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In recent years, many new and existing businesses
have adopted a consumer direct (CD) service model
that allows customers to purchase goods online and
have them delivered directly to their front doors.
Crossing this “last mile” provides a huge increase in
service for customers but also creates a huge logistics
challenge for companies, even with the advantages
e-commerce provides. For example, we have seen the
rise and subsequent fall of many e-grocers, including
Webvan (Farmer and Sandoval 2001) and Shoplink,
that have run out of money in the process of finding
a distribution model that enables them to stay com-
petitive with local grocery stores. E-grocers that have
survived have changed distribution plans and focus,
as demonstrated by the closing of the San Francisco-
based operations for Peapod (Cox 2001); many con-
tinue to enter the arena, including Fresh Direct (Green
2003), with their own ideas on how to succeed. With
annual revenue from all goods sold online predicted
to be $195 billion by 2006 (Johnson, Delhagen, and
Yuen 2003), CD is quickly becoming one of the most
important business models, but there are still many
open questions about how to run such businesses effi-
ciently and effectively.
There are several issues in developing a success-

ful direct delivery strategy. The fulfillment process for
most CD businesses can be divided into three phases:
(1) order capture and promise, (2) order sourcing and
assembly, and (3) order delivery. Our research effort
focuses on the interactions between order promise

(deciding on a delivery time) and order delivery
(devising efficient delivery schedules). Better integra-
tion of these decisions has the potential to substan-
tially improve profitability, especially for those CD
businesses offering “attended” deliveries. Attended
deliveries are those where the consumers must be
present; they may be necessary for security reasons
(e.g., expensive computer equipment), because goods
are perishable (e.g., milk or flowers), or because goods
are being picked up or exchanged (e.g., dry cleaning,
videos/DVDs) and are a vital feature of many CD
service models. To provide a high service level and
to avoid delivery failures, it is customary in attended
home delivery services for the company and customer
to mutually agree on a narrow delivery window or
time slot.
In a previous paper (Campbell and Savelsbergh

2005) we studied and developed methodologies for
order-acceptance decisions to maximize overall profit.
The key idea underlying these methodologies is to
exploit information about potential future orders to
evaluate whether it is better to accept a customer’s
order or to reserve capacity for potential future
orders. The techniques for making these decisions are
based on modified insertion heuristics. As each order
arrives, we compare the value of inserting that par-
ticular order versus inserting potential future orders
that are properly discounted based on their probabil-
ity of being realized. Computational results indicate
that these order-acceptance strategies can significantly
increase profits.
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In this paper, we study and develop methodologies
for a different aspect of the order-acceptance decision,
namely the promise of a delivery window. In practice,
it is often the case, (particularly in a struggling indus-
try such as e-groceries where high customer reten-
tion is of utmost importance) that a vendor accepts
an order unless it is impossible to satisfy the request.
In such a scenario, we can potentially make signif-
icant improvements in routing costs by influencing
customers’ choices of delivery windows. If customers
select better windows, not only will total distance be
less, but a more efficient use of resources may increase
the number of orders that can be accepted, thus creat-
ing higher revenues. We will look specifically at offer-
ing discounts, or incentives, to customers to influence
window selection.
Home delivery is a fairly new phenomenon; thus

few models and algorithms have been proposed and
studied that help create an understanding of the com-
plexities and intricacies of these distribution prob-
lems. Our goal is to continue to change this by looking
at new features and variations of the problem. The
main contribution of the work reported in this paper
is that we develop incentive schemes and demon-
strate that they can significantly increase the prof-
itability of companies providing home delivery. The
incentive computations involve the use of insertion
heuristics as well as linear programming models. Our
computational studies offer greater insight and bet-
ter understanding of when incentives will be success-
ful and what type of incentives will perform best.
Another contribution of this paper, in our view, is that
we formally propose two new optimization problems
that capture the use of different types of incentives
and allow the research community to focus on com-
mon problems.
The paper is organized as follows. In §1 we review

the relevant literature, and in §2 we introduce the
home delivery problem with time slot incentives
(HDPTI). This new problem allows the vendor to
influence delivery window selection through the use
of incentives. We present a model for this problem,
discuss important assumptions, propose methods
for computing incentives, and present computational
results that illustrate their success. In §3 we introduce
a second version of the problem, the Home Delivery
Problem with Wider Slot Incentives (HDPWI), where
vendors offer incentives to customers to accept wider
delivery windows. We discuss how to modify the
earlier model and incentive computation and illus-
trate the impact of this change through computational
results. We include a side note in §4 on the value of
computing incentives for the earliest arriving orders.
We conclude in §5 with a summary of the insights
obtained and a short discussion of customer behavior
modeling in §6.

1. Literature
Research on home delivery strategies is increasing,
but most of the initial work has focused primarily
on comparing the profits from very different service
models rather than optimization in the design or per-
formance of a single model. For example, Saranen
and Småros (2001) simulate the delivery costs for two
specific models—Streamline.com’s unattended deliv-
ery policy and Webvan’s attended half-hour deliv-
ery window policy—and find the more restrictive
Webvan model to cost five times more. For unat-
tended home deliveries, where time slots are not of
concern, Punakivi (2000) studies the trade-off between
the use of fixed routes and the use of optimally
sequencing the deliveries on routes as soon as all
deliveries are known. Depending on the density of
the delivery area, simulation reveals an average sav-
ings from using optimal routing of 18%–54%. Yrjölä
(2001) compares different strategies for picking the
orders but also suggests values to use in evaluat-
ing the performance of an online grocer. Lin and
Mahmassani (2002) summarize the delivery policies
for many online grocers in the United States and
use vehicle-routing software to evaluate the impact of
some of these policies on a few realistic instances of
the problem. Both unattended and attended policies
are compared, along with different delivery window
widths.
The problem closest to the one addressed in this

paper does not involve groceries but scheduling re-
pairmen to visit gas customers. In the problem con-
sidered by Madsen, Tosti, and Vælds (1995), requests
for service that arrive during one week are scheduled
to be serviced during the following week. The request
must be scheduled when it arrives, so the challenge
is to commit to a particular delivery time window
that will lead to efficient routing solutions when all
remaining requests for the week have arrived. The
proposed solution approach involves the selection of
seeds for different areas and the choice of where to
insert requests based on insertion costs into routes
containing the nearest seeds. Similar to the problem
we study here, no probabilistic information about
future requests is assumed. The problem is very dif-
ferent, though, because it is the vendor that selects the
delivery window.
There are also several related, but also distinctly

different, research areas related to the study of incen-
tives for home delivery and good routing practices
for the resulting problems. These include the study
of revenue management, such as for airline ticket
prices, and the study of vehicle-routing problems with
stochastic demands and customers. A brief review of
the literature in these areas is discussed in our earlier
paper on home delivery (Campbell and Savelsbergh
2005). One recent paper not included in this survey
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is Bent and Van Hentenryck (2004). These authors
exploit stochastic information about future requests
to schedule requests under consideration, as done in
Campbell and Savelsbergh (2005). The objective is to
maximize the number of accepted requests, but the
authors do not consider the option of rejecting an
“expensive” delivery to preserve resources for more
future deliveries, as in Campbell and Savelsbergh
(2005). The proposed methodology involves maintain-
ing multiple sets of tentative route plans, which can
each be examined to see if a particular request can be
handled feasibly by the vendor. We will use a related
idea in this paper. Bent and Van Hentenryck (2004)
test their algorithm on instances with varying degrees
of dynamism (Larsen, Madsen, and Solomon 2002),
that is, varying ratios of number of requests known
in advance to the total number of requests.

2. The Home Delivery Problem with
Time Slot Incentives

2.1. Problem Definition and Assumptions
We will now define the first dynamic routing and
scheduling problem studied in this paper, which we
refer to as the HDPTI. We have to construct a set
of delivery routes for a specific day in the not-too-
distant future. Requests from a known set of cus-
tomers for a delivery on that particular day arrive
in real time and are considered up to a certain
cut-off time T , which precedes the actual execu-
tion of the planned delivery routes. We accept each
request that arrives if there is available capacity. We
assume that each request consumes di of the vehi-
cle capacity and results in a revenue of ri. There is
a homogeneous set of m vehicles with capacity Q
to serve the accepted orders. To increase the level
of service, we guarantee that the actual delivery
will take place during a one-hour time slot on the
delivery day. These one-hour delivery time slots are
nonoverlapping and cover the entire day, for exam-
ple, 8�00–9�00�9�00–10�00� 	 	 	 �19�00–20�00. We assume
that for each customer i, we know the probability pti
that he or she will choose a delivery in time slot t
when an order is placed. When a request for ser-
vice arrives, the vendor may offer incentives of up to
B dollars per time slot. The probability of a customer
choosing a particular time slot increases by an amount
equal to the incentive offered multiplied by rate x.
An increase in the probability of one or more time
slots is compensated for by a decrease in the prob-
ability of the other time slots with pti values greater
than zero. The time slot selection by the customer is
based on these modified probabilities. The objective is
to maximize the total profit resulting from executing
the final set of delivery routes, that is, total revenue
minus incentive and delivery costs, where we assume

that the delivery costs depend linearly on the travel
time. The travel time between two locations i and j
is denoted by tij . For simplicity, we will assume that
the cost of one unit of travel time is $1, but our mod-
els can be modified easily to accommodate other cost
functions.
The definition above assumes knowledge about the

likelihood that a customer selects a particular time
slot for delivery (the probabilities pti ) and about the
effect of incentives on a customer’s behavior (the
rate x). We believe both are reasonable assumptions,
especially given the way businesses are evolving.
A variety of industries, such as package delivery, are
starting to use historical information about customers
to estimate the likelihood of those customers requir-
ing a particular service and are using this information
for planning purposes. As technology and computing
resources improve, the number of companies track-
ing and using such information about their customers
and their ordering patterns will only increase. Thus,
the ability to estimate and use pti values seems a
realistic assumption. If there is little or no histori-
cal information about a customer placing an order,
companies may choose not to offer incentives to this
customer, may assume equal probabilities for all time
slots, or may use aggregate historical information to
construct a prototypical time slot selection profile and
use this profile for such customers. A variety of indus-
tries, such as online grocery shopping and delivery
companies, is similarly starting to collect and use
historical information about customers’ reaction to
incentives. Their experience indicates that even small
incentives (a few dollars) can change customers’ selec-
tion of delivery windows (Thomas Parkinson, per-
sonal communication).
We assume that incentives (discounts) will only be

offered for time slots that have a positive probability
of being selected. Because the probability information
will be based on historical data, a probability of zero
would reflect that a customer has never selected a
delivery during that particular slot, so it is likely that
this time slot is not feasible or is very undesirable for
the customer. On the other hand, if two slots have
positive and equal probability, it likely means that a
customer is fairly indifferent between two time win-
dows, so a small incentive might be able to influence
the probability of choosing one over the other.
We have modeled consumer behavior by stating

that the probability of choosing a particular time slot
increases by an amount equal to the incentive offered
multiplied by a rate x. Because the probability of all
time slots must sum to 1, the probability of time slots
with positive probability that do not receive an incen-
tive must decrease, and we assume this decrease is in
equal portions. That is, the total increase in probabil-
ity created by incentives is divided up and removed
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equally from all the time slots with positive prob-
ability not receiving an incentive. Consequently, the
maximum incentive payout for a set of time slots
is not only limited by B, the maximum incentive
per time slot, but also by the smallest probability
among the time slots that do not receive an incen-
tive (as probabilities cannot go below zero). Other
options for decreasing the probabilities of the time
slots not receiving incentives exist, such as decreas-
ing these probabilities proportionally. The methodol-
ogy discussed in this paper can easily be adapted to
handle this and other options.
We also have to specify what happens when deliv-

ery within at least one of the time slots with positive
probability is currently infeasible given all the orders
that have already been accepted (and assigned a time
slot). We have examined two options. First, if deliver-
ing to customer i in a time slot t with positive proba-
bility pti of being selected is infeasible (which implies
that this time slot is not presented to the customer
as a delivery option), we will assume that this proba-
bility pti will be redistributed equally among the fea-
sible time slots with positive probability. Second, we
will alternately assume that the customer will walk
away with probability pti . Note that we do assume
that the probability of choosing to walk away, that is,
choosing an infeasible time slot, can be reduced by
offering incentives to other feasible time slots. In envi-
ronments where demand is less than capacity (i.e.,
undersaturated markets), using incentives to prevent
customers from walking away can be critical in max-
imizing profits.
Note that a major difference with the setup con-

sidered in our previous paper (Campbell and Savels-
bergh 2005) is that we will not assume any stochas-
tic information about future requests. This not only
simplifies the incentive computations, but it also elim-
inates the need to generate accurate and reliable
information about future requests. If incentives based
only on the set of already accepted requests and the
request under consideration prove to be successful
in increasing profits, it follows that the results will
only improve as more information about the future is
included in the incentive computations.
Note also that all orders are received prior to the

execution of any delivery schedule. That is, we will
not consider “same-day delivery” services, where
orders arrive during the execution of a delivery
schedule and have to be incorporated immediately.
We feel this is justified because in many consumer
home delivery environments the vehicles will be
loaded with customer-specific orders, so once a vehi-
cle has started its route it cannot be rerouted to a new
customer, because the correct inventory will likely not
be on board.

For simplicity and ease of presentation, we assume
for the remainder of this paper that the size of
requests �di� is small compared to the vehicle capac-
ity �Q� and that vehicle capacity is not a constraining
factor when constructing delivery routes. This is gen-
erally true in practice because the constraints imposed
by the combination of travel times and delivery win-
dows are far more restrictive.

2.2. Determining Feasibility and Cost
As a first step toward designing a solution approach
for the HDPTI, we develop a methodology to dynam-
ically determine whether an order, which is char-
acterized by a size and a delivery address, can
be accommodated during a particular time window
given the set of already accepted orders. We will use
the same methodology to estimate what the order’s
contribution to profit will be if delivery is made dur-
ing a given window. A key goal of this study is to
determine if using profit estimates based only on cur-
rently accepted orders is sufficient to create effective
incentives, so these estimates need to be as accurate
as possible while quickly computed.
To dynamically determine whether we can accom-

modate an order in a particular time slot, we have to
determine if there exists a set of m routes visiting all
previously accepted orders as well as the order under
consideration. The order under consideration must be
visited during the particular time slot, and all previ-
ously accepted orders must be visited in their commit-
ted time slots for the resulting schedule to be feasible.
It is well known that deciding whether a feasible solu-
tion to the vehicle-routing problem with time win-
dows exists is NP-complete (Savelsbergh 1986), so it
is natural to consider employing heuristics to answer
the question of feasibility quickly.
We evaluate this question in two phases: First we

create a set, S, of schedules for the already accepted
orders, and second we evaluate the feasibility (and
then cost) of inserting the order under considera-
tion into these schedules. Each schedule in S is com-
posed of m delivery routes for the previously accepted
orders. By creating and maintaining a set of feasible
schedules, rather than just one, we are able to increase
the number of insertion options for each order that
arrives and are more likely to find a feasible and low-
cost insertion point. As mentioned in the literature
review, a similar approach was taken in Bent and Van
Hentenryck (2004). We use a combination of inser-
tion heuristics and randomization to build the set S
of schedules with the previously accepted orders.
Each time an order is accepted, we keep the least

cost schedule that contains all previously accepted
orders plus the newly accepted one (in the time slot
selected by the customer). This schedule becomes the
first one in the set S used to evaluate the feasibil-
ity and cost of the next order that arrives. Thus, we
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always have at least one feasible schedule for the
already accepted orders in the set S. The other sched-
ules in S are created one at a time. To build each one,
we iteratively insert orders into the (partial) sched-
ule until all orders are included or an infeasibility
occurs. At each iteration of the construction, we eval-
uate the feasibility and the cost of inserting each of the
as-yet-unscheduled orders at each point in the par-
tially built schedule. Because all previously accepted
orders have specific guaranteed time slots, an inser-
tion of a previously accepted order is feasible only if
it can occur during its guaranteed time slot. For each
inserted order i in the schedule under construction,
we maintain values ei and li representing the earliest
and latest times delivery can begin given the commit-
ted time slot and position on the partially built route.
An order j can feasibly be inserted between already
inserted orders i− 1 and i in time slot t �begint� endt�
if and only if

ej =max�ei−1+ service time+ ti−1� j �begint�� (1)

lj =min�li− tj� i− service time� endt�� (2)

and

ej ≤ lj 	 (3)

Service time represents the time required to deliver
the product once the vehicle has arrived. We assume
the service time is the same for all customers. If the
insertion is feasible, then we can evaluate the increase
in cost (travel time) as

ti−1� j + tj� i− ti−1� i	 (4)

We maintain a restricted candidate list of unscheduled
orders with the smallest insertion costs at each itera-
tion (and their corresponding insertion points in the
current schedule) and randomly choose from among
these to determine which order is inserted next in
the partial schedule. This is a typical greedy ran-
domized adaptive search procedure (Feo and Resende
1995). After each insertion, we update the ei values
for the inserted order as well as all orders follow-
ing it and the li value for the inserted order and all
orders preceding it. (See Campbell and Savelsbergh
2004 for a survey of efficient implementations of inser-
tion heuristics.) We iterate until all orders are sched-
uled or one of the orders cannot feasibly be inserted.
If the construction process completes with all orders
scheduled, we add the schedule s to the set S and
record its total cost C�s�. We try to generate a sched-
ule a fixed number, say n, of times. Therefore, the
set S will have cardinality less than or equal to n+ 1.
Let C�∗�=mins∈S C�s�. Due to the randomization, the
routes making up the schedules may be quite dif-
ferent, but if the size of the restricted candidate list

is small, say two or three, the constructed schedules
usually have fairly similar costs.
We evaluate the cost of accepting the order cur-

rently under consideration, say j , in a particular time
slot t by computing the cost of including it in each
of the schedules in S. For each schedule s ∈ S, we try
to insert j during time slot t at each possible inser-
tion point. Feasibility is quickly evaluated using the
same ej and lj calculations as described above. If fea-
sible, we compute

cost= �ti−1� j + tj� i− ti−1� i�+C�s�−C�∗�	 (5)

This value represents the “true” added cost associ-
ated with making this delivery to j . Without the C�∗�
and C�s� terms, the computation would only repre-
sent the increase in cost with respect to schedule s.
This could disguise the fact that a cheap insertion
can only occur if an otherwise much more expensive
schedule is used. We maintain the lowest insertion
cost for each time slot t and represent its final value,
after evaluating all �S� schedules, with Ct . (We also
maintain the associated schedule s and point of inser-
tion into s.) These Ct values form the basis for our
incentive calculations, as they indicate the minimum
cost of making a delivery to j in time slot t.

2.3. Modeling the Home Delivery Problem with
Time Slot Incentives

In the previous section, we described how to deter-
mine quickly whether it is feasible to insert an order
in a time slot t and how to compute an associated
value Ct for that insertion. If we find that the Ct val-
ues vary widely for different time slots, then we may
want to offer an incentive to the customer for choos-
ing a time slot with a higher profit. Offering incen-
tives raises many challenging questions, such as—
• How do we decide which time slot(s) receive an

incentive?
• How do we decide on the size of the incentive(s)?
We can start to answer this second question by

modeling the relationships described in the problem
definition for the HDPTI. Recall that for each cus-
tomer i, delivery in time slot t will be selected with
probability pti if no incentives are offered. Further-
more, the probability of choosing a particular time
slot increases by an amount equal to the incentive
offered multiplied by rate x, and the probability of all
slots that do not receive an incentive will decrease by
equal amounts.
Next, note that we cannot offer an incentive to all

time slots with pti > 0, because the increased probabil-
ity resulting from the incentives must be discounted
from other slots. Thus, to model this problem, we
must divide the set of time slots with positive proba-
bility of being selected into two groups. Let
• O = set of time slots with pti > 0
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• U = subset of O that may receive an incentive
• V = subset of O not receiving an incentive.

We want to find
• I t = the incentive for time slot t
• z= the reduction in probability for all time slots

in V to maximize expected profitability.
Given the above and our basic assumption that

insertion costs are a good reflection of future costs, the
incentive decision for customer i can be represented
by the following incentive optimization problem:

max
∑
t∈U
�ri−Ct − I t��pti + xI t�+

∑
t∈V
�ri−Ct��pti − z� (6)

subject to:

z≤ pti ∀ t ∈ V (7)∑
t∈U
xI t = z�V � (8)

0≤ I t ≤ B ∀ t ∈U	 (9)

In the objective, the first portion represents the prod-
uct of the adjusted profit and adjusted probability
associated with awarding an incentive I t to time slot t
in U . This product is the expected profitability from
time slots where incentives are offered. Likewise, the
second portion represents the expected profits from
the slots with no incentives, with profits and prob-
abilities adjusted accordingly. The first constraint in
Equation (7) limits z such that the adjusted probabil-
ity of each slot not receiving an incentive cannot fall
below zero. The second constraint, Equation (8), sets z
equal to the increase in probability created by incen-
tives divided by the number of time slots in V , so
the sum of all probabilities will remain equal to one.
Finally, Equation (9) restricts each incentive to be less
than the specified limit B.
We can use the above model to compute a set of

incentives that maximizes expected profits given the
partitioning of time slots into sets U and V . This
still leaves the question, though, of how to decide
which time slots should be assigned to sets U and V .
This decision is not as straightforward as it may seem
because of the interaction between the insertion costs
and the probabilities. The following are some obser-
vations concerning the selection of set U .
Observation 1. If a single time slot is considered

for an incentive ��U � = 1�, it is possible that the opti-
mal incentive is zero even if that time slot has the
uniquely lowest insertion cost.
Example. Let rj = 20, C1 = 10, C2 = 12, C3 = 16,

p1i = 0	5, p2i = 0	3, p3i = 0	2, and x = 0	1. Consider time
slot 1 for an incentive; that is, U = �1� and V = �2�3�.
If I 1 = 0, then the objective function value is

�20− 10��0	5�+ �20− 12��0	3�+ �20− 16��0	2�
= 5+ 2	4+ 0	8= 8	2	

If I 1 = 2�, then the objective function value de-
creases to

�20− 10− 2���0	5+ 0	2��+ �20− 12��0	3− 0	1��
+ �20− 16��0	2− 0	1��= 8	2− 0	2�− 0	4�2 < 8	2	

In fact, the optimal value for any single incentive I t

is zero whenever the following holds:

ri−Ct −
pti
x
−

∑
t∈V �ri−Ct�

�V � ≤ 0	 (10)

This can be derived by manipulating the objective
function given the observation that if there is a sin-
gle time slot t that can receive an incentive, then z=
xI t/�V �. Equation (10) shows that if we consider offer-
ing an incentive for a single slot, the optimal value
will be zero unless the profit from this time slot is
greater than the average profit from the other slots
by at least pti/x. In the example, the average profit
for time slots other than time slot 1 is 6 and p1i /x =
0	50/0	10 = 5. The profit from slot 1 is 10, which is
less than 6+5= 11, so it is better to offer no incentive
to time slot 1. The result does not preclude it being
profitable to offer an incentive for a time slot with a
higher insertion cost.
The above can be generalized to situations where

we consider providing incentives for more than one
time slot. With more than one time slot, substituting
z= �∑t∈U xI t�/�V � into the objective function yields an
expression that contains no terms involving products
of incentive values. Thus, we can extend our result
for each time slot under consideration.
Observation 2. The optimal value for any incen-

tive I t for t ∈U is zero whenever the following holds:

ri−Ct −
pti
x
−

∑
t∈V �ri−Ct�

�V � ≤ 0	 (11)

Observation 3. If a single time slot is considered
for an incentive ��U � = 1� and the optimal incentive is
zero, it is possible that it will receive a positive incen-
tive when considered in conjunction with another
time slot.
Example. Consider the instance presented with

Observation 1, but let U = �1�2� and V = �3�. If I 1 =
0	5 and I 2 = 0	333, then the expected profit is
�20− 10− 0	5��0	5+ 0	1�0	5��+ �20− 12− 0	333�
· �0	3+ 0	1�0	333��+ �20− 16��0	2− 0	1�0	5+ 0	333��

= �9	5��0	55�+ �7	666��0	3333�+ �4��0	1167�
= 5	225+ 2	555+ 0	467= 8	247> 8	2	

Observe that here an incentive for a (single) time
slot decreases the probabilities associated with other
(high-profit or low-cost) time slots, resulting in lower
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overall expected profits, whereas when the time slot
is considered together with another time slot, an
incentive may increase expected profits. In the above
example, both time slots 1 and 2 would not receive
an incentive if considered by themselves, but when
considered together, it is beneficial for both to receive
a positive incentive. This result is significant because
it shows that even if a time slot does not receive an
incentive when considered by itself, we cannot stop
considering it when trying to find the best set U .
The above also demonstrates that it may be neces-

sary to offer incentives for more than one time slot
to increase expected profits. This can be a result of
the quadratic nature of the expected profit function as
well as the limit B.
These observations demonstrate that selecting a

set U of time slots to consider for incentives so as to
maximize the expected profit is nontrivial. The likely
candidates for the set U are the time slots with the
cheapest insertion costs because of the profits they
offer, but customer behavior, represented through the
selection probabilities, also impacts the choice.
In our computational experiments, we will compare

choosing the l time slots with the cheapest insertion
costs for the set U with an exhaustive search over all
possible combinations of l time slots for the set U .
The latter option may be impractical in terms of run
time, especially for larger values of l, but will give a
good measure of how well simply choosing the time
slots with the cheapest insertion cost performs. We
could, alternatively, incorporate the choice of whether
or not a slot receives an incentive in the model itself
(using binary selection variables), but this would lead
to a mixed integer program that would be much more
difficult and time consuming to solve.

2.4. Solving the Home Delivery Problem with
Time Slot Incentives

Before we can evaluate the impact of incentives on
the actual profits, we must figure out how to actually
solve the proposed model quickly. After removing
constant terms and with a little rewriting, the objec-
tive function in the model becomes

max
∑
t∈U
�x�ri−Ct�−pti �I t−

∑
t∈U
x�I t�2−∑

t∈V
�ri−Ct�z	 (12)

This highlights how profitability is gained and where
it is lost as a result of incentives. We observe that the
objective function has a quadratic term for each time
slot for which we offer an incentive. Because solving
quadratic programs can be (too) time consuming for
an online algorithm, we will use a linear approxima-
tion of the problem.
We approximate each quadratic term �I t�2 with a

piecewise linear function over f −1 intervals between
I t = 0 and I t = u where

u=min
(
B�
mint∈V pti

x
�V �

)
	 (13)

The first term defining the upper bound u of I t is the
upper limit available for individual incentives, and
the second term is the amount of incentive that can be
spent on a single time slot before the time slot t ∈ V
with the smallest positive probability becomes zero.
This requires f (additional) variables yt1� 	 	 	 � y

t
f per

time slot. Normally, piecewise linear approximations
require the introduction of integer variables. How-
ever, because −�I t�2 is nonincreasing and convex on
the interval of interest and we are maximizing, the
integer variables are not needed. Thus, we can solve
the approximation as a linear program. (For a general
discussion of how to approximate a continuous func-
tion of one variable with a piecewise linear function,
see Nemhauser and Wolsey 1988.)
The resulting incentive optimization linear program

is as follows:

max
∑
t∈U
�x�ri−Ct�− pti ��I t�−

∑
t∈U
x

((
u

f − 1
)2
yt2

+
(
2u
f − 1

)2
yt3+ · · ·+ �u�2ytf

)
−∑
t∈V
�ri−Ct�z (14)

subject to:

f∑
i=1
yti = 1 ∀ t ∈U (15)

I t = u

f − 1y
t
2+

2u
f − 1y

t
3+ · · ·+uytf (16)

z≤ pti ∀ t ∈ V (17)∑
t∈U
xI t = z�V � (18)

0≤ I t ≤ B ∀ t ∈U	 (19)

Equations (17) and (18) are the same as before, but
Equations (15) and (16) are added because of the lin-
earization. Both I t and �I t�2 terms are now based on
the y values.

2.5. Computational Experiments
Our primary goal in this section is to conduct com-
putational experiments to determine the impact on
total profit of using incentives to influence customer
behavior. Furthermore, we want to study and com-
pare methods for choosing the value of these incen-
tives. Finally, we want to analyze the impact of
instance characteristics on the performance of our
proposed methodology.
In our testing, we want to compare the total profit,

that is, total revenue − total costs − total incentives
paid, associated with using incentive schemes of dif-
ferent forms. The following is a list of the five meth-
ods for which results are included in the tables. These
five were selected to illustrate the impact of certain
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characteristics of the problem and solution method-
ology. Each of the five methods, except for BSTLP,
completes within a couple of seconds.
• NOINC (no incentives): To evaluate the impact

of incentives, we determine the profits when no
incentives are provided. This means that each cus-
tomer’s time slot selection is based on initial pti values.
(Appropriate adjustments are made if one or more of
these time slots are infeasible. Recall that if delivering
to customer i in a time slot t with positive proba-
bility pti of being selected is infeasible, we will redis-
tribute this probability equally among the remaining
feasible time slots with positive probability.)
• CHPFLT (flat incentive to cheapest slots): To eval-

uate the impact of sophisticated incentive computa-
tions (e.g., our linear programming-based incentive
optimization techniques), we determine the profits
when a simple incentive scheme is used. A simple and
straightforward incentive scheme awards equal incen-
tives to the l time slots with cheapest insertion costs.
(No incentives are awarded if all time slots have equal
insertion costs, because there is clearly no advantage
to offering incentives in that situation.)
• CHPLP (LP-based incentive to cheapest slots): We

want to evaluate the impact of different rules for
choosing the sets U and V used in the incentive opti-
mization problem. A natural rule is to choose the
l time slots with the cheapest insertion costs to be in
the set U . Note that this does not mean that all l time
slots will necessarily receive an incentive, but only
these time slots may receive an incentive. In fact, when
the optimal incentive for a time slot in U is zero, it
is moved to the set V , and the incentive optimization
problem is resolved for the updated sets U and V .
This process repeats until all optimal incentives are
positive. (Otherwise, we have a situation in which we
reduce the probabilities of the time slots in V , but, at
the same time, have time slots in U that do not receive
an incentive, but their probability is not reduced.)
• BSTLP (LP-based incentive to best set U ):

Another rule, though computationally intensive, is to
enumerate all possible sets U of size 1 up to l, solve
the incentive optimization problem for each set U ,
and select the one that maximizes expected profits.
This allows us to evaluate how much we give up by
greedily choosing the l cheapest time slots to com-
prise the set U .
• BST (best case): To serve as an “upper bound,”

we also evaluate what happens when customers
always select the time slot preferred by the vendor
(ideal customer behavior). In this setup, the time slot
with the cheapest insertion cost is always selected and
no incentives are paid. (Our computational experi-
ments will show that this is not a true upper bound,
as the associated profit can sometimes be exceeded by
other approaches. This does not represent erroneous

behavior, but is a reflection of the true dynamic nature
of the problem.)
Such analysis can only be performed by means of

simulation. Simulation is used to generate a stream
of delivery requests at different points in time, uni-
formly distributed between zero and the cut-off
time T . Given this stream of arrivals of delivery
requests, we can evaluate the behavior of the different
methods listed above by using them to decide incen-
tives and then simulate consumer response to these
offers.
In all experiments, unless specifically stated oth-

erwise, 30 requests are generated for customers uni-
formly distributed over an area of dimension 60 units
by 60 units, where each vehicle can travel one unit
per minute. The service time to complete a delivery
to a customer is 20 minutes. There are 12 time slots
of 60 minutes available for making deliveries. For
each customer, eight consecutive time slots will have
a positive probability (possibly wrapping around at
the end of the day, e.g., the first two time slots at the
beginning of the day and the last six time slots at the
end of the day). This is to reflect that few customers
are willing or able to accept delivery during all possi-
ble time slots. The probabilities for the acceptable time
slots follow one of three patterns, differing in terms
of how much one time slot is preferred to the oth-
ers. In the first pattern �PROBPAT = 1�, all time slots
(the ones with positive probability) are equally likely
to be selected by the customer. In the second pat-
tern �PROBPAT = 2�, there is one time slot that is two
times more likely to be selected than the others. In the
third pattern �PROBPAT = 3�, there is one slot that is
three times more likely to be selected than the oth-
ers. The slot that is “preferred” is randomly selected.
Other patterns are possible, of course, but these pro-
vide a good starting point for an initial analysis. The
probability of selecting a time slot increases at a rate
of 0.2 per dollar of incentive. The (implied) limit on
each incentive is $5. Revenue for each delivery is $100.
For each computational experiment, 25 instances are
generated, and the results are averaged to create the
associated table.
During schedule construction, we try to generate

50 schedules; that is, �S� ≤ 51, using a restricted candi-
date list with three orders. The quadratic term in the
incentive optimization problem is approximated with
five linear pieces.
We start by presenting the results for the 25 in-

stances of the basic data set described above. The five
methods are compared not only for different proba-
bility patterns, but also for different sizes of the set U .
Besides the difference in profit associated with dif-
ferent sizes of U , there may be other reasons why
a certain number of members of U is preferable.
For example, experience may indicate that it is less
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Table 1 Base Results

PROBPAT �U� NOINC CHPFLT CHPLP BSTLP BST

1 1 1�224�72 1�373�20 1�354�78 1�362�24 1�349�29
2 1�224�72 1�304�28 1�405�99 1�379�40 1�349�29
3 1�224�72 1�300�77 1�436�41 1�416�87 1�349�29
4 1�224�72 1�219�82 1�370�68 1�446�67 1�349�29

Average 1�224�72 1�299�52 1�391�97 1�401�30 1�349�29
% improvement 0�00 6�11 13�66 14�42 10�17

2 1 1�235�63 1�375�60 1�380�03 1�311�60 1�349�29
2 1�235�63 1�365�10 1�391�44 1�398�97 1�349�29
3 1�235�63 1�261�17 1�389�83 1�375�15 1�349�29
4 1�235�63 1�247�64 1�377�88 1�437�28 1�349�29

Average 1�235�63 1�312�38 1�384�80 1�380�75 1�349�29
% improvement 0�00 6�21 12�07 11�74 9�20

3 1 1�228�93 1�311�89 1�370�46 1�333�48 1�349�29
2 1�228�93 1�336�17 1�372�35 1�407�83 1�349�29
3 1�228�93 1�361�99 1�378�48 1�400�10 1�349�29
4 1�228�93 1�294�06 1�346�86 1�402�10 1�349�29

Average 1�228�93 1�326�03 1�367�04 1�385�88 1�349�29
% improvement 0�00 7�90 11�24 12�77 9�79

confusing for a customer to be offered one incentive
than to negotiate many varied incentives. Thus, we
are interested in evaluating how many incentives are
needed to obtain the majority of benefits that incen-
tives can offer or finding out if it is true that more
is “always better.” In each experiment, we report the
average profits from each method over all choices
of U (average) and compare this to the results when
no incentives are used (% improvement). These serve
as a quick summary of the results.
The results presented in Table 1 clearly demon-

strate the value of incentives. With a simple incen-
tive scheme (CHPFLT), profits increase by 6%–8%, and
with more sophisticated incentive schemes (CHPLP
and BSTLP), profits increase by 12%–15%. It is inter-
esting to observe that the sophisticated incentive
schemes consistently outperform the “upper bound.”
Recall that when computing the upper bound, we
assume that the customer always does exactly what
we want him or her to do without having to pay
incentives. The fact that incentive based approaches
are able to achieve higher profits reflects the dynamic
nature of the problem. Optimal decisions based on the
orders that have arrived so far may not be optimal
after additional orders arrive.
Next, we will focus on the results for probability

pattern 1, that is, each customer has no preference
among the delivery windows that are acceptable. We
see that when the number of time slots eligible for
an incentive increases, the performance of the simple
incentive scheme (CHPFLT) degrades (from 1,373.20
to 1,219.82), as it has no mechanism to differentiate
between different time slots. In fact, for �U � = 4 the
profit is less than when no incentives are offered. This
indicates that the increased profits are insufficient to

recoup the incentive payouts. On the other hand, we
see that the performance of the linear programming-
based incentive schemes improves (from 1,362.24 to
1,446.67 for BSTLP). Although the same behavior can
be observed with other probability patterns, it is not
as pronounced. This is understandable because the
stronger the preference is for a particular delivery
window, the harder it will be to influence the cus-
tomer’s behavior with incentives. This shows that a
thorough analysis of customer behavior is important
when considering the use of incentive schemes.
In the above instances, even though 30 orders

arrive, only approximately 14 can be served. Next,
we investigated whether there is a noticeable change
when only the first 15 orders are considered. With
fewer customers, each customer can significantly
impact cost and revenue.
The results presented in Table 2 show that incen-

tives are still able to increase profits, but that the
increases are smaller (about 4% with the simple incen-
tive scheme (CHPFLT) and 6%–8% with more sophis-
ticated incentive schemes (CHPLP and BSTLP)). The
most striking difference, when compared with the ear-
lier results, is that the upper bound now dominates
the other approaches. This indicates that some of the
differences we observed in the earlier results were
caused by being able to accept a single order late
in the simulation when the schedule was nearly full
(timewise).
For the remaining experiments in this section, we

revert back to 30 orders arriving but consider only
two time slots for incentives ��U � = 2�. The base
results indicated that considering two time slots for
incentives leads to substantial increases in profits, and

Table 2 Base Results with Fewer Orders

PROBPAT �U� NOINC CHPFLT CHPLP BSTLP BST

1 1 1�022�69 1�095�78 1�100�65 1�085�79 1�129�35
2 1�022�69 1�075�67 1�104�85 1�090�83 1�129�35
3 1�022�69 1�050�81 1�120�48 1�116�88 1�129�35
4 1�022�69 1�031�35 1�090�85 1�133�04 1�129�35

Average 1�022�69 1�063�40 1�104�21 1�106�64 1�129�35
% improvement 0�00 3�98 7�97 8�21 10�43

2 1 1�034�43 1�094�82 1�089�96 1�063�02 1�129�35
2 1�034�43 1�096�18 1�099�15 1�115�78 1�129�35
3 1�034�43 1�074�24 1�127�31 1�101�43 1�129�35
4 1�034�43 1�039�00 1�083�81 1�119�70 1�129�35

Average 1�034�43 1�076�06 1�100�06 1�099�98 1�129�35
% improvement 0�00 4�02 6�34 6�34 9�18

3 1 1�033�82 1�075�48 1�096�90 1�095�26 1�129�35
2 1�033�82 1�076�72 1�084�56 1�117�06 1�129�35
3 1�033�82 1�097�31 1�112�58 1�116�89 1�129�35
4 1�033�82 1�059�10 1�086�46 1�126�63 1�129�35

Average 1�033�82 1�077�15 1�095�13 1�113�96 1�129�35
% improvement 0�00 4�19 5�93 7�75 9�24
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Table 3 Base Results for Varying Incentive Upper Limit

B PROBPAT NOINC CHPFLT CHPLP BSTLP BST

2 1 1�224�72 1�304�28 1�391�58 1�414�88 1�349�29
2 1�235�63 1�365�10 1�330�80 1�384�19 1�349�29
3 1�228�93 1�336�17 1�366�02 1�342�97 1�349�29

Average 1�229�76 1�335�18 1�362�80 1�380�68 1�349�29
% improvement 0�00 8�57 10�82 12�27 9�72

5 1 1�224�72 1�304�28 1�405�99 1�379�40 1�349�29
2 1�235�63 1�365�10 1�391�44 1�398�97 1�349�29
3 1�228�93 1�336�17 1�372�35 1�407�83 1�349�29

Average 1�229�76 1�335�18 1�389�93 1�395�40 1�349�29
% improvement 0�00 8�57 13�02 13�47 9�72

considering two time slots for incentives simplifies
the analysis of the results.
Table 3 reflects what happens when we vary the

limit on the incentive for a time slot �B�. The results
show that although increasing the limit on possible
incentive payout does lead (on average) to larger prof-
its, the differences are relatively small. This may be
caused, to a large extent, by the fact that the incentives
awarded are bounded not only by the limit B, but
also by the smallest positive probability of time slots
not receiving an incentive. We have observed that it
is often the latter that is constraining.
We have modelled incentive impact as a linear

relation: For each dollar of incentive the probability
that the customer selects a delivery window increases
by x; that is, p̄ti = pti + xI t . Next, we investigate what
happens for various values of x. These results can be
found in Table 4. As expected, we see that our ability
to increase profits by awarding incentives increases
with the impact the incentives have on customer
behavior. The increase is more pronounced for the
sophisticated incentive schemes (from about 8% with
x= 0	1 to about 13% for x= 0	2).
Next, we examine what happens when customers

are more restrictive in terms of which delivery win-
dows are acceptable to them. So far, we have assumed
that there are eight delivery windows with positive
probability of being selected by a customer. In the
results reported in Table 5, the customers only have
four delivery windows with positive probability of

Table 4 Base Results for Varying Incentive Impact Levels

UTILITY PROBPAT NOINC CHPFLT CHPLP BSTLP BST

0.1 1 1�224�72 1�288�38 1�335�63 1�362�08 1�349�29
2 1�235�63 1�350�65 1�309�03 1�331�62 1�349�29
3 1�228�93 1�323�40 1�329�03 1�288�34 1�349�29

Average 1�229�76 1�320�81 1�324�56 1�327�35 1�349�29
% improvement 0�00 7�40 7�71 7�94 9�72

0.2 1 1�224�72 1�304�28 1�405�99 1�379�40 1�349�29
2 1�235�63 1�365�10 1�391�44 1�398�97 1�349�29
3 1�228�93 1�336�17 1�372�35 1�407�83 1�349�29

Average 1�229�76 1�335�18 1�389�93 1�395�40 1�349�29
% improvement 0�00 8�57 13�02 13�47 9�72

Table 5 Base Results with Four Acceptable Delivery Windows

PROBPAT �U� NOINC CHPFLT CHPLP BSTLP BST

1 1 1�172�35 1�220�49 1�243�77 1�249�69 1�262�66
2 1�172�35 1�183�79 1�251�40 1�229�05 1�262�66
3 1�172�35 1�116�55 1�229�27 1�205�68 1�262�66
4 1�172�35 1�148�06 1�277�97 1�201�59 1�262�66

Average 1�172�35 1�167�22 1�250�60 1�221�50 1�262�66
% improvement 0�00 −0�44 6�67 4�19 7�70

2 1 1�172�31 1�223�86 1�255�17 1�288�69 1�262�66
2 1�172�31 1�185�25 1�268�94 1�225�02 1�262�66
3 1�172�31 1�147�39 1�279�52 1�256�90 1�262�66
4 1�172�31 1�076�21 1�268�73 1�223�43 1�262�66

Average 1�172�31 1�158�18 1�268�09 1�248�51 1�262�66
% improvement 0�00 −1�21 8�17 6�50 7�71

3 1 1�178�54 1�210�13 1�230�66 1�287�55 1�262�66
2 1�178�54 1�176�17 1�259�50 1�226�81 1�262�66
3 1�178�54 1�166�94 1�245�79 1�230�95 1�262�66
4 1�178�54 1�149�36 1�258�99 1�247�86 1�262�66

Average 1�178�54 1�175�65 1�248�74 1�248�29 1�262�66
% improvement 0�00 −0�25 5�96 5�92 7�14

being selected. As this setup may be somewhat more
realistic in certain applications, we are presenting the
expanded set of results, that is, also varying the num-
ber of time slots considered for incentives.
Several interesting observations can be made when

examining these results. First, on average, the sim-
ple incentive scheme leads to a decrease in profits for
all the probability patterns, whereas the sophisticated
incentive schemes continue to result in increased prof-
its (between 6% and 8%). A more careful examina-
tion of the results shows that the simple incentive
scheme performs poorly when the number of time
slots receiving an incentive gets larger but that it does
reasonably well if the number of time slots receiv-
ing an incentive is small (one or two). This demon-
strates that with fewer acceptable delivery windows,
and thus fewer delivery options, a judicious choice of
incentives is a must.
Finally, we consider the situation in which we

assume that customers walk away with probability pti
if delivery window t is not presented to them as
a delivery option, that is, the probability pti is not
redistributed among the other feasible slots. Realize,
though, that the walkaway probability pti can still be
reduced as a result of incentives to other time slots.
The incentive optimization problem can be adapted
easily to accommodate this variant. Let V represent
the set of time slots with positive probability pti for
which a feasible insertion exists, and let F represent
the set of time slots with positive probability pti for
which no feasible insertion exists. The objective of the
incentive optimization problem becomes

max
∑
t∈U
�ri−Ct−I t��pti+xI t�+

∑
t∈V
�ri−Ct��pti−z� (20)

subject to



Campbell and Savelsbergh: Incentive Schemes for Attended Home Delivery Services
Transportation Science 40(3), pp. 327–341, © 2006 INFORMS 337

Table 6 Base Results with Walkaway Allowed

PROBPAT �U� NOINC CHPFLT CHPLP BSTLP BST

1 1 1�027�60 1�320�30 1�396�57 1�370�63 1�349�29
2 1�027�60 1�263�03 1�374�65 1�401�23 1�349�29
3 1�027�60 1�250�99 1�451�21 1�377�79 1�349�29
4 1�027�60 1�157�40 1�380�27 1�404�54 1�349�29

Average 1�027�60 1�247�93 1�400�68 1�388�55 1�349�29
% improvement 0�00 21�44 36�31 35�13 31�30

2 1 1�081�44 1�318�23 1�386�96 1�282�36 1�349�29
2 1�081�44 1�230�43 1�371�81 1�382�63 1�349�29
3 1�081�44 1�191�74 1�365�79 1�408�27 1�349�29
4 1�081�44 1�213�28 1�397�78 1�427�16 1�349�29

Average 1�081�44 1�238�42 1�380�59 1�375�11 1�349�29
% improvement 0�00 14�52 27�66 27�15 24�77

3 1 1�086�12 1�240�96 1�351�72 1�353�17 1�349�29
2 1�086�12 1�275�58 1�349�34 1�395�38 1�349�29
3 1�086�12 1�255�49 1�311�73 1�337�72 1�349�29
4 1�086�12 1�202�58 1�360�29 1�356�42 1�349�29

Average 1�086�12 1�243�65 1�343�27 1�360�67 1�349�29
% improvement 0�00 14�50 23�68 25�28 24�23

z≤ pti ∀ t ∈ V �F (21)∑
t∈U
xI t = z��V � + �F �� (22)

0≤ I t ≤ B ∀ t ∈U	 (23)

The time slots in the set F do not appear in the
objective function since we assume that there is no
profit when a customer walks away. However, the
time slot with the smallest probability in F may be
binding, unless a more restrictive probability is found
in V (Equation (21)). Again, the quadratic term can be
approximated by a piecewise linear function as before
to create a linear program.
It is amazing to see, in Table 6, the negative effect

of walkaways on profit and, at the same time, the
power of incentives to recapture that loss of profit. For
probability pattern 1, the profit drops more than 16%
compared to the base results without walkaways, but
the sophisticated incentive schemes are able to com-
pletely recapture the loss and substantially increase
the profit (for an improvement over no use of incen-
tives of over 35%)! This shows that using incentives
to dissuade customers from walking away may be
even more important in increasing profit than simply
reducing delivery costs.

3. The Home Delivery Problem with
Wider Slot Incentives

Delivery costs are impacted significantly by the strin-
gent one-hour delivery windows. In Campbell and
Savelsbergh (2005), we demonstrated that expand-
ing a one-hour delivery window to two hours can
increase profits by more than 6% and can be increased
an additional 5% if further expanded to three hours.

Consequently, instead of using incentives to encour-
age the use of one-hour delivery windows pre-
ferred from a scheduling perspective, we may alterna-
tively consider using incentives to encourage accept-
ing wider delivery windows, which increases our
scheduling flexibility and therefore may increase prof-
its.

3.1. Problem Definition and Assumptions
To study the benefits of using incentives to encour-
age the consumer to accept wider time windows, we
define the HDPWI.
The basic setup is the same as for the HDPTI.

Thus, we assume that we know the probability pti that
a customer i will choose a delivery in time slot t.
When a request for service arrives, the vendor may
now offer incentives for the selection of a two-hour
delivery window up to an amount of B. The two-
hour delivery windows are also assumed to cover the
entire day, but to overlap, for example, 8�00–10�00�
9�00–11�00� 	 	 	 �18�00–20�00. The probability of select-
ing a two-hour delivery window is initially zero but
increases by an amount equal to the incentive offer
multiplied by rate y. An increase in probability of a
two-hour time slot is compensated for by a decrease
in probability of all one-hour time slots with pti values
greater than zero. As in the HDPTI, the probability of
one-hour time slots is decreased by equal amounts.
The customer then selects the time slot based on these
modified probabilities. The objective is to maximize
the total profit resulting from executing the set of
delivery routes, that is, total revenue minus incentives
costs and delivery costs.
Not all two-hour delivery windows are viable can-

didates to receive an incentive. It seems reasonable to
assume that a customer would not be interested in a
wider time slot if either of the component one-hour
time slots have a zero probability of being selected.
(A zero probability indicates a delivery in the win-
dow is impossible or highly undesirable, and agreeing
to a larger delivery window would signal that this is
no longer the case.) Similarly, it is also reasonable to
eliminate a wider time slot from consideration when
it is infeasible for the vendor to make the delivery to
the customer in one of the component time slots.

3.2. Modeling with Wider Time Slots
In the HDPTI, an increase in the probability of a
time slot due to an incentive is compensated for by
a decrease in probability of the time slots in V (by
equal amounts). In the HDPWI, an increase in the
probability of a wider time slot is compensated for
by a decrease in the probability of other time slots
(again by equal amounts), but now the set V of other
time slots consists of all one-hour time slots with posi-
tive probability. In this way, the two incentive models
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are fairly similar in terms of how money is traded
for probability. The HDPWI has a significant advan-
tage over the HDPTI, though, from a computational
perspective. Since the set of time slots for which the
probability decreases are the same regardless of the
set of (wider) time slots that are being considered for
incentives, the selection of the time slots that may
receive incentives becomes much easier.
In the incentive optimization problem presented

below, we will refer to the set of two-hour win-
dows under consideration for an incentive as W (as
opposed to U ), while V continues to represent the
one-hour slots not receiving an incentive for which
the probability may be reduced (now containing all
one-hour time slots with positive probability). There-
fore, let
• W = set of two-hour time slots under considera-

tion for an incentive
• V = set of one-hour time slots with positive prob-

ability
• C�t� t+1� = cost of inserting a delivery in the two-

hour time slot spanning one-hour time slots t and t+1,
that is, C�t� t+1� =min�Ct�Ct+1�.
We want to find
• I �t� t+1� = the incentive for the two-hour time slot

spanning one-hour time slots t and t+ 1
• z= the probability removed from one-hour time

slots in V
so as to maximize expected profitability.
The incentive decision for customer i can be repre-

sented by the following optimization problem:

max
∑

�t� t+1�∈W
�ri−C�t� t+1�− I �t� t+1��yI �t� t+1�

+∑
t∈V
�ri−Ct��pti − z� (24)

subject to

z≤ pti ∀ t ∈ V (25)∑
�t� t+1�∈W

yI�t� t+1� = z�V � (26)

0≤ I �t� t+1� ≤ B ∀ �t� t+ 1� ∈W	 (27)

In the objective, Equation (24), the first portion rep-
resents the expected profit from wider time slots re-
ceiving incentives, and the second portion represents
the modified expected profit from the one-hour slots.
Because all two-hour time slots in W initially have
zero probability of being selected, the probability of
each wider slot is no longer dependent on initial pti val-
ues, and wider slots do not change the constraints con-
cerning the amount of incentives that can be awarded
(Equation (25)). In the model for the HDPTI, the deci-
sion of which time slots should receive incentives or
even be included in U is based on a combination of

cost and original probability values. Here, as all wider
time slots originally have an identical probability of
zero, it is always optimal to include the two-hour time
slots with the smallest C�t� t+1� values in W . These time
slots have the highest ri −C�t� t+1� values and thus can
contribute the most to the profit.
Even though it is possible to consider all viable

two-hour windows in the incentive optimization
problem, it is easy to show that it will never be the
case that all two-hour windows should receive an
incentive in an optimal solution.
Observation 4. A two-hour time slot will not

receive an incentive if it has a profit that is less than the
average profit of the one-hour slots, that is, I �t� t+1� = 0
when

ri−C�t� t+1�−
∑
t∈V �ri−Ct�

�V � ≤ 0	 (28)

This is not only true when a two-hour time slot is
considered by itself, but also when it is considered in
conjunction with other two-hour time slots.
As before, we can approximate the quadratic terms

with a piecewise linear function and transform the
incentive optimization problem into a linear program.
As a result, incentives for wider time slots can also be
computed within a few seconds.

3.3. Computational Results
The setup used for the computational experiments is
the same as before, with only minor changes. There
is no longer any reason to include BSTLP because, as
we have discussed above, we know the best set W
of size l is the one with the l least cost insertions.
There is also a small change in the implementation
of BST. In BST tests, all customers receive a deliv-
ery in a wider time slot if one is viable, and if none
are viable, the customer receives a delivery during
the cheapest one-hour window. We have conducted
the same set of experiments as for HDPTI and have
observed fairly similar behavior. Therefore, we only
present a few key results tables.
The results for the 25 instances in the basic data set

are presented in Table 7. Before discussing the per-
formance of the incentive schemes, we observe that
the potential value of enticing customers to select
two-hour time windows is huge, because the upper
bound values (BST) are significantly higher than the
values without incentives (NOINC), with increases
in profit of more than 20% in all cases. Although
the incentive schemes perform well, they are not
yet capable of fully capitalizing on these opportuni-
ties. The simple incentive scheme increases profit by
about 8%–10%, where the more sophisticated incen-
tive scheme increases profit by about 12%–14%. It
may be the case that with wider time slots it is key to
convince customers to accept a wider delivery win-
dow but that it is less important which wider delivery
window they select.
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Table 7 Base Results

PROBPAT �W � NOINC CHPFLT CHPLP BST

1 1 1�224�72 1�393�22 1�349�92 1�508�32
2 1�224�72 1�330�39 1�412�91 1�508�32
3 1�224�72 1�325�87 1�388�19 1�508�32
4 1�224�72 1�328�10 1�445�42 1�508�32

Average 1�224�72 1�344�40 1�399�11 1�508�32
% improvement 0�00 9�77 14�24 23�16

2 1 1�235�63 1�350�33 1�335�97 1�508�32
2 1�235�63 1�342�77 1�387�17 1�508�32
3 1�235�63 1�325�38 1�353�92 1�508�32
4 1�235�63 1�346�81 1�423�03 1�508�32

Average 1�235�63 1�341�32 1�375�02 1�508�32
% improvement 0�00 8�55 11�28 22�07

3 1 1�228�93 1�296�80 1�377�95 1�508�32
2 1�228�93 1�387�41 1�358�76 1�508�32
3 1�228�93 1�331�12 1�428�42 1�508�32
4 1�228�93 1�322�13 1�386�06 1�508�32

Average 1�228�93 1�334�37 1�387�80 1�508�32
% improvement 0�00 8�58 12�93 22�73

Table 8 presents the results for the situation in
which fewer requests for delivery arrive. The results
reveal that, compared to the base case results, the
potential for incentives is much smaller. In the base
case, the upper bound values (BST) were about
22%–23% higher than the values without incentives
(NOINC), whereas in this case, the upper bounds are
only 13%–14% higher. On the other hand, the incen-
tive schemes do a slightly better job of bridging the
gap between NOINC and BST. (The average CHPLP
value deviates from the average BST value by 5%
rather than 8%.)
Finally, the results in Table 9 demonstrate that

incentives help increase revenues by dissuading cus-

Table 8 Base Results with Less Demand

PROBPAT �W � NOINC CHPFLT CHPLP BST

1 1 1�022�69 1�102�00 1�098�40 1�167�39
2 1�022�69 1�104�00 1�112�52 1�167�39
3 1�022�69 1�089�02 1�109�55 1�167�39
4 1�022�69 1�092�69 1�128�73 1�167�39

Average 1�022�69 1�096�93 1�112�30 1�167�39
% improvement 0�00 7�26 8�76 14�15

2 1 1�034�43 1�099�46 1�087�61 1�167�39
2 1�034�43 1�100�17 1�113�22 1�167�39
3 1�034�43 1�087�90 1�111�62 1�167�39
4 1�034�43 1�091�90 1�111�80 1�167�39

Average 1�034�43 1�094�86 1�106�06 1�167�39
% improvement 0�00 5�84 6�92 12�85

3 1 1�033�82 1�093�83 1�108�98 1�167�39
2 1�033�82 1�107�24 1�098�99 1�167�39
3 1�033�82 1�084�76 1�133�39 1�167�39
4 1�033�82 1�082�74 1�092�75 1�167�39

Average 1�033�82 1�092�14 1�108�53 1�167�39
% improvement 0�00 5�64 7�23 12�92

Table 9 Base Results with Walkaway Allowed

PROBPAT �W � NOINC CHPFLT CHPLP BST

1 1 1�027�60 1�359�43 1�369�87 1�517�42
2 1�027�60 1�317�84 1�390�13 1�517�42
3 1�027�60 1�250�31 1�474�26 1�517�42
4 1�027�60 1�245�76 1�365�73 1�517�42

Average 1�027�60 1�293�34 1�400�00 1�517�42
% improvement 0�00 25�86 36�24 47�67

2 1 1�081�44 1�305�60 1�323�24 1�517�42
2 1�081�44 1�362�00 1�350�44 1�517�42
3 1�081�44 1�295�58 1�380�43 1�517�42
4 1�081�44 1�258�51 1�387�59 1�517�42

Average 1�081�44 1�305�42 1�360�43 1�517�42
% improvement 0�00 20�71 25�80 40�31

3 1 1�086�12 1�236�27 1�347�68 1�517�42
2 1�086�12 1�312�00 1�329�42 1�517�42
3 1�086�12 1�267�88 1�308�24 1�517�42
4 1�086�12 1�214�50 1�345�79 1�517�42

Average 1�086�12 1�257�66 1�332�78 1�517�42
% improvement 0�00 15�79 22�71 39�71

tomers from walking away, as with the HDPTI. Fur-
thermore, the results reinforce that the more time slots
are considered for incentives, the more important it
appears to be to use more sophisticated incentives
schemes. For all probability patterns, the performance
of CHPFLT degrades substantially when �W � is equal
to 3 or 4.

4. The Value of Optimization
In recent studies of online, dynamic routing problems
(e.g., Bayraksan 2000 for the traveling salesman prob-
lem), questions concerning the value of optimization
are raised and addressed. For example, it is not clear
that when simple insertion techniques are used to
add stops to a tour (as this results in extremely fast
response times) there is value in starting from an opti-
mized routing solution versus starting from a heuris-
tic routing solution. The study by Bayraksan shows
that only after 40% of the orders have materialized
does it become valuable to start from an optimized
traveling salesman tour.
In the HDPTI (or the HDPWI), there is a similar

question that can be asked. Because it is not clear that
the insertion costs based only on the first few arrivals
adequately reflect the final costs of servicing the order,
it is not clear that these insertion costs can be used to
compute useful incentives. This issue was raised ear-
lier in the discussion of the computational results for
Table 1. Thus, we have performed an experiment to
specifically address and study this issue. In the results
presented in Table 10, the first 25% of customers that
place an order do not receive an incentive. Only after
these first 25% of customers have been scheduled, did
we start using the insertion costs to compute incen-
tives for the remaining 75% of requests where feasible.
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Table 10 Results from Varying the Start of Incentive Computation

STARTPCT PROBPAT NOINC CHPFLT CHPLP BSTLP BST

0% 1 1�224�72 1�304�28 1�405�99 1�379�40 1�349�29
2 1�235�63 1�365�10 1�391�44 1�398�97 1�349�29
3 1�228�93 1�336�17 1�372�35 1�407�83 1�349�29

Average 1�229�76 1�335�18 1�389�93 1�395�40 1�349�29
% improvement 0�00 8�57 13�02 13�47 9�72

25% 1 1�224�72 1�275�20 1�301�16 1�301�49 1�324�39
2 1�235�63 1�299�16 1�361�18 1�363�24 1�386�43
3 1�228�93 1�298�51 1�324�95 1�324�38 1�346�68

Average 1�229�76 1�290�96 1�329�10 1�329�70 1�352�50
% improvement 0�00 4�98 8�08 8�13 9�98

The idea is that only after 25% of orders have been
processed will the insertion costs adequately reflect
the true costs of servicing an order and can therefore
be used to compute meaningful incentives. For ease
of comparison, Table 10 includes the results from the
case in which all orders are candidates for incentives
(right from the start) as well as the case in which the
first 25% are not considered for incentives. STARTPCT
reflects the percent of expected arrivals that occurs
before incentives are used. At most two incentives are
offered to each potential delivery.
Surprisingly, we see that not offering incentives to

the first 25% of the customers hurts the profit for
almost all of the incentive methods and for almost
all of the probability patterns. This demonstrates that
offering incentives can be critical even in the early
stages of building the schedule. It should be noted
that the same experiment with the HDPWI had very
similar results.

5. Insights
The primary objective of this study was to deter-
mine if it is possible to increase the profitability of
home delivery operations using incentive schemes.
Our computational experiments have demonstrated
that even relatively simple incentive schemes have
the potential to do this. A summary of the insights
obtained is given below:
• The use of incentive schemes can substantially

reduce delivery costs and thus enhance profits.
• Incorporating intelligence into incentive schemes

enhances their performance.
• Incentive schemes may substantially reduce the

number of walkaways.
• It is sufficient to provide incentives to only a few

delivery windows �≤3�.
• The more time slots are considered for incentives,

the more important it becomes to use more sophisti-
cated incentive schemes.
• It is easier to develop incentive schemes that

encourage customers to accept wider delivery win-
dows, rather than those that encourage customers to
select specific time slots.

• The use of incentives can be critical even in the
early stages of building a delivery schedule.

6. Discussion
Consumer direct service models give rise to fasci-
nating and challenging optimization problems. We
focused on the use of time slot incentives to
reduce delivery costs, which in turn should result in
increased profits. We have shown that optimization
models to compute incentives can be designed and
implemented given assumptions on customer behav-
ior and the impact of incentives. Our simulation stud-
ies indicate that these optimization models have the
potential to substantially increase profits.
We realize that the results obtained in our simula-

tions are affected by our assumptions regarding cus-
tomer behavior and incentive impact and our choice
of parameters. The results may be different for dif-
ferent assumptions regarding customer behavior and
incentive impact and different parameter choices. This
shows that we have only scratched the surface and
that more research is needed to better understand and
fully exploit the potential of incentives.
Because the use of incentives to reduce delivery

costs in attended home delivery environments is a
new phenomenon, little information is available about
the impact of incentives on customers’ behavior.
Therefore, we have had to make various assumptions
when modeling customer behavior. In future work,
we intend to consider additional models for capturing
the relationship between incentives and their impact
on time slot selection.
To illustrate, consider our assumption that the total

increase in probability created by incentives is divided
up and removed equally from all the time slots with
positive probability not receiving an incentive. Math-
ematically, this is expressed as

z≤ pt ∀ t ∈ V∑
t∈U
xI t = z�V ��

where V is the set of time slots with positive proba-
bility not receiving an incentive and z represents the
reduction in probability. As probabilities are nonneg-
ative, our assumption restricts the total amount of
incentives to �mint∈V pt × �V ��/x. A simple extension
reduces the probabilities for all time slots in V at an
equal rate until they reach 0. That is, when the proba-
bility of one of the time slots in V reaches 0, we con-
tinue to reduce the probability of the time slots that
still have a positive probability. Mathematically, this
can be expressed as follows:

z≤ pt + vt ∀ t ∈ V
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∑
t∈U
xI t = z�V � −∑

t∈V
vt�

vt ≥ 0 ∀ t ∈ V �

where vt is an auxiliary variable capturing the “neg-
ative” portion of z. Alternatively, we can assume that
the total increase in probability created by incentives
is divided up and removed proportionally from all the
time slots with positive probability not receiving an
incentive. Mathematically, this is expressed as

∑
t∈U
xIt =

∑
t∈V
ypt

0≤ y ≤ 1�

where y represents the proportion of probability that
is reduced for each time slot in V . These are just
three of the many possible models for the change in
probability as a result of incentives. It is not clear yet
which model best captures customer behavior. There-
fore, we selected one as a starting point for our initial
investigations.
Similarly, we have chosen to represent the impact

of an incentive as a linear function, that is, pt + xI t .
Other functional forms may better capture customer
behavior, but our choice provided a reasonable start-
ing point for our investigations. In our simulations,
we have chosen the coefficient x to be either 0.1, 0.2,
or 0.3. That is, we assume that offering an incen-
tive of one dollar increases the probability of selecting
a certain time slot by 0.1, 0.2, and 0.3, respectively.
Even though these values may seem large, they were
selected based on feedback from home grocery deliv-
ery providers. Their experience indicates that many
customers are fairly indifferent about a set of time
slots and that very small incentives often have a sig-
nificant impact on time slot selection.
As mentioned above, we have only scratched the

surface. More research is needed to better understand
and fully exploit the potential of incentives.
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