
Upgrading Arcs to Minimize the Maximum
Travel Time in a Network

Ann Melissa Campbell
Department of Management Sciences

University of Iowa

Iowa City, Iowa 52242-1994

ann-campbell@uiowa.edu,

Timothy J. Lowe
Department of Supply Chain and Information Systems

Pennsylvania State University

University Park, PA 16202

tjl12@psu.edu,

and

Li Zhang
Department of Mathematics and Computer Science

The Citadel

Charleston, South Carolina 29409

li.zhang@citadel.edu

October 13, 2005

1

Abstract

In transportation and telecommunication systems, the performance
of the underlying network can often be improved by upgrading some
of the arcs in the network. If an arc is upgraded, the travel time along
this arc is reduced by a discount factor α, 0 ≤ α < 1. With respect to
different minimax network objectives, we define a series of problems
that involve finding the best q arcs in a network to upgrade. We show
that these problems are NP-hard on general graphs, but polynomially
solvable on trees. Finally, we compare three heuristic solution ap-
proaches for complete graphs based on these polynomial results and
find one to far outperform the others.

Keywords: dynamic programming, minimax objective, graph di-
ameter, graph radius, arc upgrading, tree graphs, heuristics

1 Introduction

In transportation and telecommunication systems, the performance of the
underlying network can often be improved by upgrading some of the arcs in
the network. In such real world applications, upgrading an arc between a pair
of nodes corresponds to using a rapid mode of transit, such as using a plane
instead of a truck between a pair of cities in a transportation network or
using a higher speed cable between a pair of servers in a telecommunication
network. These upgrades decrease transportation times through the network
and can be critical in achieving delivery deadlines. Because upgrading arcs
is expensive, it is important to carefully evaluate the decisions of how many
arcs and which arcs to upgrade.

If an arc is upgraded, the travel time along this arc is reduced by a discount
factor α, 0 ≤ α < 1. With respect to different network objectives, we define
the following problems.

The q-upgrading arc diameter problem (Q-D) selects q upgrading arcs such
that the diameter of the network is minimized. The diameter of a network
equals the travel time on the maximum shortest path between any origin-
destination (o-d) pair.

2

The q-upgrading arc radius problem (Q-R) selects q upgrading arcs and lo-
cates the vertex center such that the radius of the network is minimized.
The vertex center of a network is a node whose maximum shortest path to
the other nodes is as small as possible. This maximum shortest path is the
radius of the network. The vertex center may correspond to the best vertex
location for an emergency services facility where the nodes correspond to
locations of customers.

These q-upgrading arc problems are important for time-sensitive or guaran-
teed time distribution systems, such as emergency services and express mail
services. In these systems, the diameter or the radius of a network repre-
sents the best time guarantee that can be offered to all customers. To be
competitive, it is important that this value be as low as possible.

To the best of our knowledge, these q-upgrading arc problems have not been
studied in the literature. Related work contributed by Paik et al. [22, 23,
24, 25] addresses network upgrading problems which upgrade the vertices in
a network. In their models, if a vertex v is upgraded, then the travel time
on each edge incident to v reduces by a factor x, 0 ≤ x < 1. Signal flow in
electronic circuits is one of the applications in which upgrading vertices are
used to improve the performance of a circuit [7, 17]. Demgensky et al. [8]
consider a minimum cost flow problem on a network where the per unit cost of
flow on an arc can be reduced by upgrading the arc. Upgrading an arc incurs
a fixed cost, so the problem is to find the optimal arcs to upgrade subject
to a budget constraint and such that the total flow cost is minimum. They
show that the problem is NP-hard on series-parallel networks but provide a
polynomial time approximation algorithm for such networks.

Campbell et al. [3, 4] address hub arc location problems which locate upgrad-
ing arcs in a network such that the sum of the transportation cost between
all o-d pairs is minimized. The endpoints of the upgrading arcs dictate the
location of hubs, and the flow between all origin-destination pairs is assumed
to include at least one of these hub nodes. This restriction on the structure
of flow between nodes as well as the objective function makes the problems
quite different than the problems addressed here.

Arc upgrading problems are also closely related to general hub location and
hub covering problems. In hub location problems, the travel time on the

3

arc between every pair of hubs reduces by a factor α, 0 ≤ α ≤ 1. See
[1, 5, 13, 14, 19, 20, 21] for more details and examples. In hub covering
problems, the typical objective is to select the minimum number of hubs
necessary so that all origin-destination pairs can be served within a given
time limit. Examples of papers discussing hub covering include [31, 6].

Another problem related to Q-R is the vertex-restricted p-center problem.
The p-center problem selects p vertices in a network and allocates each de-
mand node to one of the p centers such that the maximum shortest path
from any demand node to its center is minimized. This problem and a ver-
sion where center locations can be on arcs as well as nodes are well studied
in the literature, for example, see [11, 12, 18, 29, 30].

Section 2 establishes that the q-upgrading arc problems are NP-hard on a
general graph. Section 3 demonstrates that several cases involving special
graphs are polynomially solvable. Section 4 shows that variants that include a
budget constraint are NP-hard even on these special graphs. Three heuristic
approaches for Q-D on a complete graph are described and evaluated in
Section 5, with one clearly outperforming the others. Section 6 concludes
the paper and discusses future research opportunities.

2 Problems on a general graph

Consider an undirected connected graph G = (V, E) with node set V =
{v1, ..., vn} and arc set E. The travel time on an arc between vx and vy (or
e ∈ E) is tx,y (or te), where these values obey the triangular inequality. We
assume these values are symmetric, that is, tx,y = ty,x and that tu,u = 0. A
discount factor α (0 ≤ α < 1) is a multiplier that reduces the travel time on
an arc if the arc is chosen to be one of the q upgrading arcs. The travel time
θi,j between an o-d pair vi, vj is equal to the travel time along the shortest
path between vi and vj in the graph. Assume 0 < q ≤ |E| (if q > |E|, the
solution is to select every arc in E). The resulting graph for a solution is the
graph after the q upgrading arcs in the solution are upgraded. Note that the
travel times on arcs in a resulting graph may no longer obey the triangular
inequality.

4

To provide some perspective on the challenge of solving these problems, we
first provide an integer programming formulation of Q-D. In the formulation,
we denote the set of arcs adjacent to node vj by E(j). (In cases when no
ambiguity results, we will often refer to node vj as simply “j”.) We make use
of the following variables:

xs,t
e =

{
1 if arc e is used on the path from s to t
0 otherwise

ye =

{
1 if arc e is upgraded
0 otherwise

bs,t
j =

{
1 if node vj is visited on the path from s to t
0 otherwise

de = final travel time for arc e
z = value of maximum shortest path (the objective)

We now have:

min z (1)

subject to:
z ≥

∑
e∈E

dex
s,t
e 1 ≤ s < t ≤ n (2)

de = te + (αte − te)ye ∀e ∈ E (3)∑
e∈E(s)

xs,t
e = 1 1 ≤ s < t ≤ n (4)∑

e∈E(t)

xs,t
e = 1 1 ≤ s < t ≤ n (5)∑

e∈E(j)

xs,t
e = 2bs,t

j ∀j ∈ N\{s, t}, 1 ≤ s < t ≤ n (6)∑
e∈E

ye = q (7)

ye ∈ {0, 1} ∀e ∈ E (8)

xs,t
e ∈ {0, 1} 1 ≤ s < t ≤ n, ∀e ∈ E (9)

bs,t
j ∈ {0, 1} ∀j ∈ N\{s, t}, 1 ≤ s < t ≤ n (10)

The objective function (1) and constraint (2) minimize the maximum shortest
path between any pair of nodes s, t in G. Constraint (3) determines the
“final” travel time for arc e given the upgrade decision for the arc. Constraint
(4) enforces that there is exactly one arc leaving s on the path from s to t,
and constraint (5) enforces that there is exactly one arc entering t on the path

5

from s to t. Constraint (6) ensures that the path from s to t is connected.
Constraint (7) restricts the number of upgrading arcs to q.

Both Q-D and Q-R are in class NP. For Q-D, if we are given the locations of
the q upgrading arcs, then we can find the shortest path between every o-d
pair in the resulting graph using Floyd’s all pairs shortest paths algorithm
[9] in O(n3). The objective value (i.e., the diameter of the resulting graph) of
this solution is found in O(n2) time by finding the maximum of these shortest
path values. For Q-R, if we are given the locations of the q upgrading arcs,
then we can evaluate the objective value with each node as the center and
compare the results.

Next, we will prove that both Q-D and Q-R on a general graph are NP-hard.
We will first create a decision version of Q-D, which we will refer to as DQ-D,
and define it as follows:
Instance: A graph G = (V, E), travel time te ∈ Z+ for each e ∈ E, a positive
integer q, a positive integer K and a discount factor α (0 ≤ α < 1).
Question: Is there a subset F ⊆ E such that |F | = q and if we let te =
αte ∀e ∈ F , then G has diameter K or less?

We will prove that DQ-D is NP-complete by a reduction from a special case
of the weighted diameter problem (problem GT65 in [10]) which is known to
be NP-complete.

The special case of weighted diameter problem (SWD) is defined as follows:
Instance: Graph G′ = (V, E), collection C of 0’s and 1’s where |C| = |E|,
and a positive integer K ′.
Question: Is there a one-to-one function f : E → C such that, if f(e) is
taken as the length of edge e, then G′ has diameter K ′ or less?

Lemma 1 DQ-D is NP-complete even if α = 0 and te = 1,∀e ∈ E.

Proof: For an instance of SWD, we reduce SWD to DQ-D as follows.
Let G = G′, q = the number of 0′s in C, K = K ′, te = 1,∀e ∈ E in G,
and α = 0. The instance of SWD will have a yes answer if and only if the
constructed DQ-D has a yes answer. 2

6

Since DQ-D is NP-complete, Q-D is NP-hard on a general graph even if α = 0
and te = 1,∀e ∈ E.

We can replace “diameter” by “radius” in DQ-D to create a decision version
of Q-R which we will refer to as DQ-R. Since the variant of SWD in which
“diameter” is replaced by “radius” for general graphs is also NP-complete
[10], DQ-R is NP-complete even if α = 0 and te = 1,∀e ∈ E, by a similar
proof as for Lemma 1. It follows that Q-R also is NP-hard.

Note that a node-specific version of Q-R which selects q upgrading arcs such
that the maximum shortest path from a given node v to the other nodes is
minimized is also NP-hard since Q-R can be polynomially transformed to
this problem. Denoting the node-specific version by Q-R-N, we observe that
we can solve a Q-R problem by solving a total of n Q-R-N problems.

By the above arguments, we have the following theorem:

Theorem 1 Q-D, Q-R, and Q-R-N are NP-hard.

We remark that a similar complexity argument can be made based on the
bounded-cardinality-minimum-diameter edge addition problem (BCMD) which
has been shown to be NP-hard ([16], [27]). In this problem, all arcs of
G = (V, E) are of unit length, and the problem is to add no more than q ad-
ditional arcs (E ′) so that the diameter of the resulting graph G = (V, E∪E ′)
is minimized.

3 Polynomially solvable cases

In Section 2, we demonstrated that Q-D, Q-R-N, and Q-R are NP-hard. In
this section, we will show that these problems are polynomially solvable on
tree graphs. Telecommunication and distribution networks are often sparse
due to the high cost of establishing connections between nodes. Thus, the
study of simpler graph structures, such as trees, is applicable and useful.

7

A key difference between tree graphs and general cyclic graphs that will be
helpful in establishing our results is that there is one and only one path
between every o-d pair on a tree graph. Also, to minimize the diameter of a
tree graph, it is sufficient to minimize the maximum shortest path between
every pair of leaf nodes. A leaf node of a tree graph is a node whose degree
is equal to 1.

Before describing our results for general tree graphs, we first discuss some
of the simpler graph structures where we have found lower order polynomial
algorithms.

3.1 Path graph and star tree graph

If T is a path graph or a star tree graph, Q-D can be easily solved by a
greedy algorithm. Furthermore, the same greedy algorithm can be used to
solve Q-R if T is a star tree, but not if T is a path graph. A path graph is a
special tree graph where each node has degree one or two. A star tree graph
is a special tree graph where the (vertex) center of the star tree has degree
n− 1 and all of the other nodes have degree 1.

Theorem 2 Q-D on a path or star tree graph can be solved optimally in
O(n) time.

Proof: In a path graph, there are clearly only two leaf nodes. The maximum
shortest path between any o-d pair is the one between the two leaf nodes since
it travels through all of the arcs. In a star tree graph, the maximum shortest
path between any o-d pair consists of the largest and the second largest arcs
of the star tree. Greedily selecting the q largest arcs as upgrading arcs clearly
minimizes the diameter of both path and star tree graphs.

To solve Q-D on a path or star tree graph, we must identify the q largest
elements of the set of n− 1 arc lengths. This requires O(n) time [2]. 2

For a star tree, the same O(n) algorithm solves Q-R since the best vertex
center is always the center node of the graph. For a path graph, greedy is

8

not as successful. Consider the following graph:

v2 v3 v4 v5v1
10 5 8 3 11 v6

Figure 1: An example of Q-R on a path graph where α = 0.1 and q = 1

In this example, if q = 1, a greedy algorithm would choose to discount the
arc from v5 to v6 since 11 is the largest individual travel time. If this arc is
discounted and α = .1, the best center is at v3. The distance from v1 to v3

is 15, and the distance from v3 to v6 becomes 8+3+1.1 = 12.1. Thus, if a
greedy approach is used, the radius is 15. If instead the arc from v1 to v2 is
discounted (10 < 11), the best vertex center is now at v4. The distance to the
left of v4 is now 1 + 5+8=14, and the distance to the right is also 3+11=14.
Even though the second solution has a larger diameter, the midpoint of the
diameter is precisely on a vertex which creates the savings.

Note that for more complicated tree graphs, the greedy selection of arcs will
not always find the optimal solution to Q-D or Q-R. We illustrate this for
Q-D with the graph in Figure 2.

9

Figure 2: An example of Q-D on a tree graph where α = 0.1

Suppose α = 0.1. When q = 1, the optimal solution to Q-D on the tree
graph in Figure 2 is to upgrade {(v4, v5)}, and the optimal objective value is
θ1,2 = 17. When q = 2, the optimal solution is to upgrade {(v1, v3), (v2, v3)}
and the optimal objective value is θ2,5 = 10.9. From this example, we can see
that it is not always the case that selecting the largest arc on a tree graph
is optimal (for example, when q = 1), and it is not always the case that the
optimal solution for a smaller value of q is included in the optimal solution for
a larger value of q. This example also shows that the greedy selection of arcs
will not always find the optimal solution to Q-D on a tree graph. In [32], we
discuss several graph structures, such as the extended star tree graph, where
the Q-D can be solved in low order polynomial time even without a greedy
approach.

3.2 General tree

We now present an algorithm for solving Q-D, Q-R-N, and Q-R on a general
tree, T . We arbitrarily select some node vr of T and declare it to be the root
of T . To simplify our presentation, we will transform T into an equivalent
binary tree. A binary tree is a rooted tree where each non-leaf node has
exactly two children. Tamir [28] shows how to make the transformation
using at most n− 3 additional nodes and n− 3 additional arcs. The added
arcs needed to construct the binary tree all have a length of zero. Solving

10

each of these problems on the the original tree is equivalent to solving it
on the transformed binary tree since distances between nodes are preserved
in the transformation, and zero length edges would not be upgraded in an
optimal solution. Since the transformed binary tree has at most 2n − 3
nodes, the complexity analysis of our algorithms will not be affected by the
transformation. Thus, henceforth we will assume T is a binary tree, rooted
at node vr. Furthermore, for each node vj, we denote its children by vj(1)

and vj(2) and the set consisting of vj and its descendants by Vj. Also, let T j

be the subtree of T spanning Vj. We also assume T\T j includes node vj so
that T j ∩ {T\T j} = vj. In Figure 2, if T is rooted at v1, then T v4 is {v4, v5}
while T\T v4 is {v1, v2, v3, v4} along with the edges of T spanning these nodes.
Finally, if T is a subtree of T , let E(T) be the set of arcs of T .

Our algorithm is a dynamic programming approach. The algorithm finds the
best arcs to discount for each T j and each T\T j and builds solutions to Q-D
and Q-R based on these subproblems. In the first pass through T , we com-
pute a set of Fj(k) values for each node vj. Fj(k) is the distance from the far-
thest node in T j to vj given that exactly k arcs in T j are optimally upgraded
to minimize this maximum distance and where 0 ≤ k ≤ min{q, | E(T j) |}.
Thus, Fj(k) solves min{max{θi,j : vi ∈ Vj} : k arcs of T j are upgraded}. To
compute all Fj(k), first set

Fj(0) = 0 (11)

for all leaf nodes of T . Then, working from the leaf nodes of T toward vr,
we have for each non-leaf node vj:

Fj(0) = max{tj,j(1) + Fj(1)(0), tj,j(2) + Fj(2)(0)}. (12)

Fj(1) is the minimum of the following values:

max{αtj,j(1) + Fj(1)(0), tj,j(2) + Fj(2)(0)} (13)

max{tj,j(1) + Fj(1)(0), αtj,j(2) + Fj(2)(0)} (14)

max{tj,j(1) + Fj(1)(1), tj,j(2) + Fj(2)(0)} (15)

max{tj,j(1) + Fj(1)(0), tj,j(2) + Fj(2)(1)}. (16)

If j(1) is a leaf node, then equation (15) should be ignored. Likewise, if j(2)
is a leaf node, then equation (16) should be ignored. Finally, for k ≥ 2, Fj(k)

11

is the minimum of the following values:

min
k1≤|E(Tj(1))|
k2≤|E(Tj(2))|

k1+k2=k

max{tj,j(1) + Fj(1)(k1), tj,j(2) + Fj(2)(k2)} (17)

min
k1≤|E(Tj(1))|
k2≤|E(Tj(2))|
k1+k2=k−1

max{tj,j(1) + Fj(1)(k1), αtj,j(2) + Fj(2)(k2)} (18)

min
k1≤|E(Tj(1))|
k2≤|E(Tj(2))|
k1+k2=k−1

max{αtj,j(1) + Fj(1)(k1), tj,j(2) + Fj(2)(k2)} (19)

min
k1≤|E(Tj(1))|
k2≤|E(Tj(2))|
k1+k2=k−2

max{αtj,j(1) + Fj(1)(k1), αtj,j(2) + Fj(2)(k2)}. (20)

Note that for each node vj, the effort to compute Fj(k) for all relevant k is
O(q2). It would appear, then, that the total effort for all nodes of T would be
O(nq2). Using the complexity analysis found in Tamir [28], however, it can
be shown that the effort is actually only O(nq). We will briefly outline the
argument detailed in [28]. First, note that the effort to compute all Fj(k)
values for node vj is O(min{|E(T j(1))|, q} · min{|E(T j(2))|, q}). In Tamir’s
problem, for a fixed vj the search is over nodes of subtrees and not edges of
subtrees as is the case here. Since |E(T vj)|+1 = |Vj| for a tree, his approach
with obvious modifications will hold for our problem. Tamir partitions the
node set of T into two subsets. A node is called rich if it is not a leaf node
and both of its children vj(1) and vj(2) satisfy |Vj(l)| ≤ q

2
, l = 1, 2. (Thus, we

can define a node as rich if |E(T vj)|+1 ≤ q
2
.) If a node is not rich, it is poor.

Tamir shows that the number of rich nodes in T is bounded above by 2n
q
.

Given this, the total effort to compute Fj(k) values for all of the rich nodes
of T is O(nq). For a fixed node vj, he inductively computes a bound on the
total computational effort required by all of the poor nodes in Vj. Using the
obvious modifications for our problem, we can show that the total effort to
compute Fj(k) values for all of the poor nodes in Vr (all of the poor nodes of
T) is also O(nq). Thus, the total effort to compute all Fj(k) of T is O(nq).

Once all Fj(·) values are available, a “backward” pass finds a set of Bj(k)
values for each node vj. Bj(k) is the distance between the farthest node
in T\T j to vj given that exactly k arcs of T\T j are optimally upgraded to

12

minimize the maximum distance and where 0 ≤ k ≤ min{q, | E(T\T j) |}.
The backward pass proceeds from vr toward the leaves of T . First, set
Br(0) = 0. Then for vj(1), a child of vj:

Bj(1)(0) = tj,j(1) + max{Bj(0), tj,j(2) + Fj(2)(0)} (21)

Bj(1)(1) is the minimum of the following values:

αtj,j(1) + max{Bj(0), tj,j(2) + Fj(2)(0)} (22)

tj,j(1) + max{Bj(1), tj,j(2) + Fj(2)(0)} (23)

tj,j(1) + max{Bj(0), αtj,j(2) + Fj(2)(0)} (24)

tj,j(1) + max{Bj(0), tj,j(2) + Fj(2)(1)}. (25)

If j = r, then equation (23) should be ignored. Likewise, if j(2) is a leaf
node, then equation (25) should be ignored. Then, for k ≥ 2, Bj(1)(k) is the
minimum of the following values:

min
k1≤|E(T\Tj)|
k2≤|E(Tj(2))|
k1+k2=k−1

αtj,j(1) + max{Bj(k1), tj,j(2) + Fj(2)(k2)} (26)

min
k1≤|E(T\Tj)|
k2≤|E(Tj(2))|
k1+k2=k−2

αtj,j(1) + max{Bj(k1), αtj,j(2) + Fj(2)(k2)} (27)

min
k1≤|E(T\Tj)|
k2≤|E(Tj(2))|
k1+k2=k−1

tj,j(1) + max{Bj(k1), αtj,j(2) + Fj(2)(k2)} (28)

min
k1≤|E(T\Tj)|
k2≤|E(Tj(2))|

k1+k2=k

tj,j(1) + max{Bj(k1), tj,j(2) + Fj(2)(k2)} (29)

To compute all Bj(2)(k) values requires obvious interchanges of indices j(1)
and j(2) in the above expressions. As with the Fj(k) values, we can use the
distinction between rich and poor nodes to find all Bj(k) values in O(nq)
time. Once all Fj(k) and Bj(k) values are computed, it is easy to see that
Q-R-N is solved for a given j via

min
k1+k2=q

k1≤|E(Tj)|
k2≤|E(T\Tj)|

max{Fj(k1), Bj(k2)} (30)

13

and Q-R is solved via

min
j
{ min

k1+k2=q

k1≤|E(Tj)|
k2≤|E(T\Tj)|

max{Fj(k1), Bj(k2)}}. (31)

The overall complexity for solving Q-R-N and Q-R is O(nq).

We will now show that Q-D can also be solved using these Fj(k) and Bj(k)
values in O(nq). To do this, we make use of the following lemmas.

Lemma 2 For any arc (vi, vl) with vl ∈ T\T vi and k1, let t̃i,l be the length
of (vi, vl) after upgrading the arcs specified by the solutions to Fi(k1) and
Bi(q − k1). If

0 ≤ Bi(q − k1)− Fi(k1) ≤ 2t̃i,l, (32)

the length of the longest path in the resulting tree is Fi(k1) + Bi(q − k1).

Proof: Let vx̄ ∈ T vi satisfy θx̄,i = Fi(k1) and vȳ ∈ T\T vi satisfy θȳ,i =
Bi(q − k1). Relation (32) implies that the midpoint c of the path between
vx̄ and vȳ is on arc (vi, vl) , and c is in T\T vi . (We note that c is possibly
a point on the interior of some edge, but we will denote by θi,c the distance
between c and some node vi of T .) Letting M̄ = Fi(k1) + Bi(q − k1) be the
length of this path, we have that θx̄,c = θȳ,c = M̄

2
.

Consider arbitrary nodes va and vb in T . If va and vb are such that va ∈ T vi

and vb ∈ T\T vi , then θa,i ≤ θx̄,i and θb,i ≤ θȳ,i so θa,b ≤ θx̄,i + θȳ,i = M̄. Now,
suppose that va and vb are both in T vi . We then have that θa,c = θa,i + θi,c ≤
θx̄,i +θi,c = θx̄,c = M̄

2
. Similarly, θb,c ≤ θx̄,c = M̄

2
. But then, θa,b ≤ 2(M̄

2
) = M̄ .

A similar result follows if a and b are both in T\T vi . Thus we have shown
that for arbitrary a and b, θa,b ≤ M̄ = θx̄,ȳ.2

Lemma 3 There exists at least one arc where (32) holds.

Proof: Let A∗ denote the set of upgraded arcs in an optimal solution to Q-D.
Let vx∗ and vy∗ denote the endpoints of the longest path in the resulting

14

tree, and let (vi, vl) denote an arc containing the midpoint c of this path
where vl is in T\T vi . (Note that c may be at vi or at vl or in the interior
of (vi, vl).) Without loss of generality, suppose that the root vr and vy∗ are
both in T\T vi and vx∗ ∈ T vi . Also, let A∗

1 = A∗ ∩ T vi and A∗
2 = A∗ ∩ T\T vi .

Thus A∗
1(A

∗
2) is the subset of the optimal upgraded arcs in T vi (in T\T vi).

Finally, let k∗
1 = |A∗

1| so that |A∗
2| = q − k∗

1.

It now follows that A∗
1 solves Fi(k

∗
1) and A∗

2 solves Bi(q − k∗
1). To see this,

note that if, for example, A∗
1 does not solve Fi(k

∗
1), then there is an improving

allocation of k∗
1 upgrades in T vi , in which case the upgrade allocation A∗ is

not optimal for Q-D. Furthermore, since c ∈ (vi, vl), (32) holds. 2

Based on Lemmas 2 and 3, a method for solving Q-D is now apparent. Let
N̄ be the subset of nodes where for each vi ∈ N̄ , there is an adjacent node
vl and at least one k1(i) value where (32) holds. For each vi ∈ N̄ , we let K̄i

represent the set of k1(i) values where (32) holds. The solution to Q-D is
found via

min
vi∈N̄

{ min
k1(i)∈K̄i

{Fi(k1(i)) + Bi(q − k1(i))}}. (33)

As we have already established, computing all Fi(k) and Bi(k) values for all
nodes vi of T is O(nq). For a given node vi, identifying whether or not there
are values of k such that 0 ≤ Bi(q− k)−Fi(k) and Bi(q− k)−Fi(k) ≤ 2t̃i,l,
i.e. where (32) holds, takes O(q) effort. Since O(n) nodes are checked for
this condition, the total effort to identify N̄ and K̄i for each vi ∈ N̄ is O(nq).
Searching through these values in (33) is also O(nq) in the worst case, so the
overall complexity for solving Q-D is O(nq).

It is important to note that the algorithm for the general tree is not dependent
on α values being the same for each arc. It is straightforward to modify all
of the proposed polynomial algorithms for heterogeneous α values without
increasing computational complexity.

We conclude this section by introducing a new problem related to Q-R, which
we will call the q-upgrading arc absolute radius problem (Q-AR). The prob-
lem is to select q upgrading arcs and to locate the absolute center of the
resulting graph such that the absolute radius is minimized. In Q-AR, unlike
Q-R, the absolute center can be a node or in the interior of an arc. The
following lemma shows that Q-AR can be solved on a tree by solving Q-D.

15

Lemma 4 Given an optimal set of q upgrading arcs that solves Q-D on a tree
graph T , let vx∗ and vy∗ be the endpoints of the longest path in the resulting
tree. The same set of upgrading arcs solves Q-AR where the absolute center
c is the midpoint of the path between vx∗ and vy∗.

Proof: Let A∗ be the set of arcs upgraded in the optimal solution to Q-D.
With these arcs upgraded, note that with c defined as in the lemma, the
radius of the resulting tree is R∗ = θx∗,y∗/2 [11]. Suppose that A∗ does not
solve Q-AR. Thus, there exists a set Ã of q upgrading arcs and a center c′

where the optimal radius has value R̃ < R∗. For any two va and vb in this
resulting tree (with distances denoted by θ̃ on the resulting tree), we have
˜θa,b ≤ ˜θa,c′ + ˜θb,c′ ≤ 2R̃ < 2R∗ = θx∗,y∗ . This contradicts the assumption that

A∗ solves Q-D. 2

Theorem 3 Q-R-N, Q-R, Q-D, and Q-AR can be solved optimally on a tree
in O(nq) time.

4 Variants with a budget constraint

The budget constrained q-upgrading arc diameter problem BC-D is variant
of Q-D and is defined as follows:
Instance: A graph G = (V, E), travel time te ∈ Z+ and cost c(e) ∈ Z+ for
each e ∈ E, a budget B ∈ Z+, a positive integer K, and a discount factor α
(where 0 ≤ α < 1).
Question: Is there a subset F ⊆ E such that

∑
e∈F c(e) ≤ B and if we let

te = αte,∀e ∈ F , then G has diameter K or less?

Before we analyze the complexity of BC-D, we make the following observa-
tions: (1) Q-D is a simpler case of BC-D where B = q and c(e) = 1 for each
e ∈ E. (2) BC-D is in class NP since we can evaluate a given solution for
BC-D in polynomial time.

Since Q-D is NP-hard on a general graph by Theorem 1, BC-D is NP-hard
on a general graph. We will prove that BC-D is NP-hard even if G is a

16

path graph by a reduction from the knapsack problem which is known to be
NP-complete (problem MP10 in [10]).

BC-D on a path graph G can be rephrased as follows:
Instance: A path graph G = (V, E), travel time te ∈ Z+ and cost c(e) ∈ Z+

for each e ∈ E, a budget B ∈ Z+, a positive integer K, and a discount factor
α (where 0 ≤ α < 1).
Question: Is there a subset F ⊆ E such that

∑
e∈F c(e) ≤ B and such that∑

e∈E te − (1− α)
∑

e∈F te ≤ K?

Knapsack is defined as follows:
Instance: Finite set U , size s(u) ∈ Z+ and value v(u) ∈ Z+ for each u ∈ U ,
and positive integers B′ and K ′.
Question: Is there a subset U ′ ⊆ U such that

∑
u∈U ′ s(u) ≤ B′ and such that∑

u∈U ′ v(u) ≥ K ′?

Theorem 4 BC-D is NP-hard even if G is a path graph.

Proof: The theorem is proved by a reduction from knapsack.

We can reduce an instance of knapsack to an instance of BC-D as follows:
Create a path graph with n = |U | + 1 nodes and |E| = |U | arcs where
each arc e ∈ E corresponds to an element u ∈ U . For each e ∈ E and
its corresponding u ∈ U , let c(e) = s(u) and te = v(u). Let B = B′ and
K =

∑
e∈E te − (1− α)K ′.

If the constructed BC-D above has a yes answer, then there is a subset F such
that

∑
e∈F c(e) ≤ B and such that

∑
e∈E te − (1− α)

∑
e∈F te ≤ K. We can

use the solution to BC-D to construct a solution to the instance of knapsack
by letting U ′ = F . By definition,

∑
u∈U ′ s(u) ≤ B′ and

∑
u∈U v(u) − (1 −

α)
∑

u∈U ′ v(u) ≤ K =
∑

u∈U v(u)− (1− α)K ′, i.e.,
∑

u∈U ′ v(u) ≥ K ′. Thus,
the instance of knapsack has a yes answer. Further, the instance of knapsack
will have a yes answer if and only if the constructed BC-D above has a yes
answer. Since knapsack is NP-complete, BC-D is NP-hard even if G is a
path. 2

17

5 Heuristic algorithms

In this section, we briefly describe three heuristic algorithms for Q-D on
complete graphs and summarize the computational results. Due to the diffi-
culty of solving Q-D by exact methods, we explore the use of simpler graph
structures to approximate the full problem and allow for quick solutions. A
detailed discussion of heuristics for complete and general graphs, bounding
results, improvement procedures, and more extensive tests will be found in
[33]. Some of the key results are summarized here to demonstrate the use-
fulness of algorithms based on the polynomially solvable cases discussed in
Section 3 and because the results provide insight into the characteristics of
the arcs that should be discounted on complete graphs.

All of the heuristic algorithms which we will discuss in this section initially
select the best q upgrading arcs from a spanning tree T of G. A spanning
tree for a graph G is a tree graph extracted from G which connects all the
n nodes on G. Finding the best q arcs to upgrade on a spanning tree of
a graph may provide a reasonably good approximate solution to Q-D, and
these solutions are polynomial to obtain.

The heuristic algorithms are based on selecting a spanning tree in three
different ways and then solving Q-D on the resulting simpler graph structure.
Since each of the approaches involves choosing the best q arcs from a subgraph
of G, the objective value of the resulting solution will be an upper bound on
the optimal objective value. The first approach involves finding a minimum
spanning tree of G. A minimum spanning tree T on G is a spanning tree
such that the total cost of the arcs (i.e.,

∑
e∈T te) of T is minimized. There

are many algorithms which find a minimum spanning tree on a graph G,
for example, Kruskal’s algorithm [15] or Prim’s algorithm [26]. The second
approach starts from a maximum spanning tree. A maximum spanning tree
is a spanning tree T on G such that the total cost of the arcs (i.e.,

∑
e∈T te)

of T is maximized. The maximum spanning tree can be found by slightly
modifying a minimum spanning tree algorithm. The approach outlined in
Section 3.2 can be used to identify the q arcs to discount on the minimum
and maximum spanning trees. The objective value of each solution can be
found by applying Floyd’s all pairs shortest paths algorithm to G′, where G′

is the graph G after the selected arcs are upgraded.

18

The third approach starts from star trees, so this method is applicable only
on complete graphs, where the previous two approaches do not have this
restriction. Here n star trees, T1, T2, . . . , Tn, are considered, where Ti is
centered at node vi ∈ V . For each constructed star tree T , the q largest arcs
of T are selected greedily, which is optimal by Theorem 2. The objective
value of the solution for each constructed star tree is found by applying
Floyd’s all pairs shortest paths algorithm on the resulting graph G′. The
q arcs yielding the lowest objective value among the constructed star trees
are selected. Note that even though this third approach considers n different
trees, where the first two approaches consider only one, the complexity to
solve the problem on a star tree is much lower than on a general tree.

We can improve the solutions obtained by the above algorithms by a simple
local search method which we will refer to as the Interchange Method. For
each arc not in the optimal solution for the spanning tree, we determine if
an improvement in the objective value will occur if this arc is added and
an arc from the current solution is dropped. If an improvement is possible,
the undiscounted arc is “swapped” with the one in the current solution that
creates the biggest savings. The Interchange Method terminates after each
arc not in the original set of q arcs has been considered.

We next compare the effectiveness of the three heuristic algorithms for Q-D.
The results presented here are based on the CAB (Civil Aeronautics Board)
data set which provides a complete graph. The CAB data set introduced by
O’Kelly [20] has been used frequently in the literature to test IP formulations
and algorithms for hub location problems. The data set is based on airline
passenger flow between 25 US cities. All of the experiments required less
than 0.5 seconds of CPU time.

In the first results we present here, we experiment with different values of
n and q to evaluate how the three heuristics perform in each scenario. For
a given value of n, an n-node subgraph of the 25 node graph is used. The
points on the x-axis in Figure 3 correspond to different combinations of n and
q, where the y-axis corresponds to the gap relative to the optimal solution.
Due to their small size, optimal solutions can be found for these problems
using enumeration. The graph in Figure 3 highlights the dramatically better
performance using the star tree method, as opposed to the minimum or
maximum spanning tree methods. The objective values based on using the

19

star tree method are lower on all of the scenarios tested.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

gap(%)

MST

MAXST

STAR

n = 10 10 10 15 15 15 20 20 20 25 25
q = 2 3 4 2 3 4 2 3 4 2 3

Figure 3: Test problems on CAB with α =0.5

After the Interchange Method is applied to these initial solutions, the objec-
tive values dramatically improve for the minimum and maximum spanning
tree approaches, but the objective values based initially on star trees are
almost always still better, as indicated in Figure 4. For the minimum and
maximum spanning tree methods, we found that the improvement method
either entirely or almost entirely replaces the q arcs chosen for these initial
spanning trees. This seems to indicate that the arcs chosen in defining the
minimum spanning tree are not the arcs creating the shortest paths of max-
imum length in the final graphs. Similarly, the arcs used in defining the
maximum spanning trees are not likely to be used in the shortest paths be-
tween origin-destination pairs, because better, lower travel time options exist.
Only with star trees are the initial q arcs more likely to closely resemble the
final set of q arcs.

20

MST

MAXST

STAR
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11

gap(%)

n = 10 10 10 15 15 15 20 20 20 25 25
q = 2 3 4 2 3 4 2 3 4 2 3

Figure 4: Test problems on CAB with α =0.5 with Improvement

6 Conclusions and Future Work

This paper introduced the q-upgrading arc problems Q-D, Q-R-N, Q-R, and
Q-AR. We demonstrated that Q-D, Q-R-N, and Q-R are NP-hard on gen-
eral graphs, but provided polynomial algorithms for all four on tree graphs.
The q-upgrading arc problem is very interesting in that it is applicable in a
variety of time-sensitive settings. There are many opportunities in creating
heuristics for general graphs, but there are other research opportunities as
well. Specifically, we are interested in considering capacity on arc flow in
conjunction with this problem, which would constrain the solutions. One
interesting variation would involve redefining upgrading an arc to involve in-
creasing capacity as well as decreasing travel time. This would follow from
our discussions with United Parcel Service (UPS), where high speed lanes
correspond to where large volumes of packages are shipped.

21

7 Acknowledgments

We would like to express our extreme gratitude to Arie Tamir for his assis-
tance in reducing the complexity of the algorithm on general trees. This work
was partially supported by the National Science Foundation, through grant
number 0237726(Campbell), and served as the basis of the dissertation for
Li Zhang. We would also like to acknowledge the input of Ranga Nuggehalli
of the UPS. The q-upgrading arc problem was inspired by a discussion with
him about the challenges in designing a delivery network for UPS.

References

[1] T. Aykin and G. F. Brown. Interacting new facilities and location-
allocation problems. Transportation Science, 79:501–523, 1994.

[2] M. Blum, R. Floyd, V. Pratt, R.L. Rivest, and R. E. Tarjan. Time
bounds for selection. Journal of Computer and System Sciences, 7:448–
461, 1973.

[3] J. F. Campbell, A. Ernst, and M. Krishnamoorthy. Hub arc location
problems: part 1 - introduction and results. Working paper, 2000.

[4] J. F. Campbell, A. Ernst, and M. Krishnamoorthy. Hub arc location
problems: part 2 - formulations and optimal algorithms. Working paper,
2000.

[5] J. F. Campbell, A. Ernst, and M. Krishnamoorthy. Hub location prob-
lems. In Z. Drenzner and H. Hamacher, editors, Facility location: appli-
cations and theory. Springer–Verlag, 2002.

[6] J.F. Campbell. Integer programming of discrete hub location problems.
European Journal of Operational Research, 72:387–405, 1994.

[7] P. K. Chan. Algorithms for library-specific sizing of combinational logic.
Proc. 27th DAC Conf, pages 353–356, 1990.

[8] I. Demgensky, H. Noltemeier, and H.-C. Wirth. On the flow cost lowering
problem. European Journal of Operational Research, 137:265–271, 2002.

22

[9] R.W. Floyd. Algorithm 97: shortest path. Communications of the ACM,
5:345, 1962.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New
York, 1979.

[11] G. Y. Handler. Minimax location of a facility in an undirected tree
graph. Transportaton Science, 7:287–293, 1973.

[12] G. Y. Handler and P. B. Mirchandani. Location on networks: Theory
and algorithms. MIT Press, Cambridge, Massachusetts, 1979.

[13] A. V. Iyer and H. D. Ratliff. Accumulation point location on tree net-
works for guaranteed time distribution. Management Science, 36(8):958–
969, 1990.

[14] B. Y. Kara and B. C. Tansel. On the single-assignment p-hub center
problem. European Journal of Operational Research, 125(3):648–655,
2000.

[15] J. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical
Society, 7:48–50, 1956.

[16] C.L. Li, S.T. McCormick, and D. Simchi-Levi. On the minimum-
cardinality-bounded-diameter and the bounded-cardinality-minimum-
diameter edge addition problems. Operations Research Letters, 11:303–
308, 1992.

[17] P. McGeer, R. Brayton, R. Rudell, and A. Sangiovanni-Vincentelli. Ex-
tended stuck-fault testability for combinational networks. Proceedings
of the 6th MIT Conference on Advanced Research in VLSI, April 1990.

[18] P. B. Mirchandani and R. L. Francis. Discrete location theory. John
Wiley and Sons, Inc., New York, 1990.

[19] S. Nickel, A. Schobel, and T. Sonnebon. Hub location problems in urban
traffic networks. In M. Pursula and J. Niittymäki, editors, Mathematical
Methods on Optimization in Transportation Systems. Kluwer Academic
Publishers, 2001.

23

[20] M. E. O’Kelly. A quadratic integer program for the location of interact-
ing hub facilities. European Journal of Operational Research, 32:393–
404, 1987.

[21] M. E. O’Kelly and H. J. Miller. Solution strategies for the single facility
minimax hub location problem. Papers in Regional Science: The Journal
of the RSAI, 70:367–380, 1991.

[22] D. Paik, S. Reddy, and S. Sahni. Vertex splitting in dags and applica-
tions to partial scan designs and lossy circuits. Technical report, Uni-
versity of Florida, Gainesville, Florida, 1990.

[23] D. Paik, S. Reddy, and S. Sahni. Heuristics for the placement of flip-
flops in partial scan designs and for the placement of signal boosters in
lossy circuits. Sixth International Conference on VLSI Design, pages
45–50, 1993.

[24] D. Paik, S. Reddy, and S. Sahni. Deleting vertices in dags to bound path
lengths. IEEE Transactions on Computing, 43(9):1091–1096, 1994.

[25] D. Paik and S. Sahni. Network upgrading problems. Networks, 26:45–58,
1995.

[26] R. C. Prim. Shortest connection networks and some generalizations.
Bell System Technical Journal, 36:1389–1401, 1957.

[27] A.A. Schoone, H.L. Bodlaender, and J. van Leeuwen. Diameter increase
caused by edge deletion. Journal of Graph Theory, 11(3):409–427, 1987.

[28] A. Tamir. An o(pn2) algorithm for the p-median and related problems
on tree graphs. Operations Research Letters, 19:59–64, 1996.

[29] B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on networks:
A survey. part 1. the p-center and p-median problems. Management
Science, 29:482–497, 1983.

[30] B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on networks: A
survey. part 2. exploiting tree network structure. Management Science,
29:498–511, 1983.

24

[31] B. Yetis and B. C. Tansel. The single-assignment hub covering problem:
Models and linearizations. Journal of the Operational Research Society,
54:59–64, 2003.

[32] L. Zhang. The p-hub center allocation problem and the q-discount arc
problem. PhD thesis, The University of Iowa, Iowa City, Iowa, 2004.

[33] L. Zhang, A. Campbell, and T. Lowe. Heuristics for q-arc upgrading
problems. Working Paper, 2004.

25

