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Abstract

The probabilistic traveling salesman problem with deadlines (PTSPD) is an exten-

sion of the well-known probabilistic traveling salesman problem in which, in addition

to stochastic presence, customers must also be visited before a known deadline. For

realistically sized instances, the problem is impossible to solve exactly, and local

search methods struggle due to the time required to evaluate the objective func-

tion. Because computing the deadline violations is the most time consuming part

of the objective, we focus on developing approximations for the computation of

deadline violations. These approximations can be imbedded in a variety of local-

search methods, and we perform experiments comparing their performance using a

1-shift neighborhood. These computational experiments show that the approxima-

tion methods lead to significant run time improvements without loss in quality.
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1. Introduction

Whether they are called expedited, express, or time-definite delivery, there is

no question that these services now dominate the delivery business. The most

common example of these services is the next-day package delivery featured by

United Parcel Service (UPS) and FedEx, who offer a choice of deadlines such

as 10 am, noon, or 3 pm for these deliveries. Such time-definite services have

grown from just 4% of the parcel delivery market in 1977 to over 60% in 2002

[1]. The market for all time-definite cargo was expected to grow by 7.6% in

2006 [2], and the growth is expected to continue. The growth in time-definite

services has created a challenge for many delivery providers. Many are strug-

gling with how to create routes that satisfy time guarantees yet remain cost

efficient. In [3], we introduced the Probabilistic Traveling Salesman Problem

with Deadlines (PTSPD) to address the need for time-definite routing in an

a priori routing environment.

An a priori, or pre-planned, route is a route which specifies an ordering of all

possible customers that a particular driver may need to visit. The driver then

skips those customers on the route who do not receive a delivery. These a priori

routes are commonly used in the package express industry because of technol-

ogy limitations as well as hidden costs associated with daily reoptimization

[4]. Even for companies with the appropriate information and computing tech-

nologies, a priori routes are appealing because they are easily implementable.

A priori routes offer both drivers and customers consistency and help to im-

prove driver efficiency as the driver becomes increasingly familiar with the

route [5, 6].

Formally, the PTSPD is the problem of finding a minimum expected cost a

priori tour through a set of customers N = {i | 1, . . . , n} with probabilities

P = {pi | 1, . . . , n} of requiring service on any given day. Associated with

each customer i ∈ N is a known deadline li. The travel time between any
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two customers i and j is given by dij, where dij = dji, and travel times are

assumed to satisfy the triangle inequality.

While our computational experiments in [3] demonstrate the expected cost

savings possible from modeling a time-constrained a priori routing problem

with probabilistic information, they also show that, like many stochastic prob-

lems, the probabilistic model requires significant computation time to solve.

To solve problems such as these, many researchers turn to local search heuris-

tics. Due to the expense of evaluating the objective function, however, using

these local search techniques alone are not computationally efficient mecha-

nisms for solving the PTSPD. As shown in [3], in computing the expected cost

of a tour, the greatest portion of the computational effort is in computing the

deadline violations. Due to the probabilistic nature of the objective function,

evaluating a small change in an a priori route, such as in local search proce-

dures, can easily be as expensive as evaluating the cost of the full objective

function. Consequently, we focus on techniques for approximating the viola-

tion portion of the objective function. These approximations can be imbedded

in a variety of local-search methods. These ideas differ from many of the so-

lution approaches for the PTSP that rely on exact computation of expected

solution values, even when they are obtained using heuristics.

We present three methods for reducing the computation time required for the

determining deadlines violations while still preserving solution quality. It is

important to note that the presented approximations methods are not specific

to the PTSPD. Rather, they have application in any discrete-time problem

in which the timing of events is stochastic. Our three approximation methods

are expected arrival time, temporal aggregation, and truncation. As the name

implies, the expected-arrival-time approximation measures deadline violations

only by the expected arrival time to a customer. The temporal aggregation

scheme simplifies computation by measuring time in units larger than those in

which the penalty is defined. Finally, the truncation approximation computes
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arrival time probabilities, and thus violations, for a limited set of customers

when evaluating the cost of neighboring tours.

The remainder of this paper is organized as follows. Section 2 summarizes

related literature. Section 3 introduces a formal model for the PTSPD, and

Section 4 discusses the proposed approaches for improving computational ef-

ficiency within a local-search framework. In Section 5, we detail the design of

our computational experiments, and in Section 6, we present the results of our

experiments. Section 7 considers the effectiveness of our solution approaches

in the context of a fixed charge penalty for lateness. Finally, Section 8 presents

insights and future work.

2. Literature Review

The research presented in this paper focuses on a problem in which customer

presence on the tour is random. In an early treatment of stochastic routing,

Bartholdi et al. [7] introduce a space-filling curve heuristic for constructing

a priori tours for meals-on-wheels routing. Jaillet [8] formally introduces the

PTSP and demonstrates some interesting properties of optimal tours including

the fact that such a tour may intersect itself. Jaillet [9] provides a formula-

tion for the expected value of a tour and bounds the relationship between

optimal PTSP and TSP solutions. Laporte et al. [10] provide an exact algo-

rithm for the PTSP. As indicated in Section 1, this exact approach is limited

to small problem sizes, so much of the PTSP literature focuses on heuris-

tic approaches. Bertsimas et al. [11] discuss space-filling curve and iterative

heuristics. Bertsimas and Howell [12] and Chervi [13] introduce equations for

efficiently evaluating the cost of local-search moves for the PTSP. Bianchi

et al. [14] and Bianchi and Campbell [15] provide corrections for the equa-

tions in Bertsimas and Howell and in Chervi, respectively. Recent work by

Campbell [16] and Tang and Miller-Hooks [17] focuses on approximations for

4



the PTSP. Overviews of the research in this area can be found in Powell et al.

[18], Bertsimas and Simchi-Levi [19], and Gendreau et al. [20].

While the literature contains research into many constrained versions of the

TSP, there is limited research into constrained versions of the PTSP. The best

known of the constrained versions is the stochastic vehicle routing problem

(SVRP). The SVRP requires the consideration of vehicle capacity in the for-

mation of the tours, and rather than customer presence, customer demand

is usually the stochastic element of the problem. The first mention of this

problem can be found in Tillman [21]. Bertsimas [22, 23] introduces an an-

alytical framework and bounds for the SVRP. Other work can be divided

into consideration of chance constrained and recourse model formulations.

Stewart and Golden [24], Laporte et al. [25], and Bastian and Rinnooy Kan

[26] provide chance constrained formulations and demonstrate how they can

be transformed into deterministic problems. Dror et al. [27], Dror [28], and

Bastian and Rinnooy Kan [26] present stochastic programming solutions to

various recourse models for the SVRP. Many offer heuristics for the SVRP,

including Dror and Trudeau [29], Bramel et al. [30], Bertsimas et al. [31],

Savelsbergh and Goetschalckx [32], and Yang et al. [33]. Gendreau et al. [34]

offer a stochastic programming approach for an SVRP variant in which both

customer presence and customer demand is stochastic. Gendreau et al. [35]

offer a tabu-search heuristic for the same problem.

As noted earlier, Campbell and Thomas [3] introduce the PTSPD, provid-

ing two recourse models and a chance-constrained model for the problem.

In addition, computational experiments demonstrate situations in which it is

important to model the problem stochastically versus situations in which de-

terministic models are sufficient. The authors know of only a few other papers

that address routing under uncertainty with time constraints. These papers

consider time constraints in the context of stochastic travel times. Teng et al.

[36] apply the L-shaped algorithm to the time-constrained traveling salesman
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problem (TCTSP) with stochastic travel and service times. In the TCTSP,

the time constraint is on the length of the tour, which contrasts with this

paper where the time constraints control when individual customers can be

visited. Wong et al. [37] introduce a 2-stage stochastic integer program with

recourse for a problem where customers have time windows and travel times

are stochastic. Finally, Wang and Regan [38] consider truckload assignments

for time-constrained deliveries in the case that service and travel times are

stochastic.

3. Model Formulation

In this paper, we seek to improve the computational efficiency of local-search

methods for the PTSPD. We focus on the Recourse I model for the PTSPD

with a per-unit-time penalty which was introduced in [3]. The per-unit-time

charge represents cases where the delivery company is charged per unit time

of lateness. For instance, FedEx Custom Critical refunds varying percentages

of the cost of a shipment based on how late the shipment is delivered [39].

In this model, the vehicle is allowed to visit a customer i after the delivery

deadline has passed, but incurs a per-unit-time penalty, λi, for doing so. The

tour departs from the depot at time 0 and returns to the depot after visiting

all realized customers on the tour. For a given tour τ , we can compute the

latest possible arrival time at each customer i, Ti, and the probability, g(i, t),

that the vehicle arrives at customer i at time t (t < Ti). The expected cost of

tour τ is then:
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n∑
j=1

pjd0j

j−1∏
k=1

(1− pk) +
n−1∑
i=1

n∑
j=i+1

pipjdij

j−1∏
k=i+1

(1− pk)

+
n∑

i=1

pidi0

n∏
k=i+1

(1− pk) (1)

+
n∑

i=1

pi

Ti∑
t=li+1

λig(i, t)(t− li). (2)

Equation 1 represents the expected travel cost, and Equation 2 defines the

expected penalty cost associated with late arrivals.

The probability g(i, t) can be computed recursively using the following equa-

tions. When t < d0i, g(i, t) values will always be zero, since arrival cannot

occur any earlier than with a direct trip from the depot. When t = d0i, arrival

at t can occur only if no prior customers are realized:

g(i, t) =
i−1∏
k=1

(1− pk). (3)

When t > d0i, arrival at i is based on all of the possible preceding customers

and their possible departure times:

g(i, t) =
i−1∑

h=1,t>d0h

phg(h, t− dhi)
i−1∏

k=h+1

(1− pk). (4)

Note that g(i, t) values are not necessarily increasing or decreasing with t,

but are strictly based on the combinations of travel times that may occur. A

detailed discussion of this model as well as others for the PTSPD can be found

in [3].

The complexity of the function evaluation is dominated by the computation of

the g values and is O(n2 maxi{Ti}). In doing local search to find PTSPD solu-

tions, we must evaluate the change in the expected cost for each neighboring

solution considered. Thus, for each new solution generated in the search, the

cost of evaluating the expected cost of the solution can be O(n2 maxi{Ti}).

For the PTSP, Bianchi et al. [14] and Bianchi and Campbell [15] propose a
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recursive approach for evaluating a local search neighborhood that greatly

reduces complexity. Unfortunately, these same recursive ideas cannot be ap-

plied to the computation of the g values. Thus, even when using a simple

1-shift neighborhood, a neighborhood in which one customer i is moved to a

later position on the tour, the g(i, t) values for all customers after i must be

recomputed.

4. Penalty Approximations

In this section, we introduce methods for approximating Equation 2. As dis-

cussed previously, Campbell and Thomas [3] demonstrate that the computa-

tion of the penalty, through the g values, is the most computationally expen-

sive portion of evaluating the PTSPD objective. In fact, experiments show the

computation of the penalty portion can account for over 99% of the compu-

tation time.

The following approximations are used to evaluate the cost of a new tour

in a local search approach. Even though it is possible to also approximate

Equation 1, we still exactly compute the travel cost portion of the objective

(Equation 1) when evaluating a tour since it requires so little time relative to

the penalty cost portion (Equation 2).

Three approximations follow: expected value, temporal aggregation, and a

truncation approximation.

4.1 Expected Value

The g values in the above equations reflect the probability of arrival at i at

each of its possible arrival times. Considering each of the possible arrival times

is what makes the function evaluation so expensive. Our first approximation

method is based on computing an expected arrival time at each customer and
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using this time to compute our penalty value. The complexity of computing

this expected arrival time is based only on the preceding customers (up to

n− 1) and not on Ti.

To begin, let the random variable

Xi =


0 if customer i is not realized

1 if customer i is realized.

We let Ai be a random variable representing the arrival time to customer

i for a given tour. Then, Ãi = E[Ai | Xi = 1], where E is the expectation

operator. That is, Ãi is the expected arrival time to customer i given customer

i is realized. We can assume that E[Ai | Xi = 0] = 0. We can calculate Ãi

through the following straightforward recursion:

Ãi =
i−1∑
j=1

pj(Ãj + dji)
i−1∏

k=j+1

(1− pk),

noting that Ã1 = 0 by assumption.

We can estimate the size of the penalty incurred at i based on the size of Ãi

relative to li. Using the per-unit-time penalty λi, we can replace Equation 2

with the following term:

n∑
i=1

piλi max(Ãi − li, 0).

This approximation method allows us to complete a function evaluation now

in O(n2) time. This method is simple to implement, in that it does not require

any parameter selection as in the succeeding approaches, and is quite intuitive.

Using expected arrival times, though, is unlikely to be sufficient in itself for

solving the PTSPD. If it is used in a local search approach and the local search

converges, several improving moves likely still exist with regard to the original
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version of the objective function. Thus, we recommend using the expected-

value approach in two phases. In the first phase, we perform the search using

the described expected-value approach to evaluate the penalty cost. When the

search under the penalty approximation converges, we use the newly found

solution to seed a second phase of the search in which we evaluate the penalty

portion directly. We use this two-phase approach in Section 6.

Implementation choices exist with regard to whether or not the expected value

approach should be used until the local search converges or until improvements

found with respect to the approximate objective are no longer improving with

respect to the original objective function. Although verifying each move with

respect to the original objective function requires an added full function eval-

uation at each iteration, our experiments show that it is a more dependable

approach. We found that using the approximate objective function without

this extra check often led to cycling in the local search procedure. Thus, we

recommend the additional check with regard to the full objective function in

order to ensure convergence.

4.2 Temporal Aggregation

If penalties are assessed based on the number of minutes that a delivery is

late, it is necessary for accuracy to compute the g(i, t) values with the t in-

dices representing minutes. If there are a large number of customers or if the

travel times between some customers are quite long, the Ti values can easily

become quite large and exponential in n. This makes the objective function

very expensive and time consuming to evaluate.

In a local search scheme, it is typical to choose the change to the current

solution that makes the largest improvement in the objective value. In this

context, we can think of a changes that creates a large reduction in travel cost

or reduces the lateness at customers by hours rather than minutes. This idea
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motivates our temporal aggregation scheme. Instead of making the t values

represent minutes, or whatever the final time discretization that is required for

the penalty calculation, we consider larger time discretizations and gradually

refine it until the final time discretization is used. In this way, the objective

function will reflect the expected travel cost and an estimate of the expected

penalty cost.

Aggregation has a long history in the literature. Rogers et al. [40] offer a

framework for using aggregation as well as an extensive review of early work.

Multigrid techniques, a form of aggregation, have been used extensively in

the solutions of partial differential equations [41], and recently multigrid ap-

proaches have been used to accelerate nonlinear programming algorithms [42].

Aggregation has been frequently used in facility location problems to reduce

the number of of customer locations [43] and has been applied recently in rout-

ing problems, including the PTSP [16]. Temporal aggregation has been applied

in economic models [44] and in integer programming [45]. Most applications

of temporal aggregation in integer programming are based on increasing the

size of time periods for which decisions are made in an attempt to reduce the

number of decision variables.

In a temporal aggregation scheme, the units of the Ti, li, and d values will

be changed, and these new values will be used in the penalty calculation. We

will refer to the new values by T ∗
i , l∗i , and d∗, respectively. These constants

dictate the largest t index that needs to be evaluated for each i in creating

the g values.

The first step in a temporal aggregation scheme is to decide the new larger time

units that will be used in evaluating the penalty function. The largest time

discretization used should be large enough to gain computational advantage

in the penalty calculation, but small enough such that penalty improvements

can be found. If the original time discretization is in minutes, the larger dis-
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cretization does not need to be hours but could be, for example, 3 minutes, 40

minutes, or 180 minutes. The largest time discretization that is used will vary

and will clearly have a relationship to the customer dataset being considered.

We propose one general suggestion for the choice of the largest time discretiza-

tion. Since the complexity of evaluating the objective function is potentially

non-polynomial in n due to the T values, we propose the use of time units of

size v where v = maxi{Ti}
n

. Now, the largest T ∗
i can be is maxi{Ti}

v
which is now

n, making an objective function evaluation possible now in O(n3) time.

For a given level of aggregation, the next step in developing a temporal ag-

gregation scheme is transforming the d∗, T ∗
i , and l∗i values to reflect the new

time discretization. We do this by dividing the original d, Ti, and li values by

v, our chosen level of aggregation. Thus, for every customer i, l∗i = li
v
. Because

the l∗i values are used as indices in the g functions, they must obtain integer

values. Thus, a simple transformation using a particular time discretization v

is to round each li
v

to its nearest integer to obtain l∗i . For all customers i and

j, d∗ij = dij

v
. We repeat the rounding process to create the new distance values

d∗. With the d∗ values, for each i, we can compute T ∗
i =

∑i−1
k=0 d∗k,k−1.

Computation of the penalty cost approximation requires computing new g∗

values. Note that Equation 3 does not change, just the value of d0i to d∗0i.

Equation 4, though, becomes Equation 5:

g∗(i, t) =
i−1∑

h=1,t>d∗
0h

phg(h, t− d∗hi)
i−1∏

k=h+1

(1− pk). (5)

Now, Equation 2 becomes:

n∑
i=1

pi

T ∗
i∑

t=l∗i+1

λig
∗(i, t)(t− l∗i )v. (6)

Note that v is included in the new penalty calculation, so that the magnitude

of the penalty is preserved. For time units of size v, a function evaluation now
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requires O(n2 maxi{Ti

v
}).

Another component of the design of a temporal aggregation scheme is to decide

when and how the level of aggregation is changed. It makes sense to keep a

particular level of discretization until the local search converges. We have the

choice, though, of whether or not to allow moves that are improving only

at the coarse time discretization but are not improving at the final level of

aggregation. We recommend verifying that the move selected at each iteration

is improving with regard to the final level of discretization, and changing the

level of discretization if it is not. As with the expected value approach, our

computational experiments found that cycling often occurred when doing local

search at a particular level of discretization without this verification step.

Once the decision has been made to change the level of discretization, the

choice is what level of aggregation to use next. This decision can be tuned to

various datasets, but an obvious choice is to keep dividing the discretization

level until the final level of discretization is reached. This approach is used

in Section 6. This dividing method does not always lead to the final level of

discretization, though. Consider for example, choosing 30 minutes as a coarse

representation of time rather than individual minutes. The v values would go

from 30 to 15 to 7.5 to 3.75 to 1.875 to 0.9375 minutes. In such a case, when

v becomes less than one minute, the final level of discretization (one minute)

should be used.

4.3 Truncation Approximation

In the PTSPD, even a small change in the tour involving position i will im-

pact the expected arrival times, and thus expected penalties, at all customers

succeeding i on the route. Due to the probabilistic nature of the problem,

though, the change in penalty will be largest for the customers that are served

just after i on the tour. Based on this idea, we propose evaluating the change
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in the penalty portion of the objective associated with a local search move by

considering only the q nearest neighbors to each customer.

Analogous truncation schemes have some history in the literature. Gendreau

et al. [35] use a truncation approximation to compute the travel portion of

the expected cost in an SVRP. For the PTSP, Tang and Miller-Hooks [17]

embed approximation within a threshhold accepting heuristic. Campbell and

Savelsbergh [46] use a similar idea to estimate the cost of new service requests

for home-delivery routing.

In the full g calculation (Equation 4), we consider travel to i from all of its

possible preceding customers. Direct travel to i from customer i − q is very

unlikely if q is high and the customers between i− q and i have a reasonable

probability of occurring. In fact, the probability that none of the customers

between i− q and i require a delivery is

i−1∏
j=i−q+1

(1− pj). (7)

For many values of q and p, Equation 7 has a value near zero. For example,

if all customers have probability of 0.5, there is only a 3% chance that direct

travel will occur between customers six stops apart on the same tour. Our

truncation approximation is based on replacing these “near zero” probabilities

strictly with zero rather spending the time to compute values that make little

difference in the penalty portion of the objective.

To compute the penalty portion of the objective, Equation 2 remains the same,

but now involves g∗ terms rather than g. Compared to g, fewer g∗ terms will

have nonzero values. Our truncation approximation will only compute a value

for g∗(i, t) when t = d0i only if i ≤ q. In other words, for t = d0i and i > q, we

will set g∗(i, t) = 0. If i ≤ q, Equation 3 is used. Next we modify Equation 4

to only consider the closest q customers to i:
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g∗(i, t) =
i−1∑

h=max{i−q,1},t>(dhi+d0h)

phg
∗(h, t− dhi)

i−1∏
k=h+1

(1− pk). (8)

Note that this approximation makes it such that no g∗(i, t) calculation re-

quires more than O(q) complexity, assuming that the product portion values

are stored and computed ahead of time. Now the full penalty cost can be

computed in O(nq maxi{Ti}) time rather than O(n2 maxi{Ti}). Thus, the size

of q relative to n impacts the reduction in run time.

As with v, how to initialize and increment q is an important question. To pre-

vent cycling, we recommend using a particular q until a non-improving move

with regard to the exact objective function is selected by the local search pro-

cedure. Recall that increasing q will refine the level of aggregation. A straight-

forward method for initializing and incrementing q is to initialize q = 1 and

then double q each time that q is to be incremented. When q > n, we can

replace q with n and complete the search.

Note that with truncation, the computed violation is always an underestimate

of the full penalty cost. Even though it is an underestimate, it should still be

of a similar magnitude to the full penalty cost. More importantly, truncation

will yield an estimate of the penalty cost that will reflect the relative impact

of various changes in the solution considered by a local search procedure.

5. Experimental Design

To test the effectiveness of the proposed solution approaches, we perform a set

of computational experiments using realistically-sized datasets. We use the 40-

and 60-customer sets introduced in [3] for the PTSPD and introduce analogous

100-customer sets. All sets, 5 of each size, are derived from the time-window

width 20 units TSPTW instances first proposed by Dumas et al. [47] and can

be found at http://myweb.uiowa.edu/bthoa/research.html. For each of

the 15 sets, we generate two instances which differ only in the deadlines. For
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the first instance, we set the deadline equal to the opening time of the time

window unless that time is zero in which case the deadline is set to the closing

time of the time window. For the second instance, we set all deadlines equal to

the closing time of each customers’ time window. These instances will hereafter

be referred to as “early” and “late” deadlines, respectively. The early deadline

instances are used to represent situations where feasible solutions with respect

to deadlines are very unlikely to exist if all customers are realized. With the

later deadlines, even when all customers are realized, there exist solutions that

do not violate any deadlines.

For each of the now 30 instances, we then consider four different probability

settings. Two of these settings are homogeneous settings in which all probabili-

ties are set to 0.1 and 0.9, respectively. These two settings represent when each

customer is unlikely to be realized or, alternately, very likely to be realized.

The other two settings are heterogeneous. In the first case, the probabilities

are randomly assigned to each customer with the probabilities ranging be-

tween 0 and 1. This helps us understand how the results change when there

are more options in terms of customer probabilities. In the second case, we

randomly assign probabilities of either 0.1 or 1. This case addresses the sit-

uation in which large and small businesses are served by the same vehicle.

These two data sets will be referred to in the tables by the labels “range” and

“mixed,” respectively.

Finally, for the 40- and 60-customer sets, we test per-unit-time penalties of

5 and 50. These choices of penalties represent small versus large costs for

failure to satisfy the customer deadlines. For the 100-customer sets, we limit

ourselves to penalties of 5 due to the longer run times of these larger datasets.

The result is a total of 200 instances, 80 each with 40- and 60-customers, and

40 with 100-customers.

A dataset class is defined by the number of customers, deadline (early or late),
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penalty (5 or 50), and probability setting (0.1, 0.9, range, or mixed). Each class

will consist of 5 datasets.

The ultimate aim of our computational experiments is to demonstrate that

the approximations can reduce computation time without degrading solution

quality. An approximation scheme that is computationally effective but pro-

vides poor solutions is of dubious value. For this purpose, we focus on a proven

solution methodology which offers reasonable ease in implementation. In par-

ticular, we focus on local-search heuristics. Because Ohlmann and Thomas

[48], Cheh et al. [49], and Carlton and Barnes [50] use the 1-shift neighbor-

hood for the TSPTW, we use this neighborhood to solve our closely related

problem. For initial solutions, we use solutions to the deterministic version of

the PTSPD, the TSPD, generated by the approach outlined in [3]. By start-

ing from the solutions to the TSPD, the run times become an indicator of

how different the optimal solutions are to the probabilistic and deterministic

versions of the problem. To test the effectiveness of the new approximation

procedures on the proposed datasets, we implement a best improvement local

search using this 1-shift neighborhood (for additional discussion of best im-

provement local search, we refer the reader to [51]). For all tests, the travel

cost portion (Equation 1) of the expected cost is determined by computing

the exact change in cost between the neighboring and incumbent solution.

Within this search framework, we then examine each of the three approxima-

tions as well as an exact computation of the g values and penalties. For all

approximations, we do not allow a non-improving move with respect to the

full objective function.

In the case of the expected-value approximation, we begin the search by com-

puting the penalty via the expected cost. For each iteration, the expected cost

of the best found solution is computed. If the solution is found to be non-

improving, the search is re-calibrated, and the g values are then computed

directly rather than via the expected value.
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We follow analogous search methodologies for the temporal and truncation ap-

proximations. For the temporal approximation, we initialize the discretization

as suggested in Section 4.2. When the search returns a best found solution for

a particular value of v such that the solution is non-improving, we divide v by

two and continue the search. The search continues until no improving solution

is found for v equal to the original level of discretization. Similarly, for the

truncation approximation, we initialize q at 1 and increment q as discussed in

Section 4.3. The search continues in this fashion until no improving solution

is found for q = n, where n is the number of customers.

6. Computational Comparisons

In order to demonstrate the effectiveness of the proposed approximations, we

test the approximations both in terms of solution quality and run time. In the

tables that follow, we refer to the truncation approximation as “TC,” temporal

aggregation as “TA,” and the expected-value approximation as “EA.”

To test the solution quality of the approximations, we compare the solution

values returned by using each of the three approximations. For the n = 40

and n = 60 datasets, we compare these values to the solution values re-

turned by computing the exact change in solution cost for each neighbor-

ing solution in the search. We label this last local search simply PTSPD.

Table 1 presents the results of the comparisons. For each approximation,

we present the percentage difference between the average PTSPD solution

value and average solution value found using the approximation for each

class of datasets. The percentage difference for each class is calculated as

(Average PTSPD Value −Average Approximation Value)

Average PTSPD Value . A positive percent-

age indicates that the approximation has returned better solution values than

the PTSPD algorithm, and negative values indicate that the approximation

yields worse solution values.
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Table 1
Comparison of Solution Values between PTSPD Algorithm and Approximations

Prob 0.1 0.9 Range Mixed

Dataset TC TA EA TC TA EA TC TA EA TC TA EA

n = Deadline Penalty

40 Early 5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Late 5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% -2% 0%

Early 50 0% 0% 0% 0% 0% 0% 1% -12% 0% 0% 0% 0%

Late 50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

60 Early 5 0% 0% 0% 0% 0% 0% -1% 0% 0% 0% 0% 0%

Late 5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Early 50 0% 0% 0% 0% 0% 0% -1% 0% 0% 0% 0% 0%

Late 50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

As Table 1 shows, the approximations almost always return the same values

as the PTSPD algorithm. The temporal approximation performs particularly

poorly on the instances with 40 customers, early deadlines, a penalty of 50, and

the range of probabilities. However, the average is driven by a single instance.

Such occasions of the approximations leading to premature convergence is

rare.

Run times for the PTSPD algorithm were prohibitive for the n = 100 sets,

so for these sets, we made comparisons only among the approximations. Ta-

ble 2 presents comparisons of the solution values returned by the approxi-

mation methods for the 100-customer instances. For each deadline category

(early and late), we present the percentage difference between the temporal

aggregation and the expected-value approximation, temporal aggregation and

the truncation approximation, and the expected-value approximation and the

truncation approximation. The percentage difference for each class and ap-

proximation pair is calculated as

(Average Approximation 1 Value −Average Approximation 2 Value)

Average Approximation 1 Value . A posi-

tive percentage indicates that the second approximation yields lower cost solu-

tions than the first while a negative percentage indicates the first approxima-

tion performs better. As the table indicates, other than some small percentage

differences on the sets with homogeneous probabilities of 0.1, the approxima-
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tions return the same values.

Next, we will examine how the approximations impact run times. Table 3

presents the run times for the PTSPD, the truncation, temporal, and expected-

value solution approaches, respectively, for the n = 40 and n = 60 datasets.

Table 4 compares the run times of the approximations to those of the PTSPD

in order to help evaluate the relative performance of the different approaches.

As in Table 1, Table 4 presents the percentage difference between the averages

of the PTSPD algorithm and each of the approximations. From Table 3, we can

observe that the run times increase dramatically from the 40- to 60-customer

sets. This run time growth emphasizes the need to reduce run times as the

number of customers increases.

When the probability is homogeneously set to 0.1, we find that all of the ap-

proximation methods are, on average, faster than the PTSPD algorithm. The

explanation for this difference is the large differences in the seed routes and the

routes returned by the PTSPD algorithm and the approximations. Figure 1

visually demonstrates this difference for one of the n = 40, early deadlines,

penalty of 5, and p = 0.1 instances. Because some of the changes lead to dra-

matic changes in the contribution of the penalty factor to the expected cost,

the approximation procedures are successful in identifying improving moves

and can converge more quickly than the PTSPD algorithm. For example, for

the instance depicted in Figure 1, the PTSPD algorithm requires 23 iterations

of full computations to converge. The expected-value approximation had only

6 of its 27 iterations involving full computation of the objective, the tempo-

ral approximation had 3 of 27 iterations, and the truncation approximation

only had 1 of 23 iterations. Among the approximations, the expected-value

approach is never, on average, the most successful approximation. Instead, we

see that temporal aggregation is always the best for the 40 customer dataset

classes and one of the 60 customer dataset classes, and truncation is best for

the remaining 60 customer datasets. The relative success of temporal aggre-
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Table 4
Comparison of Run Times between PTSPD Algorithm and Approximations on 40-
and 60-Customer Instances

Prob 0.1 0.9 Range Mixed

Dataset TC TA EA TC TA EA TC TA EA TC TA EA

n = Deadline Penalty

40 Early 5 38% 61% 42% -120% -35% -9% 21% 36% 2% 32% 30% 9%

Late 5 32% 60% 55% -113% -28% 28% -4% 40% 30% 5% 41% 22%

Early 50 48% 62% 15% 3% 44% 1% 29% 19% -3% 20% 33% 8%

Late 50 41% 60% 55% -86% -18% 45% 39% 56% 69% 25% 42% 28%

60 Early 5 56% 58% 26% -24% -24% 8% 52% 41% 6% 47% 29% 7%

Late 5 72% 58% 53% -41% -59% 19% 62% 57% 78% 50% 46% 80%

Early 50 53% 37% 9% 5% -12% 3% 49% 19% 7% 48% 12% 6%

Late 50 97% 58% 40% 74% -24% 45% 93% 44% 54% 92% 45% 71%

gation and truncation results from their ability to not only quickly identify

the moves which lead to large changes, but to also offer reduced computation

time for moves that lead to smaller changes.

For the instances where the probability is homogeneously set to 0.9, the so-

lutions tend to require fewer changes from the deterministic starting solution

due to the larger probabilities. The result is a significant reduction in run times

relative to the 0.1 probability instances across all approximation approaches.

We also see that each type of approximation outperforms the others, on aver-

age, for at least one dataset class. At the same time, with 40 customers, early

deadlines, and penalty equal to 5, all three approximations are slower than the

PTSPD. This behavior is clearly unusual. We can also see that expected value

performs very well for most dataset classes, where it performed much worse,

relatively, with the lower probabilities. We conjecture that this is due to the

nature of the expected-value approximation in combination with the structure

of these datasets. Both the truncation and temporal aggregation require sev-

eral “rounds” of a local search procedure, with each round corresponding to a

particular level of truncation or discretization. Thus, truncation and temporal

aggregation tend to be more successful when the overhead of each round is

able to yield improvements in the solution values.
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Fig. 1. Comparison of Seed Route and PTSPD Route for n = 40, early deadlines,

penalty of 5, and p = 0.1

As an example of the effect of the overhead in the truncation and temporal

approximations, we present Table 5. For the dataset class in which n = 40,

the penalty is 5, the deadlines are late, and the probabilities are 0.9, Ta-

ble 5 shows the number of iterations performed at each round of the PTSPD,

EA, TA, and TC heuristics, respectively. Round 0 is always the first level of

approximation. Thus, for the expected-value approximation, Round 0 is the

round in which the expected penalty cost is used to approximate the penalty
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cost. For the temporal approximation, Round 0 is the case in which v is largest

(v = maxi{Ti}
n

). For the truncation approximation, Round 0 is the case in which

q = 1. For each heuristic, the highest numbered round for which there is an

entry is the round at which the heuristic has reverted to fully evaluating the

objective function.

As Table 5 shows, on the second and third instance, the EA heuristic requires

3 and 2 iterations, respectively, using the expected-value approximation of

the penalty. The advantage of these iterations with the approximate penalty

is demonstrated by the runtime reduction offered relative to the PTSPD. In

the other three instances, the EA heuristic matches the PTSPD algorithm in

the number of full objective evaluations required. Because the single iteration

using the approximated penalty takes relatively no time, the two heuristics

require almost exactly the same runtime on these three other instances. On

the other hand, the reason for the lack of runtime improvement for TA and

TC heuristics is visible in the numerous non-improving rounds (indicated by

entries of 1 for the rounds). The runtime required for these non-improving

rounds negates any advantage gained by not having to run a number of iter-

ations of full objective computations.

Given the number of non-improving iterations run by the TA and TC heuris-

tics, it is interesting to consider whether or not the algorithms can be termi-

nated before convergence at the last round to reduce the computation time.

The results in Table 5 suggest that a general rule would be to terminate af-

ter the first round in which no improvements were made after an improving

round has occurred. For example, the first instance with TC has an improving

second round, but then no improvements occur in Round 3. Hence, this rule

would suggest terminating the search after Round 3. However, such a rule

would often fail to capture a number of improving rounds for other instances.

For example, for the fifth instance where n = 60 and the probability setting

is 0.1, this rule would cause the TC heuristic to terminate after Round 1 and
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Table 5
Number of Iterations at Each Round of Heuristic and Runtimes for Each Instance
of n = 40, Late Deadlines, Penalty of 5, and Probabilities of 0.9

Round

Approximation Instance 0 1 2 3 4 5 6 Runtime

PTSPD 1 2 9

2 4 10

3 2 9

4 1 4

5 1 7

EA 1 1 2 9

2 3 1 3

3 2 1 4

4 1 1 4

5 1 1 8

TA 1 2 1 1 1 10

2 1 3 1 1 9

3 2 1 1 1 9

4 1 1 1 1 11

5 1 1 1 1 16

TC 1 1 1 2 1 1 1 1 21

2 3 1 1 1 1 1 1 16

3 2 1 1 1 1 1 1 16

4 1 1 1 1 1 1 1 15

5 1 1 1 1 1 1 1 15

lose the 5.0% improvement that occurs in the subsequent five rounds. In the

fourth instance of the dataset class with n = 60 and range probabilities, the

improvement is 3.3% between the end of Round 1 (non-improving) and the

end of Round 4. The results across these datasets highlight the instance spe-

cific behavior of the approximations and the difficulty of finding a general rule

for early termination.

For both the mixed and range probabilities, we again see that each type of ap-

proximation outperforms the others, on average, for at least one dataset class.

Somewhat to our surprise, the run times for each dataset class are similar

between the two probability settings. With the mixed probabilities, as with

probabilities of 0.1, all approximation methods are, on average, faster than

the PTSPD algorithm. The results for the mixed and range settings also high-

light a significant pattern in the run times for the expected-value approach.
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We can easily observe here, but it holds for the other probability settings as

well, that the performance of expected-value approximation is highly sensi-

tive to the strictness of the deadlines. For the 40 and 60-customer datasets

and mixed probability setting, the solutions for instances with early deadlines

have average run time improvements of 9, 8, 7, and 6% where late deadlines

yield improvements of 22, 28, 80, and 71%. The reason is related to the above

discussion. Better performance on the late deadline sets occurs because, with

late deadlines, the best-found solutions are likely to not violate any deadlines,

and thus the penalties have less impact on the solutions. Hence, the overhead

of truncation and temporal aggregation is not useful, and expected-value ap-

proximation is more computationally efficient.

Across the experiments, temporal aggregation tends to perform the best for

the 40-customer datasets, where truncation performs the best across the 60-

customer datasets. We believe this result is partially due to the overhead

of the different procedures. For truncation, there tend to be more rounds of

the local search procedure than with temporal aggregation. The fewer levels

of discretization for temporal aggregation are successful and more efficient

with 40 customers, but with 60 customers, the added levels associated with

truncation tend to bring more rewards.

Table 6 presents the run times in CPU seconds for the approximations on the

100-customer datasets, and Table 7 presents comparisons of the run time val-

ues returned by the approximation methods for the 100-customer instances.

In a manner analogous to Table 2, Table 7 presents the percentage differ-

ence in runtimes between the temporal aggregation and the expected-value

approximation, temporal aggregation and the truncation approximation, and

the expected-value approximation and the truncation approximation. Recall

that a positive percentage indicates that the second approximation yields lower

cost solutions than the first, on average, where a negative percentage indicates

the first approximation performs better.
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In the 100-customer results, the run times are much larger than with 60-

customer datasets. The run time differences among the approximations can

often be 30 minutes to an hour of computation time.

As with the 40 and 60-customer datasets, we see the lower run times for the

instances with probability 0.9 relative to the instances with probability 0.1. We

also see that temporal approximation is always dominated by the truncation

approximation. This result can be seen in the fact that all of the “TA - TC”

values are positive. A big portion of this is likely due to the fact that truncation

should be able to yield significant improvements at each q as the size of the

dataset gets larger.

Comparisons between the truncation and expected-value approximations de-

pend on the deadlines of the instance in question. When the deadline is late,

the expected-value approximation outperforms the truncation approximation,

in same cases significantly so. As was the case in the earlier comparisons, the

difference results from how likely the best-found solution is to include viola-

tions. When deadlines are late, the best-found solution is less likely to have

violations and thus the expected-value approximation is more efficient.

7. Extensions to Fixed Charge Penalties

In this section, we test the effectiveness of our solution approaches in the

case where the penalty is a fixed charge rather than per-unit-time penalty.

The fixed-charge recourse represents the case where the delivery company

reimburses the customer for the cost of the delivery in the event that the

deadline is not met. Well-known examples of such penalties are FedEx’s and

UPS’ money-back guarantees [52, 53].

To compute the expected cost of a tour with fixed charge penalties, we intro-

duce G(i, t) which is the probability that arrival at customer i occurs at or

28



T
ab

le
6.

R
un

T
im

es
fo

r
A

pp
ro

xi
m

at
io

ns
on

10
0-

C
us

to
m

er
In

st
an

ce
s

P
ro

b
0
.1

0
.9

R
a
n
g
e

M
ix

ed

D
ea

d
li
n
e

T
C

T
A

E
A

T
C

T
A

E
A

T
C

T
A

E
A

T
C

T
A

E
A

E
a
rl

y
4
7
0
9
.0

1
3
0
7
5
.6

2
3
6
8
9
.0

2
1
3
3
.8

2
4
9
0
.4

2
2
3
2
.6

1
6
5
9
.2

3
5
0
3
.6

4
1
8
9
.0

2
2
1
0
.6

7
3
5
4
.8

5
6
8
7
.8

L
a
te

2
6
3
6
.4

8
8
7
5
.4

9
2
5
7
.6

1
2
8
9
.4

2
0
6
2
.8

3
9
1
.8

2
0
1
0
.4

4
2
2
2
.4

2
3
4
7
.8

3
0
5
9
.4

5
4
8
6
.8

4
2
8
9
.8

29



T
ab

le
7.

C
om

pa
ri

so
n

of
R

un
T

im
es

be
tw

ee
n

A
pp

ro
xi

m
at

io
ns

fo
r

10
0-

C
us

to
m

er
In

st
an

ce
s

P
ro

b
0
.1

0
.9

R
a
n
g
e

M
ix

ed

D
ea

d
li
n
e

T
A

-E
A

T
A

-T
C

E
A

-T
C

T
A

-E
A

T
A

-T
C

E
A

-T
C

T
A

-E
A

T
A

-T
C

E
A

-T
C

T
A

-E
A

T
A

-T
C

E
A

-T
C

E
a
rl

y
-8

1
%

6
4
%

8
0
%

1
0
%

1
4
%

4
%

-2
0
%

5
3
%

6
0
%

2
3
%

7
0
%

6
1
%

L
a
te

-4
%

7
0
%

7
2
%

8
1
%

3
7
%

-2
2
9
%

4
4
%

5
2
%

1
4
%

2
2
%

4
4
%

2
9
%

30



before time t. To compute G(i, t), we have

G(i, t) =
t∑

k=d0i

g(i, k) = G(i, t− 1) + g(i, t). (9)

To compute the expected cost of a tour, we then replace Equation 2 with:

n∑
i=1

piφiḠ(i, li),

where Ḡ(i, li) = 1−G(i, li) and φi is the fixed-charge penalty at customer i.

Implementing the approximations for the fixed-charge PTSPD is straightfor-

ward. For the temporal and truncation approximations, we first compute the

approximation of g, g∗, as described in Sections 4.2 and 4.3, respectively. For

each approximation, we then compute an approximation of G, G∗, by replacing

Equation 9 with:

G∗(i, t) =
t∑

k=d0i

g∗(i, k) = G∗(i, t− 1) + g∗(i, t).

In the case of the expected-value approximation, we simply apply the fixed-

charge penalty if the expected arrival time to customer i occurs after its dead-

line li.

For the 40-, 60-, and 100-customer datasets, we consider early and late dead-

lines and the four probability settings. In order to reduce the computational

effort, our computational experiments for the fixed-charge penalty focus on

only penalties of value 50. We test each approximation in the previously de-

scribed manner.

Table 8 presents the comparison of solution values between the approxima-

tions. We compare the approximations in the manner in which we presented

the results of the 100-customer datasets with per-unit penalties. For each

deadline category (early and late), we present the percentage difference be-
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tween the temporal aggregation and the expected-value approximation, tem-

poral aggregation and the truncation approximation, and the expected-value

approximation and the truncation approximation.

In contrast to the results for the per-unit-charge penalty, Table 8 shows that

greater variation in the results returned by the approximations for the fixed-

charge penalty. None of the approximations dominates any of the others across

all instances. Except for the 100-customer and late deadline datasets with ho-

mogeneous 0.9 and range probabilities, however, the temporal and expected-

value approximations return better solution values than the truncation ap-

proximation. At the same time, the temporal approximation returns better

solution values than the expected-value approximation in eight of 24 dataset

classes and is equal to the expected-value approximation in 10 others. Yet, the

expected-value approximation never performs more than 4% worse than the

temporal approximation.

Table 9 presents the run times in CPU seconds for the approximations on

the fixed-charge datasets, and Table 10 presents run time comparisons for the

proposed approximations. From Table 9, it is clear that run times increase

with the number of customers, as they did with per-unit penalties. There is

also some decrease in run time associated with the increase in probability from

0.1 to 0.9. We can see that expected value is faster than temporal aggregation

in 21 out of the 24 dataset classes. We also see that truncation is faster than

temporal aggregation in 19 out of 24 dataset classes. This observation indicates

that temporal aggregation is not the best choice with fixed charge penalties.

This is not surprising because temporal aggregation is based on giving an

estimate of the size of violation at a customer, but all violations incur the same

fixed charge in this model. When we compare truncation and expected value,

we see that each are the fastest in 12 out of the 24 dataset classes. In Table 10,

we do see, though, that truncation can sometimes perform significantly worse

than expected value. For example, with probabilities of 0.1, 100 customers,
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and late deadlines, expected value outperforms truncation by 335%. If we

look carefully at the performance of expected value, we see that, like with

per-unit penalties, significant speedups occur with later deadlines, and these

later deadlines often yield the significant gains over truncation approximation.

8. Insights and Future Work

Based on our computational experiments, we can make the following conclu-

sions regarding the performance of the different approximations:

(1) With per-unit penalties, all approximations yield roughly identical solu-

tions.

(2) Greater variation in solution values occurs with fixed charge penalties.

Temporal aggregation and expected value tend to yield lower cost solu-

tions than truncation.

(3) Run times increase dramatically as the number of customers increases

across all experiments and all approximations.

(4) Run times are less for high probabilities, across all experiments, since

fewer changes are required from the seed solution.

(5) Expected value performs better when deadlines are high due to lower

total penalties in the objective value.

(6) For per-unit penalties, truncation tends to outperform temporal aggre-

gation in terms of run time as the number of customers increases.

(7) Temporal aggregation is not the best choice with fixed charge penalties.

(8) Expected value is a good choice with fixed charge penalties when later

deadlines are used.

There are many remaining questions and opportunities for future work. One

obvious research area is to explore different ways in which the approximation

parameters should be tuned in the solution process. In this paper, we utilized a

1-shift neighborhood in doing local search. These approximation ideas can be
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embedded, though, within many other local search neighborhoods and solu-

tion techniques. Future work may explore if certain approximation ideas work

better with certain neighborhood structures or approaches. It would also be

interesting to determine if there would be benefits from using some of these

approximation ideas in conjunction with each other. It is also not clear if the

answers to these questions will be different depending on the geographical

distribution of the customers and/or the distribution of the customer dead-

lines. It will also be interesting to see how the ideas here can be extended to

incorporate vehicle capacity, as in the stochastic vehicle routing problem with

deadlines [54].
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Appendix

Tables 11, 12, and 13 present the solution values for the various computational

tests. For each category of problem instance (determined by n, deadline value,

penalty value, and probability class), the entry in the table is an average over

the five instances in that category.
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