the 1st percentile of the factor score (“vulnerable member”), holding all other variables at their mean.

We find an appreciable drop in members’ probability of supporting their party on divisive votes with proximity to election across each of the models. For Models 1 and 2 in Table 1 [Panels (a) and (b) in Figure 2, respectively], the average member is expected to decrease her party support by approximately 9 percentage points over the course of the election cycle. There is also discernible variation in baseline party support across both Congresses and levels of electoral insulation [see Panels (c) and (d) in Figure 2, respectively]. Given that the predicted probabilities generated by the models are non-linear (i.e., logistic function), variation in the baseline party support also affects the rate of change in party support across time. For instance, the predicted probabilities of party support for an average member in the Congress with the highest baseline party support (103d Congress) vary from approximately 0.947 when elections are most distant to 0.892 when they are most proximate. We compare this to the Congress with the lowest baseline party support (96th Congress), in which the analogous predicted probabilities are 0.92 and 0.846, respectively [see Panel (c)].

For an insulated member (measured as the 99th percentile of the factor score), the mean predicted probabilities of party support vary from 0.965 to 0.924 over the course of the election cycle, whereas the mean predicted probabilities for a vulnerable member (measured as the 1st percentile of the factor score) likewise vary from 0.849 to 0.743 [see Panel (d)]. In each of the models, the functional form of the relationship between party support and proximity to election suggests that party support is characterized by an equilibrium level that is interrupted by low levels when elections are proximate and high levels when elections are distant.

This is a rather plausible functional form to characterize variation in party support across time. Of course, some of the variation in the predicted probabilities can be attributed to the curve fitting exercise, in which we find evidence that a cubic polynomial offers the best fit for the data. Nonetheless, this result is generally consistent with the conjecture that partisan behavior is inversely

\[\text{We do not find a systematic increase/decrease in the baseline party support across successive Congresses during the period of analysis. This is confirmed by including a trend term in the models, which fails to achieve statistical significance.}\]
related to voter monitoring. Specifically, the most rapid reduction in party support occurs over the first year of the election cycle, with additional reductions occurring shortly before the subsequent election. Arguably, this trend follows the attentiveness of the most politically astute in the earliest stages of the election cycle and the less politically engaged in the latter stages. In fact, it has been shown elsewhere that House incumbents invite challenges from experienced politicians when they lend excessive party support in the first session of a term (Carson, 2005). Given that the entry of well-supported challengers is a crucial determinant of electoral competitiveness in House races (Abramowitz, Alexander and Gunning, 2006), it is not entirely surprising that members temper legislative behavior in the first year of the election cycle that creates voter discontent and generates demand for strong challengers. Moreover, the decline in members’ party support when elections are proximate surely reflects the disproportionate level of voter attentiveness that occurs immediately before an election (Gelman and King, 1993). 24

[Figure 2 About Here.]

These findings offer robust evidence in favor of the party support proposition. We observe a considerable decline in members’ support for their party on contested votes as elections approach. Therefore, members exhibit behavior that reflects the strategic balancing of collective and individual-level considerations — they seek collective returns when individual electoral demands are minimal and curtail their partisan support as elections approach.

To further explore the member-level effects identified in the above analysis, and to more directly account for alternative explanations, we examine only those votes occurring during the period extending from two months preceding an election to the end of a Congress. We select this period because it provides a limited and approximately equal amount of time before and after an election within a given Congress. 25 Because this approach examines only those votes occurring at the end

24 As indicated in our party-level theoretical model (see Section 2), we do not necessarily contend that an agenda-setting response by the majority party to member-level behavior is the result of concern for the size of its legislative coalition, although there may be circumstances in which this is the case. Rather, we suggest that party leaders make scheduling decisions primarily to maximize collective gains and minimize the damaging electoral consequences that individual members face.

25 Reasonable adjustment to the periods of time before and after an election yield substantively similar results.
of a Congress, we can better account for the possibility that the model results are an artifact of end-of-Congress effects. It could be argued, for instance, that the diminishing party support as elections approach is a result of legislators making concessions in an effort to advance legislation before the end of the Congress. If this explanation is indeed driving our results, then we would expect the likelihood of party support on post-election votes to be either statistically indiscernible from or perhaps even lower than pre-election votes.

We note that the above analysis attempts to account for these alternative explanations by (i) measuring days relative to elections and not the end of Congress, and (ii) considering only party votes so that agenda-setting effects (e.g., possible reductions in divisive votes as elections approach) do not contaminate our results. Nonetheless, we believe that this extension is a valuable validity check on our central findings. We replicate the above models, using a dummy variable measuring whether the given vote occurred prior to or after the election. We use this measure in lieu of the polynomial terms of time, since the period of analysis does not provide sufficient variation in the number of days to election. For each of the models, we find that members exhibit a statistically significant increase in party support following election (results available upon request). This finding suggests that we are not observing an end-of-Congress effect, but rather a strategic adjustment of legislative behavior relative to elections.

4.2 The Duality of Dynamic Elite Partisanship

Our finding that the likelihood of party support, both in terms of baseline levels and marginal change across time, varies predictably across members according to their electoral vulnerability [see Figure 2(d)], provides support for the claim that observed variation in party unity is, at least in part, a function of individual-level behavior and not simply agenda manipulation. However, it remains of interest to assess whether the decline in party unity is solely a product of member-level variation in party support. To better understand the contribution of the member-level effects to the observed change in party unity across time, we conduct a simulation based on the above analysis. In particular, we are interested in assessing the amount of reduction in party unity across the first two years of the election cycle [see Figure 1(b)] that could plausibly be attributed to variation in member-level support. To do so, we first generate, for each Congress separately, the predicted probabilities of party support for every member at the mean number of days to election in year
one (time \(t \)) and year two (time \(t + 1 \)) of the election cycle using Model 3 from Table 1, since it offers the best fit of all the member-level models.\(^{26}\) We use the members’ observed characteristics (e.g., ideological extremism, seniority, lagged vote share, etc.) in the calculation of their predicted probabilities. We then simulate 500,000 roll call votes at time \(t \), in which each member’s likelihood of casting a party vote is equal to her predicted probability of party support at time \(t \). We conduct the same simulation at time \(t + 1 \). Thus, we arrive at distributions of party support at time \(t \) and \(t + 1 \) that we can difference to arrive at a single distribution of predicted vote loss across the years of the election cycle.

We can interpret this difference distribution as giving us information about the likely decline in party support on an individual vote that occurs across years in the election cycle solely because of the member-level effects identified in Table 1. Next, we assume that all of the votes in the second year of the election cycle that were decided by a margin equal to or smaller than the 95th percentile of the vote loss distribution would have been party votes if not for the decline in member-level support across time. Therefore, we control for member-level effects by determining the percentage of party votes that would have occurred in the second year of the election cycle if these (near-miss) votes were instead classified as party votes. This gives us a rather generous estimate of the member-level contribution to vote losses across years. Stated differently, by using such a generous estimate (the 95th percentile of the vote loss distribution), we are biasing the analysis against finding any residual causes of declining party unity after having accounted for member-level effects. If the decline in party unity can be entirely attributed to member-level effects, then there is no room for attributing any role to majority party leaders in reducing party votes via manipulation of the agenda. On the contrary, if the member-level effects fail to fully explain the reduction in party unity across years — especially when we are intentionally overstating the member-level effects — then there is compelling reason to believe that agenda setting plays an independent role.

Figure 3 presents the simulated effect that member-level variation in party support has on party unity across years in election cycles that exhibit a statistically significant decrease in party unity [see Figure 1(b)]. The dots at the base of the bars indicate the observed decrease in percent of party votes across years. The tops of the bars correspond to the change in party unity across years after

\(^{26}\)We confirm this conclusion using various model selection criteria (e.g., AIC and BIC).
accounting for the 95th percentile of vote loss predicted by the empirical model. If a bar does not cross zero on the y-axis, then member-level effects fail to account for all of the observed decrease in the percent of party votes.

[Figure 3 About Here.]

We find that all but one election cycle (1984-86) is bounded away from zero, and many of the election cycles still exhibit substantial decline in party unity across years. In fact, we find that, on average, nearly half of the decline in party votes across election cycle years cannot be explained by (a generous assessment of) member-level effects. This simulation, at the very least, suggests that the role of majority party agenda manipulation is not a trivial part of this story. We now turn our attention to the agenda setting proposition.

4.3 Evidence for Dynamic Agenda Setting

The results of the models in Equations 9–10 are shown in Table 2 and comport with our expectations.27 Specifically, we find that there is a marked decrease in both the probability of a party vote and the disagreement score as elections approach. Conversely, we observe a rise in the probability of ultra-consensual votes with election proximity. We also find that the vote type variables have the anticipated effects, with regular passage and suspension votes depressing the voting conflict and amendments and partisan procedural votes having the opposite effect. This finding lends support to the notion that certain vote types are predisposed to particular levels of conflict, which motivates the analysis to follow.

We also note that the results are robust to the inclusion of the Polarization variable and the issue type fixed effects. Polarization has the expected (positive) effect for both the party vote and disagreement score models, but is not statistically significant for the ultra-consensual model. In other words, across-Congress levels of inter-party disagreement are positively related to polarization.

[Table 2 About Here.]

27We also estimate all agenda-setting models including a variable to account for budget votes. Generally speaking, budget votes must be scheduled and are likely to generate inter-party disagreement (more than 68% of the budget votes during the period of analysis were party votes). The results we report below are not substantively changed by accounting for budget votes, and the variable does not improve model fit.
Figure 4 shows the predictions for each of the pooled models with the *Polarization* variable in Table 2 on an average vote across the election cycle.28 The predicted changes in these votes with respect to election proximity are noteworthy. The probability of a party vote falls by over 13 percentage points, while the probability of an ultra-consensual vote rises by roughly 8 percentage points. Moreover, the disagreement score falls by approximately 17 percentage points over the course of the election cycle. Each of these findings suggests a substantial decrease in the consideration of divisive measures as elections approach. Therefore, we find initial support for the agenda setting proposition.29

Finally, we examine the occurrence of vote types that are associated with particularly high/low levels of inter-party disagreement. Again, the advantage of this analysis is that we have *a priori* expectations for divisiveness levels on these votes that do not depend on observed levels of voting conflict. Table 3 shows the results for the models in Equation 11. The coefficients for the polynomial terms in each of the models are consistent with our expectations that votes predisposed to generate conflict decrease with election proximity and traditionally consensual votes increase as elections approach. All of the polynomial terms achieve statistical significance except in the partisan procedural model. Inclusion of the *Polarization* variable does not substantively alter the results, and *Polarization* is statistically significant and in the expected direction for both the regular passage and amendments models.30 The results are also robust to the inclusion of the issue type

28 The predictions are based on the pooled models since we do not find consistent effects of issue types across the different models, and this approach allows us to assess the average effect across issue types rather than basing our predictions on an arbitrary base category. We note that Zelig does not support hierarchical models with random slopes, and so the simulations are based on models that include only random intercepts. However, the results of these models are substantively similar to those including random slopes (as reported in Table 2).

29 Given that the sample size for the analysis of the party support proposition exceeds that for the agenda setting proposition by a factor of more than 72, we are unable to identify the functional relationship between divisive/consensual votes and time with the same level of precision as for the analysis of party support. Therefore, differences in functional behavior across the analyses may well be attributed to the disparity in sample sizes.

30 It is not entirely surprising that polarization has a positive and statistically significant effect on the use of suspensions. For one, factors correlated with polarization, such as legislative workload and
fixed effects. Figure 5 offers the predicted probabilities for the occurrence of the vote categories over the course of the election cycle using the pooled models with the *Polarization* variable.\(^{31}\)

[Table 3 & Figure 5 About Here.]

These findings constitute additional evidence in support of the agenda setting proposition. That is, we find that majority parties are decreasingly likely to schedule divisive votes as elections approach. This suggests that House majority party leaders respond to the electoral pressures their members face by adjusting the agenda accordingly. These findings point to an agenda-setting strategy in which majorities seek to maximize collective gains when member-level electoral constraints are low — when elections are distant — and promote members’ electoral fortunes when constraints are comparatively high — when elections are near.\(^{32}\)

5 Discussion and Conclusions

There is abundant evidence that voters across democratic systems have conflicted views of parties. While they rely on party labels to cast their votes and reward parties for policy successes, voters at the same time loathe excessive partisanship by elites. Voter ambiguity regarding partisanship, therefore, presents parties with countervailing incentives. Strong partisanship will bring desired rules changes, have encouraged the use of suspensions (Carr, 2005). Moreover, suspensions restrict the minority’s ability to amend or delay legislation, which is particularly useful to the majority when party polarization is comparatively high (Binder, 1997; Moffett, 2008). The *Polarization* variable is in the expected direction for the partisan procedural model, but it fails to achieve statistical significance.

\(^{31}\)See Footnote 28 for discussion of the use of these models for generating the predicted probabilities.

\(^{32}\)We likewise evaluate whether the results of our agenda setting models (in Tables 2 and 3) are an artifact of end-of-Congress effects. Again, we restrict the analysis to votes occurring during the period extending from two months preceding an election to the end of a Congress. As before, we replicate the models using a dummy variable measuring whether the given vote occurred prior to or after the election in lieu of the polynomial term(s) of time. We find that the coefficient on the dummy variable is statistically significant and in the direction predicted by the agenda setting proposition for each of the models, although this variable fails to achieve statistical significance in the amendments models in Table 3. We note, however, that this variable is statistically significant and in the expected direction for the partisan procedural models in Table 3, whereas the original models failed to identify a statistically discernible time effect. Therefore, we find compelling evidence that divisive votes are strategically depressed in the period immediately preceding election.
policy successes and present voters with a clear party brand, but too much of it, and voters will punish legislators come election time. The question then is: how do parties solve this dilemma?

We argue that elite partisan behavior is time-dependent. A key factor in this story is that voter monitoring of legislative activity varies systematically over time. Parties and elected politicians demonstrate behavior that reflects an awareness of the time-sensitivity of partisanship, as they opportunistically pursue party goals when the costs of partisan behavior are relatively low (when voter attentiveness is low). As such, this study suggests that elite partisanship is best characterized as a highly dynamic process, even over the short term, as opposed to the conventional perspective, which holds that partisanship changes incrementally over lengthy periods of time.

We believe that these findings have important implications for multiple related literatures. For one, our work suggests that a complete picture of variation in elite partisanship may require analysis over more refined measures of time. In fact, partisan variation appears significantly more dynamic than previously considered. Therefore, studies that measure the cohesiveness and/or polarization of congressional parties over extensive periods (e.g., two-year congressional terms) may obscure meaningful information. Moreover, a finding that members adopt systematically variable voting positions relative to elections adds to recent evidence that members’ policy positions are strategically adjusted (Lindstädt and Vander Wielen, 2011; Bailey, 2007), but contradicts observations of voting stability across time (Lott and Bronars, 1993; Poole, 2007).

These findings also speak to the expansive literature addressing the legislative conditions relating to policy change (Hurley, Brady and Cooper, 1977; Krehbiel, 1998). Our work suggests that the timing and nature of legislative output may not only be a function of structural features of Congress or the type of issues that arise, but also when in the election cycle these issues surface. We believe that these results point to two possible policy implications. First, an inevitably divisive measure may well be postponed until after elections. The story of the Bush tax cuts briefly detailed above provides some anecdotal evidence to this effect. Second, the majority party may be less inclined to pursue partisan manipulation of legislation when elections are near. The decline in consideration of divisive measures as elections approach offers some circumstantial evidence of this possibility. A thorough examination of the policy implications of these findings is, however, beyond the scope of this study, and so we leave this question for future study.
References

Figure 1: Change in Party Unity Across Time.
Notes: Panel (a) shows the percent of party votes over two-year congressional terms, and Panel (b) shows changes in the percent of party votes across years within election cycles. The election cycle is divided such that the first year extends from November of the even year through October of the odd year, and the second year extends from November of the odd year through October of the even year. Changes that achieve two-tailed statistical significance at the 0.1 level are denoted in Panel (b).
<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to Election</td>
<td>0.0010**</td>
<td>0.0012**</td>
<td>0.0008**</td>
<td>0.0007**</td>
</tr>
<tr>
<td></td>
<td>(5.85e-05)</td>
<td>(0.0001)</td>
<td>(0.0001)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>Days to Election<sup>2</sup></td>
<td>-4.03e-06**</td>
<td>-5.31e-06**</td>
<td>-3.43e-06**</td>
<td>-3.36e-06**</td>
</tr>
<tr>
<td></td>
<td>(2.03e-07)</td>
<td>(3.49e-07)</td>
<td>(3.34e-07)</td>
<td>(3.27e-07)</td>
</tr>
<tr>
<td>Days to Election<sup>3</sup></td>
<td>4.68e-09**</td>
<td>6.27e-09**</td>
<td>4.26e-09**</td>
<td>4.17e-09**</td>
</tr>
<tr>
<td></td>
<td>(2.94e-10)</td>
<td>(3.51e-10)</td>
<td>(3.31e-10)</td>
<td>(3.20e-10)</td>
</tr>
<tr>
<td>Retirement</td>
<td>-0.2583</td>
<td>-0.2827</td>
<td>-0.0032</td>
<td>-0.0032</td>
</tr>
<tr>
<td></td>
<td>(0.3365)</td>
<td>(0.3460)</td>
<td>(0.0022)</td>
<td>(0.0023)</td>
</tr>
<tr>
<td>Ideological Extremism</td>
<td>2.9874**</td>
<td>3.0628**</td>
<td>2.04e-10</td>
<td>3.51e-10</td>
</tr>
<tr>
<td></td>
<td>(0.1769)</td>
<td>(0.1849)</td>
<td>(0.0022)</td>
<td>(0.0023)</td>
</tr>
<tr>
<td>Seniority</td>
<td>-0.0060</td>
<td>-0.0032</td>
<td>-0.0063</td>
<td>-0.0063</td>
</tr>
<tr>
<td></td>
<td>(0.0022)</td>
<td>(0.0023)</td>
<td>(0.0022)</td>
<td>(0.0023)</td>
</tr>
<tr>
<td>Lagged Vote Share</td>
<td>0.0006</td>
<td>0.0007</td>
<td>0.0006</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>(0.0011)</td>
<td>(0.0011)</td>
<td>(0.0011)</td>
<td>(0.0011)</td>
</tr>
<tr>
<td>Lagged Quality Challenger</td>
<td>0.0388*</td>
<td>0.0398*</td>
<td>0.0388*</td>
<td>0.0398*</td>
</tr>
<tr>
<td></td>
<td>(0.0190)</td>
<td>(0.0195)</td>
<td>(0.0190)</td>
<td>(0.0195)</td>
</tr>
<tr>
<td>Lagged Spending Gap</td>
<td>-0.0058</td>
<td>-0.0063</td>
<td>-0.0058</td>
<td>-0.0063</td>
</tr>
<tr>
<td></td>
<td>(0.0087)</td>
<td>(0.0089)</td>
<td>(0.0087)</td>
<td>(0.0089)</td>
</tr>
<tr>
<td>Lagged District Partisanship</td>
<td>-0.2359</td>
<td>-0.2762</td>
<td>0.0011</td>
<td>0.0178</td>
</tr>
<tr>
<td></td>
<td>(0.1561)</td>
<td>(0.1613)</td>
<td>(0.0011)</td>
<td>(0.0178)</td>
</tr>
<tr>
<td>In-party Midterm Election</td>
<td>-0.1022**</td>
<td>-0.1087**</td>
<td>0.2069**</td>
<td>0.0244</td>
</tr>
<tr>
<td></td>
<td>(0.0178)</td>
<td>(0.0184)</td>
<td>(0.0178)</td>
<td>(0.0184)</td>
</tr>
<tr>
<td>Member-level Characteristics</td>
<td>0.7073**</td>
<td>-0.0401</td>
<td>1.5534**</td>
<td>2.4636**</td>
</tr>
<tr>
<td>(Factor Score)</td>
<td>(0.0199)</td>
<td>(0.0884)</td>
<td>(0.3834)</td>
<td>(0.3458)</td>
</tr>
<tr>
<td>Constant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Congress Fixed Effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Vote Type Fixed Effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Issue Type Fixed Effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>3,967,202</td>
<td>1,481,238</td>
<td>1,481,238</td>
<td>1,481,238</td>
</tr>
<tr>
<td>Clusters (Unique Members)</td>
<td>2,127</td>
<td>863</td>
<td>863</td>
<td>863</td>
</tr>
<tr>
<td>Pr > χ²</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Table 1: Likelihood of Casting a Vote Supporting Party on Party Votes.

Notes: The dependent variable is a dichotomous measure of whether members voted with the majority of their party on party votes. Party votes are defined as votes on which a majority of Democrats oppose a majority of Republicans. Each model applies the polynomial order of time that offers the optimal fit. The models cluster on unique members, adjusting the variance-covariance matrix to account for repeated measurements. Standard errors in parentheses. ** denotes $p \leq 0.01$ and * denotes $p \leq 0.05$.

36
Figure 2: Predicted Probability of Party Support on Party Votes by Distance from Election.

Notes: Panel (a) shows a member’s predicted probability of supporting her party on a party vote by the number of days to the next election for Model 1 holding all variables at their mean, Panel (b) shows the predicted probability for Model 2 holding all variables at their mean, Panel (c) shows the predicted probabilities for Model 3 for the Congresses with the highest (103d Congress) and lowest (96th Congress) predicted baseline party support holding all other variables at their mean, and Panel (d) shows the predicted probabilities for Model 4 for the 99th percentile of factor score (“insulated member”) and the 1st percentile of factor score (“vulnerable member”) holding all other variables at their mean.
Figure 3: Contribution of Member-Level Effects on Change in Party Unity.

Notes: Figure shows the simulated effect that member-level variation in the party support has on the decrease in party unity across years in election cycles that exhibit a statistically significant decrease [see Figure 1(b)]. Dots at the base of the bars indicate the observed decrease in percent of party votes across years. The tops of the bars correspond to the change in percent of party unity after accounting for the 95th percentile of vote loss predicted by the empirical model. If a bar does not cross zero on the y-axis, then member-level effects do not account for all of the observed decrease in percent of party unity. All but one election cycle (1984-86) is bounded away from zero. Dotted lines in the bars indicate the level of vote loss overestimation in the election cycle 1984-86.
<table>
<thead>
<tr>
<th>Days to Election</th>
<th>Party Vote</th>
<th>Ultra-Consensual</th>
<th>Disagreement Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Included in this analysis are all roll call votes that occurred between the 84th and 108th Congresses (1955–2004). The dependent variable in the “Party Vote” model is a dichotomous measure of whether the vote resulted in a majority of Democrats opposing a majority of Republicans. The dependent variable in the “Ultra-Consensual” model is a dichotomous measure of whether the vote had at least 90% of the membership vote in the same way. The dependent variable in the “Disagreement Score” model measures the absolute difference in the percent of Democrats and Republicans voting yea. The baseline vote type category is Miscellaneous Procedural Votes. Each model applies the polynomial order of time that offers the optimal fit. Standard errors in parentheses. * denotes \(p \leq 0.05 \) and ** denotes \(p \leq 0.01 \).
Figure 4: Predictions for the Timing of Divisive/Consensual Votes. Notes: Panel (a) shows the predicted probability of a party vote by the number of days to the next election (results from “Party Vote” model in Table 2), Panel (b) shows the predicted probability of an ultra-consensual vote by days to the next election (results from “Ultra-Consensual” model in Table 2), and Panel (c) shows the predicted absolute difference in the percent of Democrats and Republicans voting yea by days to the next election (results from “Disagreement Score” model in Table 2).
Table 3: Timing of Vote Types.

Notes: Included in this analysis are all roll call votes that occurred between the 84th and 108th Congresses (1955–2004). The dependent variables indicate whether the vote was a Regular Passage, Suspension, Amendment, or Partisan Procedural vote. Each model applies the polynomial order of time that offers the optimal fit. Standard errors in parentheses. * denotes p ≤ 0.05 and ** denotes p ≤ 0.01
Figure 5: Predictions of Timing of Vote Types.
Notes: Panel (a) shows the predicted probability of regular passage votes by the number of days to the next election (results from “Regular Passage” model in Table 3), Panel (b) shows the predicted probability of suspension votes by days to the next election (results from “Suspensions” model in Table 3), Panel (c) shows the predicted probability of amendment votes by days to the next election (results from “Amendments” model in Table 3), and Panel (d) shows the predicted probability of partisan procedural votes by days to the next election (results from “Partisan Procedural” model in Table 3).