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Summary. An a priori route is a route which specifies an ordering of all possi-
ble customers that a particular driver may need to visit. The driver may then skip
those customers on the route who do not receive a delivery. Despite the preva-
lence of a priori routing, construction of these routes still presents considerable
challenges. Exact methods are limited to small problem sizes, and even heuristic
methods are intractable in the face of real-world-sized instances. In this chapter, we
will review some of the ideas that have emerged in recent years to help solve these
larger instances. We focus on the probabilistic traveling salesman problem and the
recently introduced probabilistic traveling salesman problem with deadlines and dis-
cuss how objective-function approximations can reduce computation time without
significantly impacting solution quality. We will also present several open research
questions in a priori routing.

Key words: Stochastic routing; a priori routing.

1 Introduction

For many delivery companies, only a subset of their customers require a pickup
or delivery each day. Information may be not available far enough in advance
to create optimal schedules each day for those customers that do require a
visit or the cost to acquire sufficient computational power to find such solu-
tions may be prohibitive. Companies have long used a priori routes to help
overcome these difficulties. An a priori, or pre-planned, route is a route which
specifies an ordering of all possible customers that a particular driver may
need to visit. The driver may then skip those customers on the route who do
not receive a delivery. A priori routes are used routinely in the package express
industry to sequence the many potential stops in each driver’s assigned terri-
tory. These routes create a regularity of service that can be beneficial for both
the customers and the drivers. Customers will be served at roughly the same
time each day they require service, and the drivers can become very familiar
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with their routes. If there is time available on the day of service, starting from
an a priori tour can be useful, too, as a starting point for reoptimization.

The best known a priori routing problem is the probabilistic traveling
salesman problem (PTSP). Formally, the PTSP is the problem of finding a
minimum expected cost tour through a set of customers N = {i | 1, . . . , n}
with probabilities P = {pi | 1, . . . , n} of requiring service on any given day.
The travel time between any two customers i and j is given by dij , where
dij = dji.

Despite the prevalence of a priori routing, construction of these routes still
presents considerable challenges. Exact methods are limited to small problem
sizes, and even heuristic methods are intractable in the face of real-world-sized
instances. In this chapter, we will review some of the ideas that have emerged
in recent years to help solve these larger instances. These ideas are focused on
approximating the computationally expensive PTSP objective function using
various techniques.

Even though the PTSP is a challenging problem by itself, many delivery
companies are faced with a more complicated routing problem due to increas-
ing just-in-time business practices. These just-in-time considerations usually
come in the form of delivery deadlines. The most common example of these
services is next-day package delivery featured by United Parcel Service (UPS)
and FedEx. Next-day delivery providers usually offer a choice of deadlines
such as 10 am, noon, or 3 pm. Such time-definite services have grown from
just 4% of the parcel delivery market in 1977 to over 60% in 2002 [59]. The
market for all time-definite cargo was expected to grow by 7.6% in 2006 alone
[25], and the growth is expected to continue.

In the case of a priori routing with deadlines, the problem is known as the
probabilistic traveling salesman problem with deadlines (PTSPD). The prob-
lem definition for the PTSPD is the same as the PTSP except that associated
with each customer i ∈ N is a known deadline li. The PTSPD can alternately
be considered a version of the PTSP with time windows, but the opening
time of all windows is set to zero. Unfortunately, due to how the deadlines
impact the problem, the same techniques used to help solve large instances
of the PTSP are often not applicable for the PTSPD. In this chapter, we will
also review new approximation techniques that have proven successful for the
PTSPD and discuss instance characteristics that influence the performance of
these approaches.

This chapter is structured as follows. Section 2 provides a basic literature
review of a priori routing, where Section 3 and Section 4 delve into solution
approaches for the PTSP and PTSPD, respectively. Section 5 presents several
open research questions in a priori routing.
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2 Literature Review

One of the first appearances of a priori routing in the literature is in [2],
where the authors develop a priori tours for use in meals-on-wheels routing.
Jaillet [41] formally introduces the PTSP and demonstrates some interesting
properties of optimal tours including the fact that such a tour may intersect
itself. Jaillet [42] provides a formulation for the expected value of a tour and
bounds the relationship between optimal PTSP and TSP solutions. Berman
and Simchi-Levi [7] focus on instances of the PTSP with heterogeneous prob-
abilities, where most of Jaillet’s results involve homogeneous probabilities.
They establish a lower bound for such instances and explain how to combine
this bound with a branch-and-bound algorithm to find an optimal a priori
tour. Bowler et al. [17] offers additional characterizations of the problem.

Related to the PTSP is the Noisy Euclidean Traveling Salesman Problem
(NTSP). This problem was introduced in [20] and further studied in [45].
The NTSP is based on the idea that some neighborhoods within the service
area will have a higher probability of requiring service than others, and these
densities can be exploited to create an a priori route or “trajectory”. In this
way, each node in the resulting TSP can be thought of as being sampled from a
probability distribution, where in the PTSP the customer locations are known
with certainty.

While the literature contains research into many constrained versions of
the TSP, there is limited research into constrained versions of the PTSP. The
best known of the constrained versions is the stochastic vehicle routing prob-
lem (SVRP). The SVRP requires the consideration of vehicle capacity in the
formation of the tours, and rather than customer presence, customer demand
is usually the stochastic element of the problem. The first mention of this prob-
lem can be found in [58]. Bertsimas [8] introduces an analytical framework and
bounds for the SVRP. Other work can be divided into chance-constrained and
recourse model formulations (see [26, 27] and [16] for an overview of the two
types of formulations). Stewart and Golden [55], Laporte et al. [43], and Bas-
tian and Rinnooy Kan [3] provide chance-constrained formulations and show
how the problems can be transformed into deterministic problems. Dror et al.
[32], Dror [31], and Gendreau et al. [35] present stochastic programming solu-
tions to various recourse models for the SVRP. Dror and Trudeau [33], Bramel
et al. [18], Bertsimas et al. [9], Savelsbergh and Goetschalckx [54], Gendreau
et al. [37], and Yang et al. [62] offer various heuristics for the SVRP. Gendreau
et al. [37] provides comparisons of CPU times between their exact solution
approaches in [35] and their heuristics in [37]. For different scenarios involv-
ing 11 stochastic customers, they demonstrate that exact solution approaches
may require solution times a thousandfold greater than the solution times of
the proposed TABUSTOCH heuristic. Larger instances where all customers
are stochastic are not evaluated.

Campbell and Thomas [23] introduce the PTSPD, providing two recourse
models and a chance-constrained model for the problem. In addition, compu-
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tational experiments demonstrate situations in which it is important to model
the problem stochastically versus situations in which deterministic models are
sufficient.

The authors know of only a few other papers that address routing under
uncertainty with time constraints. These papers consider time constraints in
the context of stochastic travel times rather than in the context of random
customers as is discussed in this chapter. Teng et al. [57] apply the L-shaped
algorithm to the time-constrained traveling salesman problem (TCTSP) with
stochastic travel and service times. In the TCTSP, the time constraint is
on the length of the tour, which contrasts with the PTSPD where the time
constraints control when individual customers can be visited. Wong et al. [61]
introduce a 2-stage stochastic integer program with recourse for a problem
in which travel times are stochastic, all customers must be visited, and each
customer has an associated time window.

The value of a priori versus daily optimized or variable routes has been
explored in the context of the SVRP. Haughton [39, 40] introduce metrics for
determining the value of reoptimization versus a priori routes. Waters [60],
Benton and Rosetti [5], and Savelsbergh and Goetschalckx [54] discuss cir-
cumstances in which a priori routes can be cost-competitive alternatives to
reoptimization. For example, Benton and Rosetti [5] experiment with different
customer realization probabilities and route rescheduling costs. Their exper-
iments reveal that reoptimization is preferred when route scheduling costs
are low and few customers are realized. Interestingly, they also comment that
there are “a great deal of hidden costs associated with variable routes” and
suggest this is why a priori routes are often preferred. These hidden costs can
include consistency considerations and management overhead as well as cus-
tomer relationships associated with a driver visiting a customer at relatively
the same time everyday. A detailed discussion of consistency in route design
can be found in [63] and [64] which introduce a driver learning model to cap-
ture the importance of a driver consistently working in a particular geographic
area.

3 Solution Approaches for the PTSP

In this section, we formulate the PTSP, provide background on solution meth-
ods for the PTSP, and highlight two techniques for approximating the objec-
tive function.

3.1 Problem Formulation

In a solution to the PTSP, all of the customers are sequenced on one tour. On
the day of service, when all demands are known, the customers that have been
realized can be visited in the sequence defined by this a priori tour. Solution
methods for the PTSP focus on minimizing the expected cost of these final
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tours. The expected cost associated with a particular sequence of customers
1 . . . n can be evaluated by Equation 1 [8]:

n−1∑
i=1

n∑
j=i+1

pipjdi,j

j−1∏
k=i+1

(1−pk)+
n∑

i=2

i−1∑
j=1

pipjdi,j

n∏
k=i+1

(1−pk)
j−1∏
l=1

(1−pl). (1)

The first part of the equation represents the expected cost associated with us-
ing each arc (i, j) in a forward direction while the second part is the expected
cost associated with using each arc in the reverse direction to complete the
tour. The expected cost of an arc is based on the probability that the cus-
tomers at both end points of the arc are realized, the probability that the none
of the customers in between these on the tour are realized, and the length of
the arc.

3.2 Background

An exact approach for the PTSP was introduced by Laporte et al. [44],
but computational tests indicate success only with instances of 50 customers
or less. Consequently, much of the PTSP literature focuses on heuristic ap-
proaches. The authors found that among the instances studied, it was much
harder to solve instances with low individual probability values.

Rossi and Gavioli [53] discuss how to modify construction heuristics for
the TSP specifically to solve the PTSP. Their heuristics are based on Clarke
and Wright and nearest neighbor techniques and do not include any local im-
provement. The expected costs of the resulting solutions are compared with
those found using basic TSP heuristics. Based on their computational exper-
iments, the authors conclude that it is important to use solution techniques
specifically developed for the PTSP if the number of customers is greater than
50 and the probability of each customer requiring a visit is less than 60%.

Bertsimas et al. [11] discuss space-filling curve and iterative heuristics.
Bertsimas and Howell [10] and Chervi [28] explore the use of TSP heuristics
for solving the PTSP and propose algorithms for the PTSP based on con-
structing an initial solution using the space-filling curve heuristic [1] followed
by local search. Variations of the 2-OPT and 1-Shift techniques developed for
the TSP in [46] are introduced that compute the change in objective in an
expected value sense. The equations presented by Bertsimas and Howell [10]
and Chervi [28] have been shown to have small errors, corrected in [15]and
[12], but even with these small errors, the authors are able to show improve-
ment based on expected value becomes more important as n becomes large.
These key instances, though, prove to be very difficult for them to solve. For
example, [9] reports runtimes of half an hour to a full hour of CPU time for
their simplest improvement heuristics to converge with 50-customer PTSPs.
Bertsimas and Howell [10] also report that expected value based local im-
provement is particularly important when probability values are significantly
less than 1. This confirms the results established by Rossi and Gavioli [53].
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Beraldi et al. [6] extend the efficient evaluation methods of Bertsimas and
Howell [10] and Chervi [28] to the probabilistic pickup and delivery traveling
salesman problem.

Various metaheuristic approaches have also been applied to the PTSP.
Bianchi et al. [13, 14] introduce an ant-colony optimization approach. They
demonstrate that the ant-colony approach outperforms a radial-sort heuristic
and a random best heuristic for the PTSP. Building upon work presented in
[51], Rosenow [52] develops a genetic-algorithm approach which uses crossover
operators first proposed by Grefenstette et al. [38] for the traveling salesman
problem. The tests are limited and show only that the genetic algorithm out-
performs a branch-and-bound scheme for the PTSP. Bowler et al. [17] uses
the PTSP as a testbed to demonstrate the effectiveness of stochastic anneal-
ing. As a result of their tests on the PTSP, the authors hypothesize that a
priori tours perform at most 14% worse than reoptimization strategies for the
PTSP.

3.3 Approximation Approaches

The above research on solution techniques for the PTSP concludes that it is
particularly important to solve instances of the PTSP using an expected value
approach when the size of the instances are large and when probability values
are not close to 1. This represents most instances of the PTSP that would
be solved in practice, such as those at package delivery companies. Even with
sophisticated metaheuristic approaches and significant increases in comput-
ing power, such large instances are still considered intractable because they
involve repeated evaluations of Equation 1. This objective function is much
more time consuming to evaluate than with the TSP. The PTSP objective
function includes the cost of every arc that could potentially be used in the
solution, leading to its O(n3) complexity rather than the TSP’s O(n) complex-
ity. Thus, evaluating the cost of a small change in a PTSP route, such as in
a heuristic search approach, is also potentially computationally expensive. In
the TSP, the change in cost can be computed based on the neighbors directly
impacted by the change. Due to the probabilistic nature of the objective func-
tion, computing a small change in an a priori route can easily be as expensive
as evaluating the cost of the full objective function. Some of the more promis-
ing ideas that have emerged in recent years for solving the PTSP involve
approximating the objective function and using this approximation in various
search methods. These ideas differ from the existing solution approaches that
rely on exact computation of expected solution values, even when they are
obtained using heuristics. We will consider two types of approximation here:
one where the number of terms in the original objective function is truncated
and one where customers are aggregated.
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Truncation and Approximation Function

The first of these approximation ideas for the PTSP was presented in detail
in [56]. The objective function considered is slightly different than Equation 1
because the authors assume the tour begins at the depot (customer 0) which
is present with a probability value of 1. The authors also do not consider the
cost of a return trip to the depot which removes the second part of Equation 1.

The approximation is based on truncating the calculations used in com-
puting the cost of adding a customer to the tour. For example, suppose the
cost to add a customer j to the end of an arbitrary partial tour is initially
computed by:

pj−1pjdj−1,j +pj−2pjdj−2,j(1−pj−1)+ · · ·+p0pjd0,j(1−p1) · · · (1−pi). (2)

Equation 2 could be replaced by:

pipjdi,j +pi−1pjdi−1,j(1−pi)+ · · ·+pi−K+1pjdi−K+1,j(1−pi−K+2) · · · (1−pi)
(3)

where K ∈ (0, i) is a truncation parameter. Thus, K terms at most are used
in the equation that evaluates the cost of adding j. The idea is that the
cost of adding j is most impacted by the customers closest to j on the tour.
Customers more than K stops ahead of j, for example, will be unlikely to
directly precede j on the resulting tour, so the cost of using that direct arc is
highly discounted in the cost computation and can reasonably be truncated.

The idea of truncating expected cost expressions was introduced prior to
[56] in [36]. In [36], the authors develop approximations for the vehicle routing
problem with stochastic customers and stochastic demand. The part of their
approximation related to the existence of stochastic customers is quite similar
to the simple truncation proposed above.

Due to the truncation, Equation 3 will always underestimate the true costs.
Tang and Miller-Hooks [56] refine this approximation approach by proposing
the use of a function f(K) to estimate this underestimation, changing and
generalizing Equation 3 to:

n−1∑
i=j−K

pidi,j

j−1∏
k=i+1

(1 − pk) + f(K)pj . (4)

Such an expression, after defining f(K), can clearly be used to speed up
a construction heuristic for the PTSP. Equation 4 can also be used in ap-
proximating the full function evaluation, enabling truncation to be used with
various improvement approaches.

The amount of speedup and the quality of such an approach is depen-
dent on the choice of K and the approximation function f(K). Equation 4
will be more accurate the higher K is, but it will also be more expensive
to evaluate. Tang and Miller-Hooks [56] propose choosing K based on a set
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of trial experiments. They propose a series of computationally efficient func-
tions to use for f(K) involving coefficients that are tuned to the particular
problem instances. For many choices of K and f(K), the evaluation of the
objective becomes O(n), which is the same complexity as the objective of the
deterministic TSP.

To overcome the sensitivity to the choice of K, Tang and Miller-Hooks
[56] propose a progressive enhancement idea where K can be increased over
the course of the improvement procedure. As the solution improves and less
improvements are possible with the current choice of K, K is increased and
f(K) is improved to make the approximation more accurate. This gives the
power of the speedup without a loss in quality of the final solution. It also
makes the solution method less sensitive to a poor initial choice of K.

Tang and Miller-Hooks [56] experiment with datasets involving 50, 75, and
100 customers. The computational experiments reveal that is possible to tackle
large sized PTSP instances with significantly reduced computational effort
but not reduced solution quality. Using a 2-OPT improvement scheme, for
example, instances with 100 customers that originally took over 2100 seconds
on average to converge, take on average 17.5 seconds with approximation. For
these instances, the solutions found with approximation were on average 0.5%
better than those found using exact objective evaluations.

We note that both Branke and Guntsch [19] and Liu [47] experiment with
truncation-based approximate function evaluations within their ant-colony
and scatter-search metaheuristics, respectively. Branke and Guntsch [19] con-
sider instances as large as 1379 customers and demonstrate that an approxi-
mate function evaluation embedded in ant-colony optimization reduces com-
putation time by almost 30% relative to a full evaluation. Interestingly, they
found better speedup when using the approximation with heuristic search
methods other than ant colony optimization. On instances with up to 100
customers, results in [47] indicate that approximate function evaluation em-
bedded in scatter search is capable of finding good solutions while reducing
computation time by as much as 86%. Unfortunately, direct comparisons be-
tween [56], [19], and [47] do not exist.

Approximation by Aggregation

The second idea we examine in approximating the PTSP is to aggregate cus-
tomers into regions. By using regions in place of individual customers in Equa-
tion 1, there is an obvious opportunity for speedup in evaluating the objective
function. This idea is examined in detail in [21]. Aggregation in this context
refers to grouping customers together and then representing them by one point
spatially and with a single probability value. In aggregating customers, there
are many choices in terms of how to divide customers into regions and how
many regions to create.

Customer aggregation is common in the literature, but primarily in the
context of location problems (see [29, 34], for examples) and not in a routing
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context. There has been little analysis, theoretical or computational, on how
aggregation can be used in solving routing problems or how aggregation can
impact solution quality, especially in a probabilistic context. In [4], for exam-
ple, the authors aggregate deliveries by postal codes before designing routes,
but there is no discussion of how this aggregation impacts solution quality
and speed.

If aggregation is used in the context of the PTSP, the a priori tour becomes
a tour through regions rather than customers. This requires a modification of
Equation 1. If the n customers are each assigned to one of r regions, a new
probability value is required for each region as well as new distance costs.
The probability associated with each region S will need to reflect all of the
customers assigned to this region. Since a tour will travel to each region only
once, Campbell [21] proposes defining pS as the probability that region S will
require a visit. Computation of pS is then:

pS = 1 −
∏
i∈S

(1 − pi). (5)

Equation 5 is the probability that region S will have at least one realized de-
mand given that customer orders are independent events. Next, to compute
Euclidean distances between regions, a spatial location is needed to represent
each region. Campbell [21] proposes computing the centroid of the customers
in a region, where the weights on the customers are based on their individ-
ual probabilities. These centroid coordinates can be used to compute the Eu-
clidean distance between each pair of regions. Equation 1 can then be replaced
by the aggregated a priori expected value equation found in Equation 6:

r−1∑
S=1

r∑
T=S+1

pSpT dS,T

T−1∏
U=S+1

(1−pU )+
r∑

S=2

S−1∑
T=1

pSpT dS,T

r∏
U=S+1

(1−pU )
T−1∏
V =1

(1−pV )

(6)
where dS,T represents the distance between regions S and T . Equation 6
resembles Equation 1, but the number of terms here can be several orders of
magnitude smaller than Equation 1 because of aggregation.

Note, unlike with truncation, this approximation does not necessarily un-
derestimate the full objective function. Because in most cases it will, Campbell
[21] proposes a series of functions that can be added to Equation 6 similar to
the f(K) functions in [56].

As stated earlier, the primary literature on aggregation comes from lo-
cation theory, and there are a variety of ways suggested to group customers
together based on distance. Yet with the PTSP, probability offers an impor-
tant additional consideration. Grouping customers strictly based on location
may lead to regions, for example, with very different probabilities of requiring
a visit. Likewise grouping customers so that each region is equally likely to
require a visit may create regions of very different size and shape. The study
in [21] uses simple distance and probability-based aggregation approaches to
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build insight into what creates a successful aggregation scheme for PTSP
problems.

The distance-based aggregation scheme is a grid-based approach, such as
those discussed in many location papers [50]. For a given parameter g, the
customer service area will be divided evenly into g segments along the x axis
and g segments along the y axis to create a total of g2 regions of equal area.
If customers are uniformly distributed, each region should have roughly the
same number of customers. The potential downfall of such an approach lies
in the fact that not all customers are evenly distributed over the service area
in real world applications.

The second form of aggregation is to divide the customer service area
into regions of roughly equal probability. This may help remedy some of the
possible negative issues with grids since customers should be fairly evenly dis-
tributed among the regions, but now the regions will clearly not be of the same
size. To divide potential customers into regions based on probability, Camp-
bell [21] defines a parameter maxp that represents the maximum likelihood
of requiring a visit in a region. Starting from an initial region that includes
all of the customers, regions are repeatedly divided into smaller regions un-
til all regions have probability less than or equal to maxp. The approach is
similar to Voronoi Diagram/Delaunay Triangulation ideas [30]. The shape of
the current region is used to guide the division process in order to preserve
some of the advantages of the grid approach and keep the regions from being
extremely tall or wide which would distort distance calculations.

Computational experiments involve datasets ranging from 100-1000 cus-
tomers and various customer probabilities. Following the structure of [10], ini-
tial solutions were constructed using a space-filling curve heuristic and several
improvement schemes were tested, including TSP techniques such as 2-OPT
and 1-Shift and expected value versions of 2-OPT and 1-Shift. Using aggre-
gation, search procedures for even the 1000 customer datasets were able to
converge within the 120 second time limit, and the final solutions were usually
better than those found without aggregation. Both uniformly and clustered
datasets were used to see how the geographical distribution of customers im-
pacts the performance of the aggregation approaches. The results indicate
that, as expected, using grid versus probability based aggregation makes little
impact on uniform datasets, but can have significant impact when datasets
are clustered. Campbell [21] found that quite coarse levels of aggregation can
lead to good objective value estimates, but aggregation needs to become finer
as the customer probabilities increase. The proposed general rule is to divide
customers into regions such that the total expected demand in a region is
no more than 0.5 deliveries in order to achieve an estimate within 90% of
the full objective value. The experiments also indicate that there are many
research opportunities concerning the solution of the PTSP when data is not
uniformly distributed. Most of the previous publications, and thus the conclu-
sions about solving the PTSP, were based on uniformly distributed datasets,
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but Campbell [21] found the relative performance of various heuristics to be
very different for clustered datasets.

4 Solution Approaches for the PTSPD

In this section, we formulate the PTSPD, discuss why different approximation
techniques are needed than those for the PTSP, and introduce two approxi-
mation techniques appropriate for the PTSPD.

4.1 Problem Formulation

In a solution to the PTSPD, all of the customers are sequenced on one tour,
just like the PTSP. Because of the deadlines, the PTSPD is modeled with a
depot (customer 0), and the tour departs the depot at time 0. As in [56], the
depot exists with a probability value of 1, but, unlike [56], the model includes
a return to the depot in the cost evaluation. There are several choices on how
the deadlines will impact the costs in the model. We will follow the same
structure as [22], introduced in [23], where the vehicle is allowed to visit each
customer i after the delivery deadline has passed, but incurs a per-unit-time
penalty, λi, for doing so. If Ti is the latest time that customer i can be reached
and g(i, t) is the probability that customer i is reached at time t, then the
expected cost of a tour is:

nX

j=1

pjd0j

j−1Y

k=1

(1− pk) +

n−1X

i=1

nX

j=i+1

pipjdij

j−1Y

k=i+1

(1− pk) +

nX

i=1

pidi0

nY

k=i+1

(1− pk)

+

nX

i=1

pi

TiX

t=li+1

λig(i, t)(t− li).

The probability g(i, t) can be computed recursively using the following equa-
tions. When t < d0i, g(i, t) values will always be zero, since arrival cannot
occur any earlier than with a direct trip from the depot. When t = d0i, ar-
rival at t can occur if no prior customers are realized:

g(i, t) =
i−1∏
k=1

(1 − pk). (7)

When t > d0i, arrival at i is based on all of the possible preceding customers
and their possible departure times:

g(i, t) =
i−1∑

h=1,t>(dhi+d0h)

phg(h, t − dhi)
i−1∏

k=h+1

(1 − pk). (8)

The complexity of the function evaluation is dominated by the computation
of the g values and is O(n2 maxi{Ti}).



12 Ann Melissa Campbell and Barrett W. Thomas

4.2 Approximation Approaches

As indicated in Section 2, the PTSPD was only recently introduced in [23].
While Campbell and Thomas [23] demonstrate the expected savings possible
from modeling a time-constrained a priori routing problem probabilistically,
they also show that, like with the PTSP, the probabilistic model requires sig-
nificant additional computation time to solve. Given the recent developments
for the PTSP, the obvious solution is to use one of the approximation ap-
proaches from Section 3. Unfortunately, simply implementing the truncation
and aggregation ideas proposed for the PTSP with the PTSPD is unlikely
to be successful for two reasons. First, the computational experiments in [23]
reveal, in line with the worst case complexity analysis, that the run time for
solving the PTSPD is dominated by the g values. Thus, truncating only the
distance portion of the objective function will make little difference in the run-
times. We will discuss in Section 4.2 how Campbell and Thomas [22] propose
truncating the calculation of the g terms. Second, the aggregation schemes
discussed for the PTSP no longer make sense when the customers have differ-
ent deadlines. Since the expense of the g terms is due to the potentially high
Ti values, Campbell and Thomas [22] propose discretizing time into larger
units to reduce the computational burden in a way that behaves similar to
customer aggregation. This discretization idea is referred to as temporal ag-
gregation in Section 4.2. It is important to note that these approximations
methods are not specific to the PTSPD, but, rather, they have application in
any discrete-time problem in which the timing of events is stochastic.

Truncation Approximation

In the PTSPD, even a small change in the tour involving position i will im-
pact the expected arrival times, and thus expected penalties, at all customers
succeeding i on the route. Like with the PTSP, the change in penalty will
be “felt” the strongest by the customers that are served just after i on the
tour. Thus, Campbell and Thomas [22] proposes evaluating the change in
the penalty portion of the objective associated with a local search move by
considering only the q nearest neighbors to each customer.

The truncation approximation in [22] involves new equations for comput-
ing the g values. We will refer to the new g values by g∗. A value for g∗(i, t)
will be computed when t = d0i only if i ≤ q. In other words, for t = d0i and
i > q, we will set g∗(i, t) = 0. If i ≤ q, Equation 7 is used. Next we modify
Equation 8 to only consider the closest q customers to i:

g∗(i, t) =
i−1∑

h=max (i−q,1),t>(dhi+d0h)

phg∗(h, t − dhi)
i−1∏

k=h+1

(1 − pk). (9)

With this approximation, no g∗(i, t) calculation requires more than O(q) com-
plexity, assuming that the products are stored and computed ahead of time.



Challenges and Advances in A Priori Routing 13

Now the full penalty cost can be computed in O(nq maxi{Ti}) time rather
than O(n2 maxi{Ti}). Depending on the relative size of q and n, Equation 9
can lead to a significant speedup in the calculations.

The choice of q is important. Since this approximation scheme is based on
the idea that the truncated terms will have a value close to zero due to all
of the multiplied (1− pk) probabilities involved, the initial choice of q should
be based on the probabilities involved in a particular instance or dataset.
For example, when the average probability values are near 0.1, the initial q
can be set higher than when probabilities values average near 0.9. As with
the progressive enhancement idea from Section 3.3, the choice of q can be
incremented based on the progress of the local search procedure, overcoming
the potential difficulty of parameter setting.

Computational experiments include instances with 40, 60, and 100 cus-
tomers, varied probabilities, varied penalties, and varied deadlines. The ap-
proximation is embedded within a steepest descent local search algorithm with
a 1-Shift neighborhood. The results indicate that, in most cases, truncation
returns quality solutions more quickly than a similar search heuristic in which
the cost of neighboring solutions is computed without approximation. For ex-
ample, on 60-customer instances in which all customers have a low probability
of being realized, truncation reduces runtime by as much as 72% compared
to the direct computation. Tests show that truncation has the most value
when customer probabilities are low and deadlines are tight. The truncation
approach performs poorly in terms of runtime in the case where all customers
have a high probability of requiring service.

Temporal Aggregation

If penalties are assessed based on the number of minutes that a delivery is
late, it is necessary for accuracy to compute the g(i, t) values with t indices
representing minutes. If there are a large number of customers or if the travel
times between some customers are quite long, the Ti values can easily become
exponential in n.

In a local search scheme, it is typical to choose the change to the current
solution that makes the largest improvement in the objective value. In this
context, we can think of changes that reduce the lateness at customers by
hours rather than minutes as the type of improvements we would want to look
for first. This is the idea behind the temporal aggregation scheme proposed
in [22]. Instead of making the t values represent minutes, or whatever the
final time discretization that is required for the penalty calculation, larger
time discretizations are used and are gradually refined until the final time
discretization is reached.

Temporal aggregation has been applied in economic models [48] and in
integer programming [49]. Most applications of temporal aggregation in inte-
ger programming are based on increasing the size of time periods for which
decisions are made in an attempt to reduce the number of decision variables.
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One key decision here is size of the time units that will be used in eval-
uating the penalty function. The selected time discretization should be large
enough to gain computational advantage in the penalty calculation, but small
enough such that penalty improvements can be found. If the original time dis-
cretization is in minutes, the larger discretization does not need to be hours
but could be, for example, 3 minutes, 40 minutes, or 180 minutes. The choice
of time discretization will vary and will clearly have a relationship to the
customer dataset being considered.

For the temporal aggregation scheme proposed in [22], the units for the
Ti, li, and d values will all need to be changed to reflect the new level of
discretization. These new values will be referred to by T ∗

i , l∗i , and d∗, respec-
tively. Since the l∗i values are used as indices in the g functions, they must
obtain integer values. Thus, a simple transformation using a particular time
discretization v is to round each li

v to its nearest integer to obtain l∗i . Similarly,
the same process is repeated to create the new distance values d∗, and these
new distances are used to compute the T ∗

i values. Note that Equation 7 does
not change, just the value of d0i to d∗0i. Equation 8 becomes:

g∗(i, t) =
i−1∑

h=1,t>(d∗hi+d∗0h)

phg(h, t − d∗hi)
i−1∏

k=h+1

(1 − pk).

Campbell and Thomas [22] offer a general suggestion for the choice of the
largest time discretization. Since the complexity of evaluating the objective
function is potentially non-polynomial in n due to the T values, the recom-
mendation is to use time units of size v where v = maxi{Ti}

n . The largest T ∗
i

value can be is maxi{Ti}
v which is now n, making a function evaluation possible

in O(n3) time.
The final step in designing a temporal aggregation scheme is to decide if

and when the level of discretization should be changed. This choice can be
based on the progress of the local search, as in a progressive enhancement
procedure. For example, the user can begin with a choice of v that makes the
function polynomial to evaluate and reduce v when the local search converges.

Using the same experiments as with the truncation approximation, com-
putational results for the temporal approximation reveal that temporal ap-
proximation provides the same quality solutions as truncation. Like the trun-
cation approach, temporal aggregation performs poorly in terms of runtime
on instances in which the probability of all customers requiring service is
high. Temporal aggregation offers better runtimes relative to truncation on
40-customer datasets. However, temporal aggregation requires much longer
runtimes on the 100-customer datasets.
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5 Open Questions

There are many remaining questions. It is not clear what are the best search
methods in which these approximation ideas should be embedded and how the
approximation parameters should be tuned in the solution process for these
problems. It would also be interesting to determine if there would be benefits
from using some of these approximation ideas in conjunction with each other.
It is also not clear if the answers to these questions will be different depending
on the geographical distribution of the customers and/or the distribution of
the customer deadlines. Further, it would be interesting to see if the approx-
imation techniques can be used in conjunction with vehicle capacity, as in
the stochastic vehicle routing problem [36] and the stochastic vehicle routing
problem with deadlines [24].

Although this chapter focuses on approximation techniques for a priori
routing problems, it is also important to note that there are many variations
of the PTSP that are not well-studied, but are applicable in real-world appli-
cations. These variants offer important areas of future study, especially if the
approximation approaches presented here aid empirical study. One variant of
interest is the case of travel distances which are not Euclidean distances but
are road network distances. This variant is motivated by the fact that most
real-world applications of the PTSP involve traveling on road networks. A sec-
ond area of future research involves problems in which the probabilities that
customers require service are not necessarily independent. These problems
have been ignored due to the technical difficulties, but in many applications,
these probabilities are often correlated. Third, the obvious extension to the
PTSPD is to consider the situation where customers have delivery time win-
dows and not just delivery deadlines. Known as the PTSP with time windows,
this variant requires consideration of the possibility that vehicles must wait
before the opening of window. This possibility greatly complicates the prob-
lem formulation and also raises questions about whether it should be possible
to make deliveries early, but incur a penalty for doing so. Fourth, related to
the PTSPD is the problem where only a subset of customers have a deadline,
and this deadline is the same for those customers. This variant reflects the
difficulties that some delivery providers have in offering an “express” service
and might be more amenable to more specialized solution techniques.
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