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This work is motivated by the need to solve the inventory routing problem when implementing a business
practice called vendor managed inventory replenishment. With vendor managed inventory replenishment,

vendors monitor their customers’ inventories, and decide when and how much inventory should be replen-
ished at each customer. The inventory routing problem attempts to coordinate inventory replenishment and
transportation in such a way that the cost is minimized over the long run. In this paper, we develop a linear
time algorithm for determining a delivery schedule for a route, i.e., a given sequence of customer visits, that
maximizes the total amount of product that is delivered on the route. This problem is not as easy as it may seem
at first glance because of delivery windows at customers and the two dueling effects of increased inventory
holding capacity at customers as time progresses and increased delivery times as more product is delivered at
customers. Efficiently constructing such delivery schedules is important because it has to be done numerous
times in insertion heuristics and local search procedures employed in solution approaches for the inventory
routing problem.
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Recently the business practice called vendor man-
aged inventory replenishment (VMI) has been adopted
by many companies. VMI refers to the situation in
which a vendor monitors the inventory levels at its
customers and decides when and how much inven-
tory to replenish at each customer. This contrasts with
conventional inventory management, in which cus-
tomers monitor their own inventory levels and place
orders when they think that it is the appropriate time
to reorder. VMI has several advantages over con-
ventional inventory management. Vendors can usu-
ally obtain a more uniform utilization of production
resources, which leads to reduced production and
inventory holding costs. Similarly, vendors can often
obtain a more uniform utilization of transportation
resources, which in turn leads to reduced transporta-
tion costs. Furthermore, additional savings in trans-
portation costs may be obtained by increasing the use
of low-cost full-truckload shipments and decreasing
the use of high-cost less-than-truckload shipments,
and by using more efficient routes by coordinating the
replenishment at customers close to each other.
VMI also has advantages for customers. Service

levels may increase, measured in terms of reliability
of product availability, because vendors can use the
information that they collect on the inventory levels
at the customers to better anticipate future demand

and to proactively smooth peaks in the demand. Also,
customers do not have to devote as many resources to
monitoring their inventory levels and placing orders,
as long as the vendor is successful in earning and
maintaining the trust of the customers.
Our work on this problem was motivated by our

collaboration with a producer and distributor of air
products. The company operates plants worldwide
and produces a variety of air products, such as liquid
nitrogen, oxygen, and argon. The company’s bulk cus-
tomers have their own storage tanks at their sites,
which are replenished by tanker trucks under the sup-
plier’s control.
Under VMI, the vendor typically manages a fleet

of vehicles to transport the product to the customers.
The objective of the vendor is to coordinate the inven-
tory replenishment and transportation in such a way
that the total cost is minimized over the long run.
The problem of optimal coordination of inventory
replenishment and transportation is called the inven-
tory routing problem (IRP). Most of the methodologies
developed for solving the IRP are deterministic and
proceed in two phases. In the first phase, it is decided
which customers are visited in the next few days, and
a target amount of product to be delivered to these
customers is set. In the second phase, vehicle routes
are determined taking into account vehicle capacities,
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customer delivery windows, driver restrictions, etc.
Surveys of algorithms used for the IRP can be found
in Nori (1999), Campbell et al. (1998), and Kleywegt
et al. (2002).
In any delivery schedule, there is usually some flex-

ibility in the sense that routes may be started ear-
lier or later without affecting feasibility, which can
be exploited to increase the amount of product deliv-
ered. Note that even though there is a target amount
of product to be delivered, in vendor-managed inven-
tory resupply environments, we have the flexibility to
deliver more than the target amounts. Therefore, if we
consider the target amount as a minimum delivery
quantity to each customer rather than a fixed delivery
quantity, we may be able to use the flexibility in the
schedule to increase the amount of product delivered
on each route. It is clearly desirable from the ven-
dor’s perspective to deliver a larger percentage of the
vehicle capacity, and it is desirable from a customer’s
perspective because it creates better insurance against
running out of product.
Because the maximum quantity that can be deliv-

ered at a customer is dependent on the time of deliv-
ery, the selection of actual delivery times (between
the earliest and latest delivery times) will affect the
total volume deliverable on a trip. Because the cus-
tomer consumes product over time, the later the truck
arrives, the more inventory holding capacity there is
and the more product can be delivered. On the other
hand, delivery is not instantaneous but is dependent
on the size of the delivery. Furthermore, the later
the truck arrives at a customer, the less time may be
available for making a delivery because of the deliv-
ery time restrictions of customers to be visited later
on the trip. These two dueling effects make determin-
ing an optimal delivery schedule for given a sequence
of customer visits on a trip not as easy as it may seem
at first glance. In this paper, we develop an algorithm
for this problem, which we call the delivery volume
optimization (DVO) problem, which runs in linear
time. Efficiently constructing such delivery schedules
is important because it has to be done numerous times
in insertion heuristics and local search procedures
employed in solution approaches for the second-
phase problem mentioned above.
The remainder of the paper is organized as follows.

We start by introducing the concept of delivery vol-
ume profiles, which help in visualizing and analyzing
the problem. Next, we introduce the simplest version
of the problem and describe the basic algorithm for
optimizing the delivery volume. In later sections, we
introduce various extensions based on complexities
encountered in practical applications and discuss how
the basic algorithm must adjust to handle these varia-
tions. Finally, we present computational experiments
that demonstrate the value of embedding delivery

volume optimization in algorithms for the inventory
routing problem.

1. Delivery Volume Profile
As indicated earlier, customer usage rates and volume
dependent delivery times can have a conflicting rela-
tionship when it comes to determining the maximum
quantity deliverable at a customer. A customer’s
delivery volume profile is the graph representing the
maximum delivery quantity at the customer as a func-
tion of the time of delivery. These delivery volume
profiles play a critical role in understanding and ana-
lyzing the problem as well as the algorithms.
Because we are working with a given route, i.e., a

fixed sequence of customer visits, we will refer to a
customer by its position on a route. Thus, the ith cus-
tomer on the route will consume product at a constant
rate of ui per time unit. This customer will have a
capacity of Ci and an inventory of I 0i at the start of
the planning period.
Additionally, we will use Q to represent the vehi-

cle’s capacity, and R to represent the vehicle’s deliv-
ery rate, which is the amount of product that can
delivered per time unit. This implies that, for now,
we assume that the delivery rate is the same for all
customers. (Note that we must have ui ≤ R, because
otherwise we cannot deliver fast enough to keep up
with usage.) Finally, we assume that customer i has a
delivery window specifying that a delivery can begin
anytime between ei and li and that the target delivery
quantity, i.e., minimum delivery quantity, is qmin

i .
We will call the points where the slope of the deliv-

ery volume profile changes the breakpoints. For these
points, we will use the notation tki and qki to denote
the associated delivery times and maximum deliv-
ery quantities, where k = 1�2�    is the index of the
breakpoint.
Before proceeding, there is one other assumption

that should be stated. We assume that the delivery
windows of the customers are such that

li ≤ li+1 −
qmin
i

R
− di� i+1� (1)

ei−1 +
qmin
i−1
R

+ di−1� i ≤ ei� (2)

where dj�k represents the travel time from j to k.
This guarantees that there will be at least one fea-
sible delivery schedule. Starting delivery within the
window, delivering the minimum quantity, and trav-
eling directly to the next customer will yield a feasible
solution.
The beginning of a customer’s delivery window

will be the first breakpoint of the delivery volume
profile, i.e., t1i = ei. The maximum delivery quantity at
this point, q1i , is the minimum of three values:
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• the volume that can fit at customer i at the time
of the breakpoint, i.e.,

Ci− I 0i + t1i ui� (3)

• the volume that can feasibly be delivered at cus-
tomer i given the time available for delivery, i.e.,

�li+1 − �t1i + di� i+1��R� (4)

• the amount of product that is available in the
truck for delivery at customer i, i.e.,

Q− ∑
j∈r� j �=i

qmin
j  (5)

If the maximum delivery quantity q1i is determined
by the first of these three values, then the volume
deliverable to i will increase linearly with time due
to the usage rate until a limit is reached (the next
breakpoint). This limit will occur at a time that is the
earliest of the following three times:
• the time t� when the maximum amount of prod-

uct in the vehicle that can be delivered to customer i
will fit into customer i’s storage facility

t� = t1i +
Q−∑

j∈r� j �=i qmin
j − q1i

ui
� (6)

• the time t� when the volume deliverable to
the customer starts to decrease because there is not
enough time to deliver more and make it to the next
customer by the latest time delivery can start. The
change in slope is caused due to the restrictions
imposed by the next customer:

t�+ Ci− I
0
i + t�ui
R

+ di� i+1 = li+1� (7)

t�+ t
�ui
R

= li+1 −
Ci− I 0i
R

− di� i+1� (8)

t� = li+1 − �Ci− I 0i �/R− di� i+1
1+ui/R

 (9)

• li is reached. We assume that li is at or before
the time the customer’s inventory reaches zero, so in
finding breakpoints we do not have to consider where
the volume deliverable to the customer equals Ci.
The earliest of these three times will be t2i , and the

corresponding delivery quantity will be q2i . Note that
this delivery quantity will be the maximum volume
deliverable for customer i.
If the last breakpoint occurred when the maximum

amount of product deliverable is reached, as in Equa-
tion (5) or (6), the delivery volume will remain at
this value until either there is not enough time left to
deliver this volume and reach the next destination by
the end of its delivery window or when li is reached.

If the last breakpoint was determined by the deliv-
ery time available, as dictated by Equation (4) or (7),
then this forces the maximum delivery quantity to
decline from then on, because there is less time avail-
able to deliver product at i and reach the next cus-
tomer by li+1. The rate of decline is determined by the
delivery rate R, and the graph will slope downward
until li.
The last breakpoint will always occur at li, by def-

inition, and the quantity deliverable at this time will
again be based on the volume that can fit at the
customer, the remaining truck capacity, and the time
available to make the delivery. Note, though, that if
the volume deliverable at the prior breakpoint was
determined by time available, this one will be as well.
Therefore, the maximum number of breakpoints for

a single customer will be four: the start of delivery
window (1), the earliest point in time where the max-
imum quantity deliverable can be delivered (2), the
earliest point in time where the maximum quantity
deliverable will start to decline because limited time is
available for delivery (3), and the end of the delivery
window (4). An example of a delivery volume profile
is given in Figure 1.
It is key to realize that if any of the profiles for

the customers on a route has all four of these break-
points, the delivery volume optimization problem is
trivial. The reason is that if customer k, for example,
has four breakpoints in its profile, then this means
that at one point in time the volume deliverable to
customer k is equal to the truck capacity minus the
minimum delivery quantities required at the remain-
ing customers. All we need to do, in that case, is
to set the delivery time and quantity for customer k
equal to t2i and q

2
i , respectively, and deliver the mini-

mum to the remaining customers. This would yield a
total delivery volume equal to Q, the truck’s capacity,
which is clearly optimal.

Earliest delivery time Latest delivery time

Usage rate Pump rate

Created by truck capacity

Minimum

Figure 1 General Customer Delivery Volume Profile
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Earliest delivery time Latest delivery time

Usage rate Pump rate

Minimum

Figure 2 Customer Delivery Volume Profile with Rise and Decline

Therefore, we switch our focus to situations where
all customer profiles have fewer than four break-
points. In that case, all customers have profiles that
resemble the ones depicted in Figures 2, 3, and 4.
In Figure 2, the volume deliverable increases

because of customer usage and then declines because
of delivery time available. Truck capacity does not
affect the volume deliverable.
In Figure 3 the delivery volume never declines

because there is always enough time available for
delivery. This happens, for example, when there
is significant waiting time between customers i and
i+ 1.
In Figure 4 the maximum volume deliverable to

a customer is at the start of its delivery window.
Delivery time available restricts the volume deliver-
able over the entire window, usually indicative of a
narrow delivery window for customer i + 1 or large
inventory holding capacity at customer i.

Earliest delivery time Latest delivery time

Can be tank capacity

Usage rate

Minimum

Figure 3 Customer Delivery Volume Profile—Incline Only

Earliest delivery time Latest delivery time

Pump rate

Minimum

Figure 4 Customer Delivery Volume Profile—Decline Only

2. Developing Algorithms
We use the delivery volume profiles for the customers
on a route to illustrate ideas for an optimization
algorithm.
When we consider a single customer route, visiting

customer i, the total delivery volume on the route is
maximized by starting delivery to i at the breakpoint
corresponding with the highest qi value. This quantity
will be referred to as the peak, and we will refer to the
time it occurs as tpeak

i . When there are more customers
in a route, though, it is not as clear how to maximize
the total delivery volume. Consider the example in
Figure 5.
Figure 5 shows three graphs that represent the

delivery volume profiles for consecutive customers on
a three customer route. The left profile is for the first
customer on the route, the center profile is for the
second, and the right profile is for the third. The
arrows at the top of the figure and the accompanying
numbers represent the travel times. All delivery vol-
ume profiles displayed in this paper, unless otherwise
specified, will assume a delivery rate of 1. Thus, a
delivery of 12.5 to customer 1 starting at time 12.5 dic-
tates a completed delivery at customer 1 at time 125+
125= 25 and arrival at customer 2 at 25+ 5= 30.

12.510 3020 25

12.5

6

10

6

10

6 19

8

30 40

8

2

5

55 5

Figure 5 Three-Customer Delivery Volume Optimization
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Let us examine various initial ideas to construct
a delivery schedule that maximizes the total volume
delivered on the route.
• Can we deliver the peak volume to all of the cus-

tomers on the route?
From Figure 5, it is clear that it is not always possi-

ble to deliver the peak volume to all customers on a
route. In Figure 5, if we try to deliver at the peak for
customer 1 (12.5) this implies an arrival at customer 2
at time 30, which corresponds to a maximum delivery
volume of 5 rather than 10. Because the peak for the
last customer is always at the end of its window, the
total delivery quantity will be 125+ 5+ 8= 255.
In fact, because customer 1’s profile declines

because of time available, delivering at its peak cor-
responds to arriving at the next customer at its latest
time. If this latest time is not the peak for the second
customer, delivering at the peak for both is clearly not
possible.
• Because customer usage dictates that the longer

we wait, the more inventory holding capacity will be
available at the customers, should we try to deliver at
the latest time possible at all customers?
Waiting to make deliveries as late as possible is

popular in vehicle routing literature because it min-
imizes waiting time, but it is not the best idea here
because of the delivery time associated with making
deliveries. Waiting until the latest time does indeed
create a situation where there is the largest amount of
capacity available at the customers on a route, but it
may not allow as much time for the actual delivery
as if we started delivering earlier. Delivering at the
latest time allows for a delivery quantity of only 6 at
customer 1, 5 at customer 2, but still 8 at customer 3,
yielding a total delivery volume of only 19.
• Because an extra unit of time allows the largest

increase in volume deliverable at the customer with
the largest usage rate, does it make sense to construct
a delivery schedule by looking first at the customer
with the highest usage rate? What if we set the deliv-
ery volume/time to be at the peak for this customer
and work from there?
For the example given in Figure 5, this results

in a maximum total delivery volume of 255.
Note that the usage rate for customer 1 is
�125− 6�/�125− 6�= 1, the usage rate for customer 2
is �10− 8�/�25− 20�= 2/5, and the usage rate for cus-
tomer 3 is �8− 2�/�40− 30�= 3/5.
On the other hand, if we deliver 10 units at time 10

to customer 1, 10 units at time 25 for customer 2, and
8 units for customer 3 at time 40, the total delivery
volume is 28, which in fact is optimal. In the next sec-
tion, we will discuss the optimal policy that resulted
in this delivery schedule.

3. Optimal Policy
Theorem 1. It is optimal to deliver the peak quantity at

the peak time for the last customer, and then to deliver the
maximum quantity possible at preceding customers subject
to the restriction that it is possible to complete the delivery
and travel to the succeeding customer in time to start the
delivery at its specified time. (A more precise description is
given in Algorithm 1.)

Algorithm 1: Optimal Policy.
(1) t̄n = ln
(2) q̄n =min��Cn− I 0n�+ t̄nun�Q−∑

k=1� �n−1 qmin
k �

(3) for j = n− 1�    �1 do

(4) t̄j =min
{
lj �

t̄j+1−dj� j+1−��Cj−I0j �/R�
1+uj /R

}

(5) q̄j =min
{
�Cj − I 0j �+ t̄juj�Q−∑

k=1��j−1 qmin
k −∑

k=j+1��n q̄k
}

(6) end for

Proof. For ease of presentation, we will first dis-
cuss the case where customer capacities sum up to
less than or equal to the truck’s capacity. This guaran-
tees all profiles will have no more than three break-
points and no delivery quantities will be truncated
because of product availability.

Case 1.
∑
i=1n Ci ≤Q.

The policy may produce a delivery schedule that
includes waiting time at customers. Waiting time at a
customer j occurs when the start of delivery at j − 1
plus the delivery time at j − 1 plus the travel time
from j − 1 to j is less than the start of delivery at j .
We will refer to a maximal set of consecutive deliv-
eries without intermediate waiting time as a section.
We first analyze the effectiveness of the policy on a
section. After that, we will consider the effectiveness
of the policy on the route as a whole.
Note that the delivery volume profile of the last

customer in a section will look like the one in Figure 3.
The maximum delivery quantity will increase until
the end of the delivery window. The end of the deliv-
ery window is determined by either some customer-
specific restriction or by the fact that the customer will
run out of product at that point in time. Waiting time
between segments indicates that there is no restriction
on the time available for making a delivery at the last
customer of a segment by its successor.
We prove that we deliver the maximum delivery

volume to a section by induction.
When there is only one customer in a section, the

proof of optimality is trivial because the policy deliv-
ers the peak quantity at the peak time, which is clearly
optimal.
When there are two customers in a section, the

proof of optimality is not much more difficult.
Because the peak quantity at the last (second) cus-
tomer is deliverable at the end of its delivery window,
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the last customer does not really limit the options at
its predecessor (the first customer). The delivery vol-
ume profile for the first customer already ensures that
it is possible to reach the last customer at or before the
end of its delivery window. Thus, we can deliver the
peak volume at the peak time for the first customer
as well on a two customer route. We clearly cannot
do better than this.
Now, assume that the policy leads to the optimal

delivery volume for the last k customers in a section,
say j + 1�    �n, and consider customer j . If we begin
delivery at j+1 at time t̄j+1, the policy dictates that the
start of a delivery at j must be such that it is possible
to complete the delivery and to travel to j + 1 and
arrive at j + 1 at or before t̄j+1. To determine the start
of a delivery at j that gets us to j + 1 at exactly t̄j+1,
we have to solve

t̄j +
�Cj − I 0j �+ t̄juj

R
+ dj� j+1 = t̄j+1

Because there is no waiting time at any customer in
the section, t̄j will correspond to a point on the deliv-
ery volume profile before tpeak

j , and it enables a deliv-
ery quantity of q̄j = �Cj − I 0j �+ t̄juj , which is the most
possible at customer j given a start time of t̄j .
Adding customer j does not impact the deliv-

ery times (and delivery quantities) of customers
j + 1�    �n. For the policy not to be optimal, it has to
be possible to deliver more to j� j + 1�    �n by deliv-
ering more to j . The only way to deliver more to j is
to start the delivery to customer j later. Delaying the
start of delivery at j by �, where � is small, allows
the delivery quantity to increase by �uj . Delivering
more increases the actual delivery time, which in turn
delays arrival at j + 1 by �+ uj�/R. This inevitably
leads to a loss in total delivery time for the rest of
the section of �+ uj�/R, which equates to a loss of
total delivery volume of ��+uj�/R�R or, rather, �R+
earlier increase. This loss occurs because all the time
up until the end of the window for the last customer
of the section is currently being used for traveling
and delivering product. We cannot arrive at the last
customer any later than in the current solution, so if
we delay an earlier delivery, this leads to a reduc-
tion in the time available for delivering product. A
delay of � at j yields a net reduction of �R in the
volume deliverable. Thus, delivering more at the first
customer than dictated by the policy does not yield
an overall improvement.
This demonstrates that the policy is optimal for the

sections of the route. It follows relatively easily that if
each of the sections themselves is indeed optimal, in
terms of delivering the maximum total volume to the
customers in the section, then the whole route is opti-
mal as well. If there is waiting time between sections,

this implies that the optimal decisions for one sec-
tion do not restrict the decisions made for the other
sections.

Case 2.
∑
i=1n Ci ≥Q.

When the sum of customer capacities is more than
the truck capacity, the peak of a customer’s delivery
profile may be the result of available truck capacity. If
any of the deliveries on the route are limited by avail-
able truck capacity, then (as we discussed earlier) we
know we can deliver a full truckload to the customers
on the route, and the problem is trivial. On the other
hand, the fact that the sum of customer capacities is
more than the truck capacity does not imply that one
of the customer delivery profiles will reach its peak
because of available truck capacity. It is even possible
that the maximum volume deliverable on the route
may be strictly less than the truck capacity. Further-
more, if the sum of the customer capacities exceeds
the truck capacity, but all delivery profiles have at
most three breakpoints, then to be able to deliver a
full truckload on the route, more than one customer
must receive a delivery above its minimum.
In any case, when the sum of customer capacities

is more than the truck capacity, we may find that
when we are applying the policy we are not able to
deliver as much as the profile indicates to some cus-
tomer j because of product availability. We will need
to always determine which amount is smaller:
• the quantity dictated by the profile (based on

available capacity and time available),
• the product availability Q − ∑

k=1��j−1 qmin
k −∑

j=j+1��n q̄k.
If product availability is smaller than the volume

dictated by the profile, we will deliver this smaller
volume. All customers preceding j will receive their
minimum delivery quantity. Furthermore, if this sit-
uation is encountered, it implies that a full truckload
will be delivered on the route, which is clearly opti-
mal. On the other hand, if this situation never occurs,
then we are in the exact same situation as in Case 1,
which we have already shown to be optimal. �

For each customer, we compute a maximum of
three breakpoints, and each breakpoint requires no
more than three computations. This yields a total
of at most 9n computations for the breakpoints on
the route. Given the profiles, we can determine the
best time to begin delivery at each customer. This
is either the peak or the point on the delivery vol-
ume profile corresponding to arrival at the next cus-
tomer at its delivery time. Each check requires one
computation. There is an exception for the last cus-
tomer who always begins delivery at its ln value. This
yields a total of 9n+ n= 10n computations, which is
linear in n, to optimize the delivery quantity over a
route.
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4. Route Duration Constraints
As mentioned in the introduction, our work on
DVO and more generally on IRP, was motivated by
our collaboration with a producer and distributor
of air products. One of the key practical complex-
ities that had to be dealt with in that context was
route duration constraints. Route duration constraints
come about because drivers must obey Depart-
ment of Transportation (DOT) restrictions governing
how long they can drive and how long they can be
on duty.
DVO capitalizes on the flexibility within a deliv-

ery schedule to maximize total delivery volume on
a route. However, the “optimized” delivery schedule
may have an increased duration, which could lead
to infeasibility. In this section, we discuss the modi-
fications necessary to properly handle route duration
constraints.
We will let D represent the maximum duration of

the route, and estartr , eend
r , lstartr , and lend

r denote the ear-
liest feasible start time, the earliest feasible end time,
the latest feasible start time, and the latest feasible end
time of route r , respectively. These values follow from
the delivery windows of the first and last customers
on the route, the travel times to the depot, and the
minimum delivery quantities. We assume the follow-
ing conditions hold for feasibility:

estartr ≥ eend
r −D� (10)

lend
r ≤ lstartr +D (11)

To adapt the optimal policy from the previous sec-
tion to obtain a feasible solution with regard to route
duration constraints, we must consider two additional
values as we set the time and quantities from cus-
tomers n to 1. The values are:
• How much time is spent on deliveries to cus-

tomers succeeding the customer currently under con-
sideration, e.g., waiting time, travel time, and delivery
time. Note that this value can be computed easily as
we apply our policy.

5 4110 4535178

6
5 6

55 2

1

5

2

40.4

5.6

9

3

Figure 6 Example of Instance with Wait

• How much time is still needed for making mini-
mum deliveries to customers preceding the customer
currently under consideration. Note that this value
can be computed easily in advance because it involves
travel times and time required to deliver the mini-
mum quantity.
If the policy described in the previous section pre-

scribes a start time of a delivery at i that would lead
to a violation of the maximum duration constraint, as
determined by the delivery time at i combined with
the delivery time at preceeding and succeeding cus-
tomers, we can adjust the start of delivery at i and the
associated delivery quantity appropriately. Delivering
a smaller quantity to i at a later time ensures that all
preceding customers can still be visited within their
delivery window and receive their minimum deliv-
ery quantity. Depending on the characteristics of the
delivery schedule produced, we may need to re-run
the algorithm with an earlier delivery time for the last
customer in order to deliver the maximum volume
possible on the route.
Example. The graphs in Figure 6 represent delivery

volume profiles for three customers on a route with
a maximum duration of 44. The latest end time for
the route, given the delivery window �1�10� for cus-
tomer 1 and the maximum duration of 44, is time 49
(start route at time 5, travel to customer 1, and start
delivery at time 10 (the latest delivery start time pos-
sible) plus the remaining, as of yet unused, portion of
the maximum duration, i.e., 39). Assuming a delivery
rate of 1, we can deliver the peak quantity at cus-
tomer 3, which is 6, at time 41. Note that because of
the latest end time of the route, the delivery volume
profile of the last customer no longer has the form of
Figure 3. Consequently, we need to leave customer 2
by 41− 5= 36. Because starting delivery of the peak
quantity of 5 at customer 2 at the peak time of 17 leads
to a completed delivery at time 22, there will be wait-
ing time before the start of the delivery at customer 3.
If we start the delivery at customer 2 at 17, then we
must leave customer 1 by time 12. Because of the
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maximum duration of 44, the remaining time avail-
able at customer 1 is 44− �49− 12� (the time already
allocated) − 5 (travel time from depot)= 2. Thus, we
only have time to deliver two units of product at
customer 1. The total delivery volume is 2+5+6= 13.
Now consider completing the route at 48, i.e., one

time unit earlier. The delivery start time at customer
3 that maximizes the quantity deliverable while com-
pleting the route by time 48 is 40.4 with a delivery
quantity of 5.6. Starting delivery at 40.4 at customer
3 still allows delivery of five units at the peak time
at customer 2. However, at customer 1, we now have
time to deliver three units of product �44− �48−12�−
5 = 3�. Therefore, we start delivery at customer 1 at
time 9, resulting in a total delivery volume of 3+ 5+
56= 136, which is an improvement over 13!
The example illustrates that when the route con-

tains waiting time, it is possible to trade waiting time
for delivery time. In the above example, we have
traded 0.6 units of waiting at customer 3 for 0.6 units
of delivery time (one more unit of product delivery at
customer 1 and 0.4 fewer units of product delivery at
customer 3).
Note that the duration of a route is taken up by

travel, waiting, and product delivery. Therefore, min-
imizing the waiting time is equivalent to maximiz-
ing the volume deliverable. Note that it may not be
possible to eliminate all waiting time due to the deliv-
ery windows.
In the example above, completing the route � units

earlier (� small) can be accomplished by starting
delivery at customer n, the last customer on the
route, �1 + un/R�

−1� units earlier. To see this, real-
ize that starting �1 + un/R�−1� units earlier reduces
the available storage capacity by �1 + un/R�

−1un�,
which in turn reduces the product delivery time by
�1+un/R�−1�un/R��. Therefore, the completion of the
route is reduced by

1
1+un/R

�+ 1
1+un/R

un
R
�= ��

i.e., start time reduction plus product delivery
time reduction. Consequently, we will deliver �1 +
un/R�

−1�un less product at customer n. On the other
hand, we can directly convert the � units of time to
product delivery of R� for customers in the first seg-
ment. Because R�> �1+un/R�−1�un, the total delivery
volume of the route will increase.
If there are several customers in the last segment,

then completing the route � units earlier causes a
reduction in the volume deliverable as well as a
change in delivery start time for all of the customers
in the last segment. The total reduction in the volume
deliverable, though, is always less than R�, because

ui ≤R for all i. For example, if there are two deliveries
after the wait, then the reduction in volume is

�un
1+un/R

+ �un−1
�1+un/R��1+un−1/R�

≤ �R
2

+ �R
4

≤ �R

Next, we consider computing the optimum value
of �, i.e., the value of � that results in the maxi-
mum increase in volume deliverable on the route.
Three bounds on the maximum value of � have to be
computed:
• We have to make sure that the schedule remains

feasible. It suffices to ensure that we start delivery at
customer n no earlier than en. Therefore, we have

t̄endr − eendr (12)

We also have to recognize the situations in which
increasing � cannot lead to additional improvements.
There are two cases to consider:
• The maximum amount of waiting time is

removed from the route. As mentioned earlier, it may
not be possible, due to delivery windows at cus-
tomers, to remove all waiting time. We can compute
the waiting time that is unavoidable in any sched-
ule as follows. Start delivery at the last customer at
en. Working backward, deliver the maximum quantity
possible at each customer, always making sure that
you arrive at the next customer in time to make its
planned delivery. (Note that delivering less than the
maximum quantity possible means starting delivery
earlier and spending less time on delivering product,
which leads to an earlier arrival at the next customer,
which can only increase waiting time.) Let w be the
total waiting time in this computed schedule, then we
have

�≤w
It is important to realize that there may exist sched-

ules in which delivery at the last customer starts later
than en but the schedule contains only unavoidable
waiting time.
• The maximum route duration will no longer be

restrictive for selecting the delivery start time for the
customers of the first segment of the route. Note
that when our policy creates a delivery schedule that
includes waiting time, time available never restricts
the selection of the delivery quantity and the deliv-
ery start time for customers not in the first segment.
Working backward from the last customer in the first
segment, selecting optimal delivery quantities and
delivery start times ignoring any time restrictions, we
can determine a desired delivery start time of the
route, say t̂startr . There is no reason to increase � fur-
ther if we know it is possible to commence delivery at
the first customer at the desired delivery time. There-
fore, we have

�≤ t̄startr − t̂startr  (13)
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If the value of � is determined by the first or sec-
ond of the three values listed above, then we have
increased the total volume deliverable on the route
until it is no longer feasible to reduce waiting on the
route any further. The total delivery volume is opti-
mal because all time other than travel and waiting
time is spent on delivering product.
If the value of � is determined by the third of the

three values listed above, then the maximum duration
no longer restricts our policy, and it will produce the
maximum total delivery volume for the route.

5. Customer-Specific Delivery Rates
In our study of the delivery of industrial gases, it
is not always the case that each vehicle has pump-
ing equipment. Some vehicles do not and thus can
make deliveries only to customers that have pumps
at their tanks. This introduces differences in the deliv-
ery rates at the customers. Customer-specific deliv-
ery rates are not limited to industrial gas delivery.
In many industries, the delivery rate is influenced
more by the customer than by the vendor. Inventory
check-in procedures, distances from the truck to the
delivery points, and quality inspections are all ways
a customer affects the rate at which the product is
delivered. In this section, we discuss the necessary
modifications to the basic policy to handle customer-
specific delivery rates.
First, consider how customer-specific delivery rates

impact the delivery profiles. When delivery profiles
decline because of time available, it will now be with
a wide range of slopes. Also, because of the change
in delivery rate, the point in time the delivery profile
will begin to decline will change, too. As the deliv-
ery rate increases, the peak will be later, because less
time is needed to deliver the same amount of product.
As the delivery rate decreases, the peak will be ear-
lier because more time is needed to deliver the same
amount of product.
A high delivery rate at an early customer can now

make it advantageous to reduce delivery time, and
thus delivery quantity, at later customers in exchange
for the much larger quantity that can now be deliv-
ered earlier. With varying delivery rates, the decisions
at later customers are now impacted by the earlier
customers, making the optimal delivery quantities
and delivery times harder to determine.
To better understand the impact of customer spe-

cific delivery rates, consider any two consecutive cus-
tomers i−1 and i on an n customer route. In applying
our basic policy, a delivery at i at its peak dictates a
delivery to i−1 at or before its peak. Recall that, when
there is no unavoidable wait between these two cus-
tomers, the delivery at i− 1 will begin at or before its
peak because a delay of � at i−1 leads to an increase

in delivery quantity of �uj at i− 1 but a decrease in
delivery quantity of �R+ earlier increase at i.
Consider how this changes when the delivery rates

are customer specific. It is better to deliver more at
customer i− 1 if the increase at i− 1 is more than the
decrease at i:

ui−1 > Ri

(
1+ ui−1

Ri−1

)
 (14)

Rearranging,

Ri <
ui−1Ri−1
ui−1 +Ri−1

 (15)

If all delivery rates are the same, this inequality
clearly will never hold. However, if the delivery rate
at i − 1 is sufficiently faster than at i, the inequality
will hold, and it is better to deliver to i−1 at its peak
and shift the delivery start at i to li. On the other
hand, if the inequality does not hold, it is better to
deliver to i and i− 1 as in the original policy.
Let vR�i� = �uiRi�/�ui+Ri�. The above example

demonstrates that to decide on the start of delivery at
customer k and the amount to deliver at customer k
it is necessary to consider preceding customers with
vR�j� > vR�k�. In fact, it is in our best interest to allow
a large quantity to be delivered at j even if it means
postponing the start of delivery and reducing the
quantity delivered at customers after customer j .
We will show that it suffices to consider only the

last customer on the route preceding k with vR�j� >
vR�k� in making the decision of when to begin deliv-
ery at k.
We can always deliver the maximum quantity to

customer n, since his maximum always occurs at ln.
This creates t∗n and q∗n. Therefore, we effectively start
the algorithm at customer n− 1.
Find the last customer prior to n − 1 such that

vR�j� > vR�n − 1�. First, we observe that it is feasi-
ble to deliver the peak quantity at the peak time to
customer j (unless truck capacity has been reached,
which means we have an optimal solution). We set the
delivery time and delivery quantity at j equal to the
peak time t∗j and peak quantity q∗j . Given t

∗
j and q

∗
j , we

can compute the earliest arrival time at n−1, say t′n−1,
considering the travel time between each customer in
between and the time associated with delivering the
minimum (or committed) quantity, i.e.,

t′j+1 =max
(
t∗j +

q∗j
Rj

+ dj� j+1� ej+1
)

· · ·
t′n−1 =max

(
t′n−2 +

qmin
n−2
Rn−2

+ dn−2�n−1� en−1
)


Thus, t′n−1 represents the earliest possible arrival at
n − 1 after delivering the most at j . If t′n−1 occurs
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prior to the peak delivery time at n− 1, we can fea-
sibly deliver at the peak time for both j and n − 1.
In that case, we set t∗n−1 = tpeak

n−1 and q
∗
n−1 = qpeak

n−1. On the
other hand, if t′n−1 occurs after the peak delivery time
at n− 1, we cannot feasible deliver at the peak time
but have to “settle” for the maximum quantity deliv-
erable at t′n−1. Therefore, we set t∗n−1 = t′n−1 and q∗n−1
accordingly.
Before discussing how to continue, we will argue

that it suffices to consider the last customer j prior
to n− 1 with vR�j� > vR�k�, i.e., that we do not have
to be concerned about a customer j ′ prior to j with
vR�j

′� > vR�j� > vR�k�.
Consider customer j . The peak for j occurs at or

before lj . If the peak for j occurs before lj , then deliv-
ering the peak quantity at the peak time at j implies
an arrival at j + 1 at lj+1. Consequently, no decision
concerning the start of the delivery and the quantity
delivered at a customer prior to j can lead to a later
arrival at j + 1, and therefore at n − 1. If the peak
for j is at lj , then no decision concerning the start of
the delivery and the quantity delivered at a customer
prior to j can lead to a later arrival at j , and thus
at n− 1.
It should now be clear that we can repeat the steps

outlined above for customers n − 2 to 1 with only
one minor change, because t∗ must be feasible with
respect to the preceding as well as the succeeding cus-
tomers. We set t∗i for customer i as follows:

t∗i =min
(
max

(
t′i� t

peak
i

)
� t∗i+1 − di� i+1 −

qmin
i

Ri

)


In this way, we create a schedule of delivery times
and quantities that maximizes total delivery quantity
given customer delivery rates, but the revised policy
no longer runs in linear time.

6. Other Practical Complexities
A driver’s shift may involve several routes. In that
case, it is natural to optimize the delivery volume
over the entire shift. This can easily be accomplished
by starting with the last delivery on the last route
and working towards the first delivery on the first
route. Each time we move to a preceding route, we
just “renew” the available truck capacity. It may be
possible to deliver more to the customers on an early
route than suggested by the schedule produced, but
as we have encountered before, this will always be at
the expense of a reduction in delivery volume in later
routes and a net loss in the delivery volume for the
shift.
In practice, usage of a particular commodity rarely

occurs at the same rate 24 hours a day, 7 days a week.
Many factories shut down overnight and/or on week-
ends. Further, depending on the production schedule,

Earliest delivery time Latest delivery time

Usage rate Pump rate

Minimum

Figure 7 Customer Delivery Profile

inventory may be depleted faster earlier in the day
than later in the day. This indicates that it is necessary
to be able to handle varying usage rates at customers.
Fortunately, each change in usage rate at a customer
simply amounts to an additional breakpoint in the
delivery profile. For example, a delivery profile that
looked like Figure 7, for example, may now look like
Figure 8.
The delivery profile will have a steeper slope when

the usage rate increases and it will plateau when the
usage rate drops to zero. In computing the break-
points, we set the next breakpoint by determining the
minimum between the time dictated by the formulas
we described earlier given the current usage rate and
the time of the next change in the usage rate.
Because usage rates are always nonnegative, the

delivery profiles remain quasi-concave (Bertsekas
1995), i.e., they will not alternately rise and fall. Con-
sequently, there will still be only one time, or block of
time, corresponding to the peak delivery quantity for

Earliest delivery time Latest delivery time

Pump rate

Usage rates

Minimum

Figure 8 Customer Delivery Profile with Changing Usage Rates



Campbell and Savelsbergh: Delivery Volume Optimization
220 Transportation Science 38(2), pp. 210–223, © 2004 INFORMS

a customer. Therefore, the same basic techniques can
be applied.

7. Computational Results
To demonstrate the value of DVO and to determine
whether there are environments in which DVO may
be especially useful, we have conducted a series of
computational experiments.
Because we are the first to investigate DVO, as far

as we know, we cannot compare DVO to any existing
methods. Therefore, we compare the performance of
DVO to a number of other heuristics that can be used
to schedule the deliveries on a particular route. These
heuristics are described below:
• Early Method (E): deliver to every customer as

early as possible, respecting the scheduling decisions
at the preceding customers on the route, and at that
time deliver the maximum possible.
• Late Method (L): deliver to every customer as late

as possible, respecting the scheduling decisions at the
preceding customers on the route, and at that time
deliver the maximum possible.
• Greedy Method (G): deliver the maximum possible

to every customer, respecting the scheduling decisions
at the preceding customers on the route.
Note that these three heuristics are easy to implement
and traverse the route once from start to finish. The
last heuristic we consider is a little harder to imple-
ment because it does not traverse the route from start
to finish.
• Maximum Usage Method (U): deliver the maxi-

mum possible to the customer with the highest usage
rate among the as of yet unscheduled customers,
respecting the scheduling decisions that have already
been made.
Next, we turn to the generation of instances. The

characteristics of our set of instances are motivated
by our experiences with the distribution of industrial
gases. The following three guidelines are frequently
used during the construction of delivery schedules:
• It is best, i.e., most cost effective, to make a deliv-

ery to a customer when the customer’s inventory
level is close to the safety stock level (as opposed to
delivering to a customer when the inventory level is
still fairly high). The reason is that over a period of
time this reduces the number of visits to the customer,
which in turn should reduce the per-unit delivery
costs.
• It is best, i.e., most cost effective, when making a

delivery to fill up the storage facility at the customer
completely (as opposed to filling up the storage facil-
ity only partially). Again, the reason is that over a
period of time this reduces the number of visits to the
customer, which in turn should reduce the per-unit
delivery costs.

• It is best, i.e., most cost effective, to deliver an
entire truck load on a route (as opposed to return-
ing to the distribution center with product left in the
vehicle). This should also reduce the per-unit delivery
cost.
Note that it is easy to achieve one or two of these

goals, but not as easy to achieve all three simultane-
ously. For example, it is not difficult to construct a
route and delivery schedule for which we can guaran-
tee that it is possible to deliver a full truckload. When
the combined storage capacity at the customers at the
start of the route is larger than the vehicle capacity,
then it will be possible to deliver the entire contents
of the vehicle. However, it is also clear that we will
not be able to fill up the storage facilities completely
at each of the customers. It is in situations where com-
panies try to aggressively pursue achieving all three
goals simultaneously that DVO becomes relevant and
important, because it is more difficult to evaluate the
many trade-offs and make the appropriate choices.
We constructed 20 instances with the following

characteristics. Each instance has 10 customers that
have to be visited in a prespecified order. The aver-
age storage capacity of the customers is 350 and the
vehicle capacity is 3,000. The average usage rate of
the customers is 20 units of product per hour, and
the delivery rate is 600 units of product per hour.
The initial inventory at each customer is set in such
a way that the customer will run out of product
(reach the safety stock level) at some point during the
next 9 hours. Given the storage capacities of the cus-
tomers, the initial inventories and usage rates of the
customers, and the vehicle capacity, the instances are
such that the total volume deliverable on the route
should be reasonably close to a truckload and the
quantity delivered to each customer should, in most
cases, fill up its storage facility. The average travel
time between customers is 50 minutes, and there is a
route duration limit of 9 hours. The minimum deliv-
ery quantity at all customers is 60 (about 20% of the
average customer’s capacity). We allow the customer
delivery capacity, usage rate, and travel time to vary
by 10% above or below the above average values.
There are no explicit delivery time windows, but there
are, of course, the implicit time windows implied by
the earliest time the minimum delivery quantity can
be delivered and the time at which the customer will
run out of product.
When we present computational results, they will

represent, unless clearly stated otherwise, the average
over a set of 20 different instances.
In Table 1 we show for each of the different meth-

ods the total volume delivered on the route as well
as the percentage of vehicle capacity this value rep-
resents. The results in Table 1 demonstrate the value
of DVO. The average total volume delivered by DVO
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Table 1 Delivery Volume for Different Methods

DVO % E % G % L % U %

2,709.50 90.32 2,583.40 86.11 2,370.06 79.00 2,105.61 70.19 2,439.39 81.31

Table 2 Schedules for Various Methods

Start Complete Quantity % before % after

Early (Quantity: 2,366.89, Time: 787.89)
Depot 0

1 50�33 58�00 76�71 77�78 100�00
2 106�82 125�50 186�80 49�81 100�00
3 173�29 195�49 221�97 39�93 100�00
4 248�55 268�37 198�18 41�87 100�00
5 316�08 340�07 239�98 30�55 100�00
6 389�85 413�16 233�14 33�86 100�00
7 462�43 491�29 288�62 19�00 100�00
8 540�25 572�20 319�52 13�33 100�00
9 624�17 653�06 288�95 15�40 100�00
10 706�53 737�84 313�02 15�24 100�00

D 787�89

Late (Quantity: 2,097.12, Time: 859.10)
Depot 0

1 107�10 116�56 94�63 72�58 100�00
2 196�45 212�61 161�52 42�42 85�82
3 260�40 268�36 79�59 32�93 54�47
4 321�42 343�67 222�47 34�74 100�00
5 447�02 475�33 283�09 18�07 100�00
6 529�98 547�59 176�09 20�09 70�04
7 596�86 630�27 334�08 6�24 100�00
8 685�82 696�34 105�20 0�51 29�05
9 748�30 777�31 290�06 2�40 87�33
10 830�78 865�82 350�40 5�12 100�00

D 915�87

Greedy (Quantity: 2,263.09, Time: 859.10)
Depot 56�77

1 107�10 116�56 94�63 72�58 100�00
2 191�34 212�61 212�71 42�84 100�00
3 260�40 268�36 79�59 32�93 54�47
4 321�42 343�67 222�47 34�74 100�00
5 447�02 475�33 283�09 18�07 100�00
6 525�10 547�59 224�90 20�57 84�37
7 596�86 630�27 334�08 6�24 100�00
8 679�22 696�34 171�15 1�09 47�52
9 748�30 777�31 290�06 2�40 87�33
10 830�78 865�82 350�40 5�12 100�00

D 915�88

Maximum Usage (Quantity: 2,314.64, Time: 859.10)
Depot 56�77

1 107�10 116�56 94�63 72�58 100�00
2 191�34 212�61 212�71 42�84 100�00
3 260�40 268�36 79�59 32�93 54�47
4 321�42 343�67 222�47 34�74 100�00
5 441�86 470�00 281�39 18�56 100�00
6 519�78 547�59 278�16 21�09 100�00
7 596�86 630�27 334�08 6�24 100�00
8 679�22 692�16 129�37 1�09 36�19
9 744�13 777�31 331�85 2�84 100�00
10 830�78 865�82 350�40 5�12 100�00

D 915�88

Table 2 (cont’d.)

Start Complete Quantity % before % after

DVO (Quantity: 2,679.43, Time: 859.10)
Depot 56�77

1 107�10 116�56 94�63 72�58 100�00
2 175�48 196�27 207�85 44�15 100�00
3 244�06 268�36 243�00 34�24 100�00
4 321�42 343�67 222�47 34�74 100�00
5 421�24 448�70 274�60 20�53 100�00
6 498�47 525�55 270�78 23�19 100�00
7 574�82 607�48 326�62 8�33 100�00
8 656�44 692�16 357�23 3�10 100�00
9 744�13 777�31 331�85 2�84 100�00
10 830�78 865�82 350�40 5�12 100�00

D 915�88

exceeds the average total volume delivered by the
next best method by more than 4% of the vehicle
capacity. Over a period of time, this represents a sig-
nificant decrease in delivery costs.
To create additional insights in the working and

performance of the different methods, we present
more detailed results for a single instance. In this
instance, the DVO method outperformed the next best
method by more than 13.2%. Table 2 present results
for the Early, Late, Greedy, Maximum Usage, and
DVO methods, respectively.
It is not hard to see what causes the Early Method

to perform poorly. Even though the method fills up
the storage facility at every customer on the route,
it makes deliveries when there is still a reasonable
amount of inventory left and therefore less storage
capacity available for new product. For example,
delivery to the last customer starts at 706.53, and
313.02 units of product are delivered, which fills the
customer’s inventory to capacity. In comparison, the
delivery schedule created by the DVO Method vis-
its the last customer later (830.78), when more prod-
uct has been consumed. It still fills up the storage
facility but is able to deliver a larger total volume
(350.4). Delivering to this last customer at the earlier
time, as done in the schedule produced by the Early
Method, serves no purpose. Because of situations like
this, in the schedule produced by the DVO Method
more than 300 more units of product are delivered
than in the schedule produced by the Early Method.
Similarly, it is not hard to see what causes the Late

Method to perform poorly. The Late Method spends
too much time waiting as opposed to using time
to deliver product. This frequently creates situations
where a delivery to a customer does not bring the
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Table 3 Delivery Volume for Different Average Storage Capacities

Tank DVO % E % G % L % U %

250 2�177�52 72�58 1�967�42 65�58 1�999�84 66�66 1�830�46 61�02 2�040�91 68�03
300 2�633�69 87�79 2�509�34 83�64 2�320�83 77�36 2�087�13 69�57 2�388�88 79�63
350 2�939�85 98�00 2�924�86 97�50 2�599�88 86�66 2�303�93 76�80 2�682�65 89�42
400 2�982�79 99�43 2�979�35 99�31 2�808�86 93�63 2�483�74 82�79 2�878�30 95�94
450 2�997�96 99�93 2�997�88 99�93 2�925�23 97�51 2�635�06 87�84 2�959�69 98�66

inventory back up to capacity. Consider, for example,
customer 2. Because the delivery at customer 1 com-
pletes at 116.56 and the travel time between customer
1 and 2 is 48.82, the delivery at customer 2 can begin
at 165.38. Instead, in the schedule produced by the
Late Method, the delivery is delayed until its latest
delivery time of 196.45, when there is only enough
time to deliver 161.52 units of product and travel to
customer 3 to get there by its latest delivery time of
260.4. The inventory after delivery at customer 2 is
only 85.82% of its capacity. In contrast, the schedule
produced by DVO dictates a start of delivery at cus-
tomer 2 at 175.48 when there is time to deliver a larger
207.85.
By examining customers from start to finish and

greedily maximizing the volume deliverable at each
of them, the Greedy Method can create delays that
end up decreasing the volume deliverable in the later
portion of the route. Consider customer 2, where the
schedule produced by the Greedy Method and the
schedule produced by the DVO Method first differ.
The Greedy Method chooses to wait much longer
with the start of the delivery to increase the quantity
that can be delivered (212.71 vs. 207.85 in the sched-
ule produced by the DVO Method), but as a result
there is less time available for deliveries at the next
customers. In the schedule produced by the Greedy
Method, the delivery at customer 2 is completed at
212.61, resulting in an arrival at customer 3 at its latest
delivery time with a possible delivery quantity of only
79.59. In the schedule produced by the DVO Method,
the delivery at customer 3 starts earlier, allowing a
quantity of 243 to be delivered, which is a significant
improvement, even considering the smaller delivery
quantity at customer 2.
The deficiencies of Maximum Usage are very simi-

lar to the Greedy Method, but are not quite as easy to
see because of the order in which delivery decisions
are made. The Maximum Usage Method sets delivery
times and delivery quantities in the order: 9, 6, 7, 5, 4,
1, 8, 2, 3, and 10. To deliver the maximum possible at
customer 6 (the second in the series after customer 9),
delivery at customer 6 is started at 519.78 with a quan-
tity of 278.16, which is larger than the delivery quan-
tity in the scheduled produced by the DVO Method
(270.78). Arrival at customer 7 after completing the
delivery at customer 6 is at 574.82, but to optimize

delivery quantity at customer 7 (third in the order-
ing), the start of delivery is delayed until 596.86, cre-
ating waiting time between customers 6 and 7. The
quantity deliverable at this time is 334.08, which is
again larger than delivery quantity of 326.62 in the
schedule produced by the DVO method. This delay of
approximately 22 minutes allows 7.46 more units to
be consumed at customer 7 (and thus to be delivered),
but delays arrival at customer 8 by 22 minutes plus
the delivery time for the 7.46 units. This delay trans-
lates into a decreased quantity deliverable at customer
8 of approximately 228 units, which is why there is
a delivery of 129.37 in the schedule produced by the
Maximum Usage Method, whereas there is a deliv-
ery of 357.23 in the schedule produced by the DVO
Method. This difference is much larger than the gains
from increased deliveries at customers 6 and 7. This
example points out the danger of delaying delivery at
a customer to increase the delivery quantity, as it may
compromise the possibilities at other customers.
Next, we study the impact of changing the char-

acteristics of the instances. This allows us to com-
pare DVO to other methods in more scenarios and see
how certain characteristics affect their relative perfor-
mance. Table 3 presents the results when we vary the
average storage capacity at a customer.
As expected, the total volume delivered on a route

decreases when the average storage capacity at a cus-
tomer decreases. On a route with 10 customers with
an average storage capacity of 250 (and thus approx-
imately a combined storage space of 2,500), it will
be impossible to deliver an entire truckload of 3,000.
On the other hand, with an average storage capacity
of 450 (and thus approximately a combined storage
space of 4,500), it should be possible to deliver an
entire truckload of 3,000 in most cases. The results in
the table demonstrate that DVO starts to perform bet-
ter, compared to the other methods, when it is more
difficult to deliver a large volume on a route. It is
somewhat surprising to see that the relatively sim-
ple Early Method performs reasonably well in most
situations.
Similar behavior is observed in Table 4, which

presents the results for different vehicle capacities.
We see that when the ratio of combined storage capac-
ity to vehicle capacity is relatively large, the oppor-
tunity for large individual deliveries, and therefore
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Table 4 Delivery Volume for Different Vehicle Capacities

Tank DVO % E % G % L % U %

2,500 2�491�59 99�66 2�467�87 98�71 2�347�97 93�92 2�101�92 84�08 2�394�95 95�80
3,000 2�709�50 90�32 2�583�40 86�11 2�370�06 79�00 2�105�61 70�19 2�439�39 81�31
3,500 2�712�00 77�49 2�583�40 73�81 2�370�06 67�72 2�105�61 60�16 2�439�39 69�70

Table 5 Delivery Volume for Different Delivery Rates

R DVO % E % G % L % U %

300.00 1�761�35 58�71 1�761�29 58�71 1�676�90 55�90 1�499�03 49�97 1�710�62 57�02
400.00 2�317�04 77�23 2�316�39 77�21 2�037�97 67�93 1�818�77 60�63 2�095�09 69�84
600.00 2�716�69 90�56 2�542�84 84�76 2�464�99 82�17 2�235�90 74�53 2�507�12 83�57

1,200.00 2�753�84 91�79 2�372�18 79�07 2�738�17 91�27 2�682�20 89�41 2�742�32 91�41
� 2�755�28 91�84 2�209�00 73�63 2�755�28 91�84 2�755�28 91�84 2�755�28 91�84

the chances to deliver an entire truckload, are higher.
Consequently, DVO seems most useful in situations
where this ratio is relatively small.
Table 5 presents the results when we vary the deliv-

ery rate. When delivery is instantaneous, it is always
best to deliver as late as possible. We see that all
methods except for the Early Method do this and
therefore produce identical results (row labeled �).
On the other hand, when the delivery rate is very
low and all the time in an optimal schedule is occu-
pied by traveling and delivering product, it is best
to deliver as early as possible and avoid waiting. We
see that both DVO and the Early Method do so, but
the others do not. These results clearly show that the
other methods are not robust enough to adjust to
changing circumstances. In fact, the results demon-
strate that, as expected, the Early Method gets pro-
gressively worse when the delivery rate increases, and
the Late Method gets progressively worse when the
delivery rate decreases.
We find similar results when we vary the average

travel time between customers, the average customer
usage rates, and the route duration limits.
The computational experiments demonstrate that

the truly simple approaches, such as the Early Method
and the Late Method, are not robust and may result
in very poor performance. The other, somewhat more
adaptive methods, e.g., Greedy Method and Maxi-

mum Usage Method, appear to be less sensitive but
overall do not exhibit the desired performance, either.
DVO consistently delivers significantly larger vol-
umes to customers than the other methods across a
variety of scenarios with hardly any additional com-
putational cost.

8. Conclusion
We have demonstrated that optimizing the volume
deliverable on a route (or a shift comprising a
sequence of routes) in situations where vendor man-
aged inventory resupply policies are in place can
easily and efficiently be incorporated in existing
heuristics. We have also shown that, over a period
of time, the use of DVO can result in significant cost
savings.
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