
European Journal of Operational Research 165 (2005) 668–684

www.elsevier.com/locate/dsw
Discrete Optimization

Vehicle minimization for periodic deliveries

Ann Melissa Campbell a, Jill R. Hardin b,*

a Department of Management Sciences, Tippie College of Business, 108 John Pappajohn Business Building, Suite W244,

University of Iowa, Iowa City, IA 52242, USA
b Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 1001 West Main Street,

P.O. Box 843083, Richmond, VA 23284-3083, USA

Received 3 March 2003; accepted 4 March 2004

Available online 11 May 2004

Abstract

We consider the problem of minimizing the number of vehicles required to make strictly periodic, single destination

deliveries to a set of customers, under the initial assumption that each delivery requires the use of a vehicle for a full day.

This problem is motivated by inventory routing problems in which customers consume goods at a steady rate. We

evaluate the complexity of the problem and discuss its general properties, including problem decomposition. We also

present an algorithm that we show is optimal for special cases. Finally, we extend these results to a general version of

the problem.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Periodic; Complexity theory; Routing; Packing
1. Introduction

With the rising use of vendor managed inven-

tory systems, there is an increasing focus on find-
ing efficient ways to manage these systems. Giving

the vendor the ability to decide the timing and

quantity of deliveries for customers clearly gives

the vendor greater flexibility and room for in-

creased efficiency. How to take full advantage of

this increased flexibility, though, is still under in-

tense investigation because of the size and com-
* Corresponding author.

E-mail addresses: ann-campbell@uiowa.edu (A.M. Camp-

bell), jrhardin@vcu.edu (J.R. Hardin).

0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.ejor.2003.09.036
plexity of the resulting problems. Solution

methodologies must determine times and quanti-

ties for the deliveries in conjunction with finding

the most efficient routes for making these deliver-
ies, where the routing portion alone is known to be

NP-complete [6]. Studies of the resulting problem,

known as the inventory routing problem (IRP),

look at the problem from both stochastic and

deterministic perspectives and decompose the

problem in a variety of ways. Literature reviews

are included in [2].

In studying the IRP, the savings resulting from
conversion to a vendor managed system have been

particularly significant when a majority of cus-

tomers has the capacity to receive full truckload

deliveries. This situation makes the routing
ed.

mailto:ann-campbell@uiowa.edu

A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684 669
portion rather trivial since it is cheaper to post-
pone deliveries so that these single stop routes can

be used. Gallego and Simchi-Levi [5] evaluated the

long run effectiveness of strict direct shipping

(separate loads to each customer) and concluded

that direct shipping is at least 94% effective over all

inventory routing strategies whenever minimal

customer capacity is at least 71% of truck capacity.

The effectiveness, as expected, deteriorates as cus-
tomer capacity gets smaller. This creates an inter-

esting set of questions: if all routes are restricted to

be single stop, is the resulting problem still NP-

hard? What algorithms, exact or heuristic, would

be good to use for solving this new problem? These

questions motivate our study, but the answers are

applicable to other situations with periodic de-

mands such as in other areas of truck [7] and ship
routing [3] as well as machine scheduling applica-

tions [16,20].

This paper examines the structure of the prob-

lem, evaluates its complexity in detail, and presents

an algorithm that is optimal for special cases,

including where all periods are evenly divisible. We

also evaluate the worst case performance and ex-

tend the algorithm and our analysis to a version of
the problem with variable execution times.

The structure of the paper is as follows. In

Section 2, we formally define the problem and

necessary notation. Section 3 briefly describes the

relevant literature, and Section 4 addresses com-

plexity issues. Problem decomposition is discussed

in Section 5, an algorithm and a discussion of its

performance are in Section 6, and the generalized
version of the problem and algorithm are intro-

duced in Section 7. Finally, conclusions and future

research questions related to this work are de-

scribed in Section 8.
2. Problem definition

If a customer consumes a product at a steady

rate, the customer will reach zero inventory at

evenly spaced intervals in time known as periods. If

a vendor follows a zero inventory direct shipping

policy for all customers, then the long run average

cost of any schedule should require the same

amount of mileage since it is dictated by the set of
customers and their periods. Different schedules
serving the same set of customers may vary,

though, in the number of vehicles required, so the

requirements for this resource become key in the

formal problem definition.

We consider the problem of minimizing the

number of vehicles required to make periodic

single destination deliveries to a set of customers

N ¼ f1; . . . ; ng where customer i requires a deliv-
ery precisely every pi days. The initial assumption

is that each delivery requires the use of a full

vehicle for an entire day. We wish to determine

delivery start days si 2 f1; . . . ; pig, 8i, in order to

minimize the total number of vehicles used on any

day of the schedule, where a schedule is created by

delivering to customer i on days fsi þ qpi; q ¼
0; 1; 2; . . .g, 8i. We will refer to this problem as
vehicle minimization for periodic deliveries

(VMPD). In the paper, we will often refer to pi and
si which represent the period and start day for a

customer i.
3. Literature review

Consumption rates for customers have been

simplified to periods in the routing literature, cre-

ating what is known as the periodic routing prob-

lem (PRP). Initial formulations and algorithms are

proposed in [4,9,23]. Even though algorithms have

been proposed for variations of the periodic

routing problem with the same objective of mini-

mizing fleet size, as in [7], the routing component
clearly has a big influence on the algorithmic de-

sign, and the periodicity of the deliveries in these

variations of the PRP is also enforced differently.

In [7], the periods are defined by the restriction

that deliveries to customer i must be at least Ki

days apart and no more than Ui days apart. This

alters the problem structure dramatically.

The closest work appears to be in machine
scheduling, where the issue is how to schedule

periodic jobs so as to minimize the number of

machines required. In most variations, the peri-

odicity of jobs is not as strictly defined as in the

VMPD, such as in [18] where deliveries have

‘‘periodic deadlines’’ and variable, integral execu-

tion times. In [12], periodicity is again imposed

670 A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684
through deadlines, and the authors are able to
establish certain versions of the problems as being

polynomially solvable and others as NP-hard.

Jan Korst’s Ph.D. thesis [16] considers the same

restrictive form of periodicity that we do in addi-

tion to a less restrictive version. Korst considers a

periodic scheduling problem very similar to the

one we propose but with variable, integral execu-

tion times rather than restricting all execution
times to one. In the periodic scheduling problem,

the question is how to find a schedule of start dates

as well as processor assignments that minimizes

the number of processors required. He proves the

problem to be NP-hard in the strong sense, both

when customers are restricted to be repeatedly

served by the same vehicle and when they can be

served by any vehicle. The proof is based on a
reduction from 3-partition and depends on the

variability in processing times, so the complexity

of the problems we consider is not directly implied

by this result. Korst provides a test for determin-

ing when two jobs will overlap that will be em-

ployed later in this paper.

Other significant results emerge from papers by

Park and Yun [20] and Gaudioso et al. [8]. Both
address a periodic scheduling problem similar to

the one described above, but with one key differ-

ence. The work content wi associated with each

activity i cannot be carried from one period to

another. In Korst’s variation, a job with work

content wi occupies the assigned processor for wi

days, where in [8,20] a job occupies wi processors

on a day. Note that both problems are identical
when all wi values equal one, as in the problem we

study. We discovered these papers quite recently

and found that they contain some of the same

results we had already derived for the VMPD.

Both introduce a large integer program to solve

the resulting load minimization problem, but Park

and Yun also describe a method for decomposing

it into smaller subproblems. They divide the set of
customers into sets N1;N2; . . . ;Nd , where for any

i 2 Nq and any j 2 Nr, pi and pj are relatively

prime. They then use integer programming to

solve each resulting subproblem, minimizing the

number of vehicles required to service each subset

of customers Nq. With Kq representing the mini-

mum number of vehicles required for customer set
Nq, Park and Yun show that the minimum number
of vehicles required to service the customers in

N ¼ N1 [N2 [� � � [Nd is exactly K1 þ K2 þ � � � þ
Kd since the decomposition does not increase the

number of vehicles required. We take advantage of

this result in later sections. Gaudioso et al. [8] also

present lower bounds on the minimum number of

processors required to schedule all jobs, and they

develop an implicit enumeration scheme to solve
the problem. This scheme provides the basis of the

heuristic procedure developed for the problem.

Other related literature includes [15,19], both of

which add a set-up time between tasks with specific

properties, and papers such as [17] that consider

alternate objectives such as minimization of the

cycle time (the length of the schedule that is re-

peated indefinitely). Kats and Levner [14] address
how to sequence the movements of robots in order

to minimize the number of robots required to

complete a series of tasks over a fixed time hori-

zon. In this case, the periodicity comes from the

sequence of each robot’s movements rather than

from the jobs being processed.
4. Complexity

4.1. Complexity of VMPD

In investigating the complexity of the VMPD,

we begin by trying to determine whether or not

VMPD is in NP. Toward this end, we present the

following observation.

Observation 1. To obtain a solution for the problem
over an infinite time horizon, it is necessary only to
find a solution over a time horizon of length L, where
L ¼ lcmðp1; p2; . . . ; pnÞ.

The validity of this observation is easily estab-

lished. Any customer i receiving a delivery on day
x will also receive a delivery on day

xþ L ¼ xþ qpi, where q ¼ L=pi. Note that, by

definition of L, q is a positive integer. Thus any

schedule of periodic deliveries repeats itself every L
days. Unfortunately, finding a schedule over a

shorter time horizon is insufficient for solving the

VMPD.

A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684 671
Theorem 1 [21]. If a and b are positive integers,
then lcmða; bÞ ¼ ab= gcdða; bÞ.

Theorem 2 [21]. The number of bit operations
needed to find the greatest common divisor of two
positive integers a and b with a > b is Oððlog2 aÞ

3Þ.

Combining these two results, it is clear that L
can be computed in polynomial time. This does

not imply, however, that VMPD itself is in NP.

The magnitude of L can be exponential in the

binary representation of the problem, so that any

solution method that requires examining each day

over such a horizon cannot be polynomial. As we

will soon see, VMPD is in fact not in NP, as ver-

ification of any solution is NP-hard.
The decision version of VMPD (DVMPD) is

defined as follows: Given customer set N ¼
f1; . . . ; ng with periods p1; . . . ; pn, respectively, and
a positive integer k6 n, does there exist a start day

assignment si 2 f1; . . . ; pig, i ¼ 1; . . . ; n, so that at

most k vehicles are required on any day of the

schedule?

Towards establishing the complexity of
DVMPD, we present the simultaneous congruences

problem (SCP).

Definition 1 (SCP). Given a set T of n ordered

pairs of positive integers ða1; b1Þ; ða2; b2Þ; . . . ;
ðan; bnÞ determine the cardinality of the largest

subset T 0 � T for which there is a positive integer x
with the property that x � ai ðmodbiÞ for all
ðai; biÞ 2 T 0.

Theorem 3 [1]. The simultaneous congruences
problem is strongly NP-hard.

Observation 2. Verifying a solution to DVMPD is
equivalent to solving the simultaneous congruences
problem.

Proof. Let ðai; biÞ ¼ ðsi; piÞ, i ¼ 1; . . . ; n. For any

day x in the schedule, x � si ðmodpiÞ corresponds

to customer i receiving a delivery on day x. Finding
the largest cardinality subset T 0 � T as specified by

SCP gives the maximum number of deliveries

occurring on any day of the schedule. Comparing

jT 0j to k verifies the solution to DVMPD. h
Theorem 4. DVMPD is strongly NP-hard.

Proof. Verification of a solution to the problem is

strongly NP-hard, thus the problem itself is

strongly NP-hard. h

Given that DVMPD is strongly NP-hard, then

we can say that VMPD is strongly NP-hard. Yet
even in cases when a general problem can be

shown NP-hard, we are often able to identify

special cases which are in P . We now consider the

complexity of some special cases of VMPD.
4.2. Scheduling with a single vehicle

Suppose that we simply wish to determine if

deliveries to all customers in N can be made with a

single vehicle. That is, we wish to determine start

days for all customers so that no two customers

require deliveries on the same day.
Theorem 5 [16]. If deliveries for customers i and j
are scheduled to begin on days si and sj respectively,
then i and j will require simultaneous deliveries if
and only if si � sj ðmodgijÞ, where gij ¼ gcdðpi; pjÞ.

Given a set of start days si 8i, we can use this

result to determine in Oðn2Þ time if all customer

deliveries can be made with a single vehicle. We

need simply use the condition given in Theorem 5

to determine if any two customers require simul-

taneous deliveries. It would seem possible to use
this straightforward condition of interaction to

determine in polynomial time if a set of custom-

ers can be scheduled on the same vehicle.

Unfortunately, the following result makes this

unlikely.

Theorem 6 (k-PD). Given customer set N and a
positive integer k6 n, we wish to determine if there
is a subset of k customers such that all k can be
serviced with the same vehicle. This problem is NP-
complete.

Proof. We show that k-PD is NP-complete via a

reduction from a version of Independent Set,

which is well known to be NP-complete [6].

672 A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684
Independent set (k-IS) can be stated as follows

[6]:

Given a graph G ¼ ðV ;EÞ and a positive integer

k, does G contain a subset V 0 � V of cardinality
at least k so that if u, v 2 V 0, then ðu; vÞ 62 E? If
such a subset exists it is called a k-independent
set.

Given an instance of k-IS (a graph G and an
integer k > 0), we assume without loss of gener-

ality that V ¼ fv1; . . . ; vng and that G is a con-

nected simple graph (no loops and no parallel

arcs). If G is not connected, we can find an inde-

pendent set by examining each component sepa-

rately. Furthermore, we may assume that G is not

complete; otherwise, k-IS is easy. Create an in-

stance of VMPD as follows:

• Let G be the complement of G. That is, G ¼
ðV ;EÞ, where E ¼ fði; jÞ 2 V � V ; i 6¼ jg n E.
Let E ¼ fe1; e2; . . . ; e�mg.

• Let p1; p2; . . . ; pnþ�m denote the first nþ �m
primes.

• For each vi 2 V , create customer i for VMPD

with period

pi ¼ pi

Y
el2E s:t: 9j;el¼ðvi;vjÞ

pnþl:

Including pi in the product ensures that cus-

tomer i has a well defined period, even if it does

not have any incident edges in G.

We claim that G has an independent set of size k
if and only if there are at least k customers in k-PD
such that all k can be serviced with the same

vehicle.

()) Suppose G has an independent set V 0.

Schedule the customers associated with vertices in

V 0 to begin deliveries on days 1; 2; . . . ; jV 0j. We

claim that deliveries for these customers require

exactly one vehicle over the planning horizon.
First, observe that if vi; vj 2 V 0, then ðvi; vjÞ 62 E)
ðvi; vjÞ 2 E. Suppose that ðvi; vjÞ ¼ el 2 E. By defi-

nition, pnþljpi and pnþljpj. Since G is simple,

gcdðpi; pjÞ ¼ pnþl. By Theorem 5 we know that

deliveries for customers i and j overlap if and only

if si � sj ðmodgijÞ, that is, if si � sj ðmodpnþlÞ.
Note, however, that si; sj 2 f1; . . . ; jV 0jg. Since

jV 0j6 n < pnþl, 16 jsi � sjj < pnþl) pnþl -ðsi � sjÞ.
Thus, no two customers associated with vertices in
V 0 overlap.

(�) Suppose that we can find a subset U of k
customers which can all be serviced by the same

vehicle. Let si, i ¼ 1; . . . ; k, define the feasible

schedule. We will show that if customers i and j
are in U , then ðvi; vjÞ 62 E, so vi and vj may

simultaneously belong to an independent set. To

accomplish this, we will prove the contrapositive;
that is, we will show that if ðvi; vjÞ 2 E then i and j
cannot be scheduled on the same vehicle. Consider

an edge ðvi; vjÞ 2 E. Note that pi is the product of

prime numbers associated with vi and the edges

incident to vi in G. Thus gcdðpi; pjÞ > 1 if and only

if the same prime number divides each of pi and pj,
which will only occur if both are incident to the

same edge in E. That is, gcdðpi; pjÞ > 1 if and only
if ðvi; vjÞ 2 E. Since ðvi; vjÞ 2 E, this does not hold,
and gcdðpi; pjÞ ¼ 1. Because deliveries for two

customers will necessarily collide if their periods

are relatively prime, when ðvi; vjÞ 2 E, i and j
cannot be scheduled on the same vehicle. We have

shown, then, that if two customers can be sched-

uled on the same vehicle, then the edge between

the corresponding vertices cannot appear in G.
Thus U defines a k-independent set in G.

We have shown that the ‘‘yes’’ instances of k-
PD correspond exactly to the ‘‘yes’’ instances of k-
IS. We have still to establish that the reduction we

have provided is indeed polynomial. The prime

number theorem [11] implies that the magnitude of

pq is Oðq log qÞ. Thus the magnitude of the largest

prime used in the above reduction is at most
Oð½nþ �m� log½nþ �m�Þ. Furthermore, each period is

the product of at most n prime numbers in the set

fp1; . . . ; pnþ�mg, thus each number is of magnitude

at most Oðð½nþ �m� log½nþ �m�ÞnÞ, and the largest pi
can be represented by Oðn log½nþ �m�Þ bits. The

other steps in the reduction are clearly polyno-

mial. h

4.3. Constrained VMPD

In discussing the problem of minimizing the

number of vehicles required to complete a sche-

dule, we have not presented any constraints, until

now, on the relationship between customers and

vehicles such as requiring that the same vehicle be

A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684 673
used for every repeat visit to a customer. That is,
we may use vehicle A to make a delivery on day si
and vehicle B to make a delivery on day si þ qpi for
any positive integer q. Now we add the restriction

that customer i’s delivery must always be made by

the same vehicle and refer to this new problem as

the constrained VMPD (CVMPD). Such a situa-

tion may arise, for instance, if a customer becomes

familiar with a certain driver, or if particular
locations are difficult to find and having the same

driver make all deliveries to that location is more

reasonable. Since it changes the structure of the

problem, the complexity of this version must be

addressed separately.

Theorem 7. The decision version of CVMPD is NP-
complete.

Proof. Korst [16] showed that the problem is NP-

hard when deliveries may require an arbitrary

length of time. We will show that the special case

when deliveries require one full day is still strongly

NP-hard using a reduction from the vertex color-

ing problem. The decision version of vertex col-

oring can be stated as follows:

Given a graph G ¼ ðV ;EÞ and a positive integer

k, is there a partition of V into at most k sets

W1;W2; . . . ;Wk so that if u; v 2 Wi , then
ðu; vÞ 62 E? If such a partition exists it is called

a k-coloring.

Given an instance of vertex coloring (a graph G
and an integer k > 0), we assume without loss of
generality that V ¼ fv1; . . . ; vng and that G is a

connected simple graph (no loops and no parallel

arcs). If G is not connected, the graph may be

colored by examining each component separately.

Loops make vertex coloring infeasible. Parallel

arcs do not affect the coloring at all. Furthermore,

we may assume that G is not complete; if it is, the

coloring problem is easy. Create an instance of
VMPD exactly as in the proof of Theorem 6. By

the argument given in that proof, this is a poly-

nomial transformation.

We claim that G has a k-coloring if and only if

periodic deliveries for customers c1; . . . ; cn can be

scheduled so that at most k vehicles are required

on any day.
()) Suppose G has a k-coloring. Let W1; . . . ;Wk

represent the corresponding partition of V . Note

that Wi is an independent set of G for each i. Thus,
by precisely the same argument as that presented

in the proof of Theorem 6, the customers associ-

ated with the vertices in Wi can be serviced using a

single truck. Therefore we can schedule all cus-

tomers using at most k vehicles on any day.

(�) Suppose that we can choose start day si
for customer i, i ¼ 1; . . . ; n, so that at most k
vehicles are needed on any day. Again, by the

same argument presented in the proof of Theo-

rem 6, if customers i and j are scheduled on the

same vehicle, then ðvi; vjÞ 62 E. Thus vi and vj may

belong to the same set in a partition induced by a

coloring. Let Cr, r 2 f1; . . . ; kg, denote the set of

customers scheduled on the rth vehicle. Define a
partition of the vertices as Wr ¼ fvi : i 2 Crg,
r 2 f1; . . . ; kg. Then the preceding argument

establishes that this is a k-coloring for G. This

completes the proof. h
5. Problem size reduction

As discussed in the literature review, Park and

Yun [20] address the solution of this problem by

decomposing the set of customers into subsets

N1;N2; . . . ;Nd , where for any i 2 Nq and any

j 2 Nr, pi and pj are relatively prime. They then

use integer programming to solve each sub-

problem, where subproblem q consists of mini-

mizing the number of vehicles required to service
the customers in Nq. They show that the

minimum number of vehicles required to service

all of the customers is exactly the sum of

the number of vehicles required to serve each

subset.

While solving the integer program modelled in

[20] is certain to yield the optimal solution to the

problem, the integer programs can be quite large
in size and correspondingly time consuming to

solve even with this decomposition property.

Consider the possibility that if only one customer

out of possibly hundreds has a period equal to the

least common multiple of the periods of the other

customers, then no decomposition is possible since

the above condition cannot be satisfied. One of the

Day 1 2 3 4 5 6

Vehicle 1 6a 6b 6c 6d 6e 6f
Vehicle 2 2a 6g 2a 3a 2a
Vehicle 3 3a

Day 1 2 3 4 5 6

Vehicle 1 2a 6a 2a 6b 2a 6c
Vehicle 2 3a 6d 6e 3a 6f 6g

h

674 A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684
difficulties in solving the IRP is the wide variety of
consumption rates involved, with some customers

requiring multiple trips per day and others with

months between deliveries, so such scenarios are

not far-fetched. Consider an example where all

customers have periods from the set

f2; 3; 5; 6; 8; 9; 10g. This problem also cannot be

decomposed at all, even without one period being

the lcm of the others. Thus, while the decomposi-
tion into relatively prime sets is useful, it is not

always applicable.

Even if the customer set can be decomposed

in this way, the resulting integer programs can

still be quite large because both the number of

variables and the number of constraints are

proportional to the least common multiple of the

periods of the customers in the subsets. A gen-
eral instance of VMPD, however, may include

many customers with the same delivery period. It

would be helpful if we could use this informa-

tion to reduce the size of the integer programs.

More specifically, consider the following policy.

If there are M P p customers with the same

period p, assign K ¼ bM=pc vehicles to service

Kp of those customers. It is a simple matter to
verify that those K vehicles can handle the

deliveries for all Kp customers, and that they are

completely occupied with those deliveries and

can handle no others. It would be useful if we

could make such an assignment and elimi-

nate those customers from the integer programs

in which they appear. As it turns out, we

cannot.

Theorem 8. The preprocessing described above may
eliminate optimal solutions.

Proof. Consider the customer set N ¼ f2a;
3a; 6a; 6b; 6c; 6d ; 6e; 6f ; 6gg, where customer 2a has

period 2, customer 3a has period 3, and customers

6a, 6b, 6c, 6d , 6e, 6f , 6g have period 6. To find a
solution for this instance of VMPD, we need only

consider a schedule over 6 days, since lcmð2; 3;
6Þ ¼ 6. If we preprocess, we will assign one vehicle

to completely handle deliveries to customers 6a, 6b,

6c, 6d , 6e, 6f . Since the numbers 2 and 3 are rela-

tively prime, two additional vehicles will be re-

quired to handle deliveries to the remaining
customers. We are left, then, with a schedule like

the following, requiring three vehicles:
The customers in N , however, can be scheduled
with no more than two vehicles, as evidenced by

the following schedule:
Thus the size of the integer programs proposed
by Park and Yun cannot be reduced by such pre-

processing.

Based on the ideas behind the decomposi-

tion scheme, we have made the following obser-

vations.
Observation 3. If there are k customers whose
periods are pairwise relatively prime, then
the optimal schedule will require at least k vehi-
cles.
Observation 4. If p1; p2; . . . ; pn are pairwise rela-
tively prime, then the optimal schedule will require
exactly n vehicles.

These observations follow directly from results

in [8,20].
Observation 5. If among the set of customers N ,
there are k distinct periods represented that are
pairwise relatively prime and ni customers of each
period fi 2 ff1; . . . ; fkg then the optimal schedule
will require at least

Pk
i¼1 dnifie vehicles.

Observation 6. Suppose that customers in N have
periods from the set ff1; . . . ; fkg where the fi are

1: for i ¼ 1 to n do
2: minnum ¼ large

3: for startday ¼ 1 to pi do
4: maxfound ¼ 0

5: for checkday ¼ startday to L, step
by pi do

6: if vehicles on checkday>maxfound

then

7: maxfound ¼ vehicles on checkday
8: end if

9: end for

10: if maxfound < minnum then

A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684 675
pairwise relatively prime. Suppose further that
there are ni customers with period fi, where
n1 þ � � � þ nk ¼ jN j. A delivery schedule for N that
minimizes the number of vehicles will then require
precisely dn1f1e þ � � � þ dnkfke vehicles.

Proof. The intuition for these observations is based

on the same set of ideas, so we will present the

proof only for the last one. Using the method of

Park and Yun, we can partition the customers into

k sets, N1; . . . ;Nk by letting Ni ¼ fj 2 N : pj ¼ frg.
Since the periods of any two customers from dif-

ferent sets are relatively prime, we can then sche-

dule each of the Ni separately using dnifie vehicles.
The optimal schedule will then require

dn1f1e þ � � � þ dnkfke vehicles. h
11: minnum ¼ maxfound

12: minnumday ¼ startday

13: end if

14: end for

15: si ¼ minnumday
16: end for
6. Greedy algorithm

Since the VMPD and many of its variants have

been shown to be NP-hard, we know there can be
no polynomial algorithms that can solve the

problem exactly. Thus, we were interested in

developing either polynomial or pseudo-polyno-

mial algorithms, with run times still much less than

integer programs, that can yield good solutions to

the problem. We will present a greedy algorithm

that can be used as a heuristic for any instance of

the problem, but we show that it can give optimal
solutions for several special cases. Gaudioso et al.

[8] present a branching heuristic with several pos-

sible branching rules, and we note that the algo-

rithm we present corresponds to one choice of these

rules. We go further by supplying an analysis of the

algorithm and its worst case performance. We pres-

ent the algorithm here for continuity and clarity.
Day 1 2 3 4 5 6 7 8 9 10 11 12

Vehicle 1 1 1 1 1 1 1
We will assume from here forward that cus-
tomers in N are numbered such that

p1 6 p2 6 � � � 6 pn, and we let L ¼ lcmðp1; . . . ; pnÞ.
Consider the greedy method, Greedy Sched-

uling, given in Algorithm 1.

Algorithm 1. Greedy Scheduling
Greedy Scheduling finds, for each customer
i, the earliest start day for which customer i will
conflict with the fewest other previously scheduled

customers on any of its delivery days.

Example 1. Let N ¼ f1; 2; 3; 4; 5g, with p1 ¼ 2,

p2 ¼ 3, p3 ¼ 4, p4 ¼ 6, and p5 ¼ 12. We must

consider a schedule over L ¼ 12 days. Greedy

Scheduling first schedules customer 1. Since it
will conflict with no other customers scheduled so

far, we set sj ¼ 1 and we have the following sche-

dule:
Next, we consider customer 2. Regardless of whe-

ther deliveries to customer 2 begin on day 1, 2, or 3,

deliveries will conflict with deliveries to customer

676 A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684
1 at some point over the twelve day horizon. Thus,

we set s2 ¼ 1, resulting in the following schedule:
Day 1 2 3 4 5 6 7 8 9 10 11 12

Vehicle 1 1 1 2 1 1 1 2 1

Vehicle 2 2 2
Now we focus on customer 3, with p3 ¼ 4.

Choosing start day 1 or 3 results in conflict with

both customers 1 and 2 on the same day; choosing

start day 2 or 4 results in conflict only with cus-

tomer 2. So we set s3 ¼ 2 and we have the fol-

lowing schedule:
Day 1 2 3 4 5 6 7 8 9 10 11 12

Vehicle 1 1 3 1 2 1 3 1 1 2 1

Vehicle 2 2 2 3
Greedy Scheduling next considers customer 4,

with a period of 6. Choosing start day 1 or 4 re-

sults in conflict with two other customers on some

day of the schedule; choosing any other start day

results in conflict with at most one customer on

any day of the schedule. Thus, we set s4 ¼ 2 and

our schedule becomes:
Day 1 2 3 4 5 6 7 8 9 10 11 12

Vehicle 1 1 3 1 2 1 3 1 4 1 2 1

Vehicle 2 2 4 2 3
Finally, Greedy Scheduling considers cus-

tomer 5, with a period of 12. Customer 5 can be

scheduled for delivery on day 12 which results in

no conflict with any other customer. Scheduling

customer 5 on any other day of the horizon results

in conflict with at least one other customer. We set

s5 ¼ 12, and obtain our final delivery schedule:
Day 1 2 3 4 5 6 7 8 9 10 11 12

Vehicle 1 1 3 1 2 1 3 1 4 1 2 1 5

Vehicle 2 2 4 2 3
6.1. Relatively prime periods

Theorem 9. Suppose that customers in N have
periods from the set ffi; . . . ; fkg, fi 6 fiþ1, where the
fi are pairwise relatively prime. Suppose further that
there are ni customers with period fi, where
n1 þ � � � þ nk ¼ jN j. Then Greedy Scheduling

provides an optimal schedule.

Proof. We present a proof by induction. We first

note that Greedy Scheduling will always

choose to schedule the first customer to begin
deliveries on day 1. For each subsequent customer,

then, it chooses the earliest start day which results

in the fewest conflicts with other customers on any

day of the schedule.

Consider the n1 customers of period f1. If

n1 6 f1, then Greedy Scheduling will assign

start days 1; 2; . . . ; n1 to these customers; other-
wise, it will assign start day c to dn1f1e customers,
c ¼ 1; . . . ; n1 � bn1f1c, and start day c to bn1f1c cus-

tomers, c ¼ n1 � bn1f1c þ 1; . . . ; f1. As any schedule

for these n1 customers will require at least dn1f1e
vehicles, Greedy Scheduling creates an opti-

mal schedule. This establishes the basis for the

inductive proof.
Suppose that the schedule created by Greedy

Scheduling for the first n1 þ � � � þ nr�1 custom-

ers is optimal, and consider scheduling the first

customer j of period fr. Since fr is relatively prime

A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684 677
to each of f1; . . . ; fr�1, the Chinese remainder the-
orem [10] implies that, for any start day

s 2 f1; . . . ; frg, there is a day x 2 f1; . . . ; Lg on

which a delivery to customer j occurs simulta-

neously with at least dnifie customers of period fi,
i ¼ 1; . . . ; r � 1. Therefore Greedy Scheduling

will assign start day 1 to the first customer of

period fr. It then continues assigning start days to

the remaining nr � 1 customers of period fr in a
circular fashion, similar to that described for the ni
customers of period f1.

Note, then, that each time a new period fi is
encountered, Greedy Scheduling will be forced

to schedule those ni customers in a manner iden-

tical to the way it would schedule them if no other

customers were present. In essence, Greedy

Scheduling assigns start days to customers of
frequency fi independently of all other customers.

By Observation 6, Greedy Scheduling finds an

optimal schedule. h

6.2. Evenly divisible periods

Definition 2. We say that the periods p1 6 p2
6 � � � 6 pn are evenly divisible if pijpiþ1, i ¼ 1; . . . ;
n� 1.
Theorem 10. If pijpiþ1, i ¼ 1; . . . ; n� 1, then
Greedy Scheduling produces an optimal sche-
dule.

Proof. First, observe that, for any k6 n,
lcmðp1; . . . ; pkÞ ¼ pk, since pk is itself a multiple of

each pi, i < k. We will present a proof by induc-

tion.

As has been stated previously, Greedy

Scheduling easily finds an optimal schedule for

one customer. Assume that Greedy Schedul-

ing has produced an optimal solution after

scheduling the first k � 1 customers and is ready to
schedule customer k.

We observe that Greedy Scheduling will

assign sk 2 f1; . . . ; pk�1g. Since lcmðp1; . . . ; pk�1Þ ¼
pk�1, the schedule for the first k � 1 customers will

repeat every pk�1 days. The number of deliveries

scheduled on day x will be the same as the number

of deliveries scheduled on day xþ qpk�1 for all
positive integers q. Because pk is a multiple of pk�1,
if x, where pk�1 < x6 pk, is a candidate for start

day of customer k, then so is day x� pk�1. Greedy

Scheduling always chooses the earliest start day

using the minimum number of vehicles if there is a

tie, so the algorithm will assign sk 2 f1; . . . ; pk�1g.
Suppose that a start day can be found for cus-

tomer k that does not require the addition of a

vehicle. Clearly, since the schedule is optimal for
the first k � 1 customers and no additional vehicle

is required, the schedule for the first k customers is

optimal. Now suppose that for each s 2 f1; . . . ;
pk�1g, assigning sk ¼ s would require an additional

vehicle. We claim that, in this case, the schedule is

‘‘full’’; that is, the same number of deliveries are

scheduled for each day in the horizon.

The claim that requiring an additional vehicle
implies a full schedule is based on the following

argument. Suppose that the optimal schedule for

the first k � 1 customers requires R vehicles. For

each s 2 f1; . . . ; pk�1g, there is some t 2 fsþ qpk;
q ¼ 1; . . . ; pnpk � 1g on which R deliveries are already

scheduled. We note, however, that the deliveries

on days in fsþ qpk; q ¼ 1; . . . ; pnpk � 1g are all to

precisely the same set of customers, since pijpk
8i6 k. That is, if customer j receives a delivery on

day s, it will also receive a delivery on day sþ
qpk ¼ sþ ðq pk

pi
Þpi, for any q 2 f1; . . . ; pnpk � 1g. Since

this is true for each start day in f1; . . . ; pk�1g, the
same number of deliveries must occur on each day

of the schedule. Daily use of all vehicles is clearly

the best that can be done, and any optimal sche-

dule for customers 1; . . . ; k would require the use
of an additional vehicle. Since all start days are

equivalent, Greedy Scheduling will assign

sk ¼ 1 to produce an optimal schedule. This com-

pletes the proof. h

Though it is not likely that all customers will

naturally require delivery periods that are multi-

ples of one another or the same as other periods,
this result can still be very helpful in practice.

Customers can be restricted to choose from a de-

fined set of delivery periods, for example, or the

vendor can influence a customer to modify the

amount of inventory held to alter the time required

between deliveries. This is not uncommon in ven-

dor managed inventory relationships. Another

678 A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684
option is to use this result simply for estimating the
number of vehicles required to serve a set of cus-

tomers. For example, the periodicity of each

delivery could temporarily be replaced by

the closest of a series of divisible values and the

algorithm invoked to create a quick estimate. The

idea of using periods that are all evenly divisible

into later periods is similar to the ideas behind the

well-known inventory replenishment policies
developed by Roundy. In [22], a period is the time

between order for a set of retailers (T1; . . . ; Tn) or
their warehouse (To). The authors show that a

policy where either Ti=To or To=Ti is integral for all i
is within 6% of optimality. Since the value Ti rep-
resents the time between receiving an order and

reaching a zero-inventory level, the parallels to our

problem are obvious. This result can be improved
to 98% when all periods are even further restricted

to be powers of two.
Theorem 11. If the customer set N ¼ f1; . . . ; ng can
be partitioned into N1; . . . ;Nk so that the periods for
customers within each Ni are evenly divisible and so
that if v 2 Ni, w 2 Nj, i 6¼ j, then pv and pw are
relatively prime, then Greedy Scheduling finds
an optimal solution.
Proof. Straightforward application of Theorems 9

and 10, along with observations made by Park and

Yun, establish this result. h

Thus even if all periods are not evenly divisible,
but can be decomposed into pairwise relatively

prime groups that are evenly divisible within the

groups, we still can find an optimal solution

without solving an integer program.

6.3. Performance of the greedy algorithm

In general, Greedy Scheduling is pseudo-
polynomial (it runs in OðnLÞ time) since its exe-

cution requires examining each day of the L-day
horizon at least once for each customer. If, how-

ever, L is polynomial in n, then Greedy Sched-

uling is polynomial. Note also that in the case

that f1; . . . ; fk are pairwise relatively prime.

Observation 6 implies that scheduling can be done
in OðnÞ time: when scheduling customers of period
fi, assign start days f1; . . . ; fig in cyclical fashion.

In the case of evenly divisible periods, Greedy

Scheduling can also be modified to run in OðnÞ
time, based on arguments similar to those given in

the proof of Theorem 10.

While pseudopolynomial algorithms are not as

desirable as those that run in polynomial time, we

note that, even in the worst case, this is still much
faster than Park and Yun’s integer programming

approach. Those integer programs have L con-

straints and more than n variables, implying that

their solution time is likely to be exponential in n.
Unfortunately, in the general case, we cannot de-

pend on Greedy Scheduling to provide opti-

mal schedules.

Theorem 12. Greedy Scheduling does not yield
optimal schedules for general instances of VMPD.

In spite of the fact that Greedy Scheduling

does not always yield an optimal solution, it can

still be used to obtain feasible schedules for

VMPD which are of reasonable quality. Note, for

instance, the example given in the proof of Theo-
rem 8. Greedy Scheduling yields the optimal

schedule for this example. It often yields much

better schedules than would be produced if cus-

tomers of each distinct period were scheduled

separately, and never worse (given that each peri-

od is scheduled separately according to the steps of

Greedy Scheduling). Even though Greedy

Scheduling runs in pseudopolynomial time in
the worst case, this is still an improvement over

integer programming when a relatively quick,

feasible, approximate solution is desired.

6.3.1. Bound on greedy algorithm

We can make some statements, though, about

the performance of Greedy Scheduling rela-

tive to optimality.

Theorem 13. Let OPTI be the optimal number of
vehicles required to schedule customers in instance I
of VMPD. Then Greedy Scheduling produces
a schedule requiring at most OPTI þ D� 1 vehicles
where D is the number of distinct periods in
p1; . . . ; pn.

A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684 679
Proof. Assume that customers in N have peri-

ods from the set ff1; . . . ; fkg, fi 6 fiþ1, and that

there are ni customers with period fi with

n1 þ � � � þ nk ¼ jN j. Greedy Scheduling can

clearly find an optimal solution for the set of n1
customers with period f1. Note, however, that

there may be many alternative optima; that is,

there may be many different schedules, each
requiring the minimum number of vehicles. The

choice of such a schedule can significantly impact

scheduling of subsequent customers. Schedule

choice may result in the premature addition of a

vehicle when customers of period fiþ1, for example,

are considered. Even if such a premature increase

occurs, up to fiþ1 � 1 additional customers of

period fiþ1 can be scheduled without another in-
crease in the number of vehicles (due to the

structure of Greedy Scheduling). In any case,

there still may be multiple schedules requiring the

same number of vehicles to serve the set of cur-

rently scheduled customers. As before, the choice

of schedule impacts when additional vehicles are

required as additional periods are considered.

Using this basic argument, we can see that the
largest difference in deliveries occurring on any

two days of the schedule is at most D� 1 since a

vehicle can only be added ‘‘prematurely’’ once for

each distinct period. Thus the number of vehicles

required by Greedy Scheduling will exceed the

minimum possible by at most D� 1. h

6.3.2. Bound on any algorithm

Given the structure of the Greedy Sched-

uling algorithm, it is difficult to give a good

upper bound on its performance that is unique

strictly to Greedy Scheduling to use in

bounding results. We can make some claims,

though, on the performance of any algorithm that

can be used to create feasible schedules for a set of

customers with known periods.
A lower bound

Pn
i¼1 1=pi on the number of

vehicles required in any schedule is given in [8], but

this lower bound does not take advantage of the

existence of customers with relatively prime peri-

ods. The term 1=pi reflects the amount of work

required for a customer of a particular period if

that work could be distributed evenly over the

horizon. Given that we can decompose the cus-
tomer set N into g relatively prime subsets
G1; . . . ;Gg, as defined by Park and Yun, we im-

prove upon this lower bound and define the infi-

mum of all optimal policies as follows:

INFopt ¼
X

j¼1;...;g

X
i2Gj

1

pi

& ’
: ð1Þ

There may actually be very few such groupings

but many periods that are relatively prime. In this

case, we can possibly strengthen the above given
that we have c relatively prime periods, so that at

least c vehicles are required:

INFopt ¼ cþmax 0;
X
i¼12n

1

pi

&
� c

’!
: ð2Þ

For simplicity and ease of presentation, we will

restrict our analysis to instances where the number

of customers equals the number of distinct periods

(one customer for each period). If there is only one

customer of each period, the worst any algorithm

can do is require n vehicles. This is an upper bound
on what could happen, yet the algorithm we pro-

posed could often perform quite better than this. If

we take the ratio of this upper bound with (2), for

example, we find the following:

n

cþmax 0;
P

i¼12n
1
pi
� c

l m� � : ð3Þ

This simplifies to yield the following result.

Theorem 14. Any algorithm for the VMPD will
achieve at worst a factor n

c result, where c is the
number of pairwise relatively prime periods.

Thus, as c approaches n, the effectiveness of any
algorithm, including Greedy Scheduling im-

proves.
7. Variable execution times

In the original literature on the vehicle routing

problem, it is assumed that each route fully occu-
pies a vehicle for the day. Later work examines the

idea of multiple trips per day for a vehicle, as we

now will do for the VMPD. In this generalization

680 A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684
of the VMPD, we can represent the fraction of a
day that would be occupied by a delivery to cus-

tomer i by a value ei, where ei 6 1, and 1 is the

length of time available for each vehicle each day.

We still make the assumption that a vehicle must

return to the depot before visiting another cus-

tomer, but the same vehicle may be used to make

multiple deliveries in a given day. Because each

vehicle can make multiple trips, this variation will
be identified as the MTVMPD. The MTVMPD is

essentially a scaled version of the full problem

modeled in [20].

This problem is clearly NP-hard in the strong

sense since if each customer has a period of 1, then

the problem of how to minimize the number of

vehicles required each day is the bin packing

problem exactly. Based on the same argument, we
can make the stronger statement:

Theorem 15. MTVMPD is NP-hard in the strong
sense even if all periods are identical.

We can extend the greedy algorithm proposed

earlier to handle varying execution times. The key

difference in the problems, and also in the algo-
1: minnum ¼ 1
2: for i ¼ 1 to n do

3: startday ¼ 1

4: done ¼ 0

5: while (startday 6 pi) and (done ¼ 0) do

6: reset planned assignment values

7: minreqd ¼ minnum

8: for checkday ¼ startday to L, step by

9: checkveh ¼ 1
10: done2 ¼ 0

11: while (checkveh 6 minnum) and (do

12: if time available on checkveh P e
13: planned assignment for i on che

14: done2 ¼ 1

15: end if

16: checkveh + 1

17: end while
18: if done2 ¼ 0 then

Algorithm 2. Greedy Scheduling with First Fit
rithms, is that a solution is no longer defined only
by a start day. We also need to know which vehicle

will be performing the delivery on each day that

the customer receives a delivery over the lcm. The

algorithm we propose handles this issue in a ‘‘first

fit’’ fashion, similar to the structure of a well

known bin packing heuristic. We again assume

that the customers are sorted in order of nonde-

creasing period and are scheduled in this order. In
scheduling each customer, the algorithm looks for

the first start day where the customer can be visited

on each repetition over the lcm without requir-

ing an increase in the number of vehicles. On

each day where a delivery occurs for a customer i,
the delivery is assigned to the first vehicle that

has time available to make the delivery (time

availableP ei). If i cannot be feasibly scheduled on
any of the start days with the current number of

vehicles, Greedy Scheduling with First

Fit increases the number of vehicles by 1 and i is
assigned day 1 as its start day. From day 1 for-

ward, customer i is only assigned to the new

vehicle if there is not sufficient time available on

any of the existing vehicles. This procedure com-

bines the virtues of the algorithm described earlier
pi do

ne2 ¼ 0) do

i then

ckday ¼ checkveh

19: minreqd ¼ minnum + 1

20: end if
21: end for

22: if minreqd ¼ minnum then

23: assign i to days and vehicles according to plan

24: done ¼ 1

25: end if

26: end while

27: if done ¼ 0 then

28: minnum ¼ minnum + 1
29: startday for i ¼ 1

30: for checkday ¼ 1 to L, step by pi do
31: checkveh ¼ 1

32: done2 ¼ 0

33: while (checkveh 6 minnum) and (done2 ¼ 0) do

34: if time available on checkveh P ei then
35: assignment for i on checkday ¼ checkveh

36: done2 ¼ 1
37: end if

38: checkveh + 1

39: end while

40: end for

41: end if

42: end for

A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684 681
with the structure of bin packing algorithms that
have been shown to perform well.

Due to the bin packing aspects of the problem,

it is no longer true that the problem can be

decomposed by the relatively prime groupings as

before. All deliveries with relatively prime fre-

quencies will still coincide, but these collisions will

not necessarily require additional vehicles. If there
are n customers, for example, with pairwise rela-

tively prime periods, the exact number of vehicles

required will no longer be n but

Xn
i¼1

ei

& ’
: ð4Þ

Adapting and bounding this algorithm for a

general class of periods will be a focus of further

study, but we can still extend some of our earlier

statements for the case when all periods are evenly

divisible.
7.1. Evenly divisible periods

The performance of this algorithm when peri-

ods are evenly divisible is very interesting. Since

each period is the lcm of the previously scheduled

periods, the first vehicle assignment becomes the

assignment for all future visits to the same cus-

tomer. This special structure combined with the
results from using a ‘‘first fit’’ bin packing heuristic

allows the following result:
Theorem 16. If periods are evenly divisible, then the
Greedy Scheduling with First Fit algo-
rithm can be used to schedule customers such that
the number of vehicles required is less than 2 times
the optimal number of vehicles.

Proof. The proof of this statement is based on

arguments very similar to those that create the
factor-two result established for the first fit heu-

ristic developed for the bin packing problem [6], so

682 A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684
we will begin there. In an instance of the bin

packing problem, there is a set of items ui each
with size sðuiÞ6 1. The objective is to find the

minimum number of unit-sized bins needed such

that each item can be inserted in a bin. The first fit

algorithm [6] starts with a series of these unit-

capacity bins, all of which are empty. The algo-

rithm then places items ui into the bins, always
placing the next indexed item into the lowest in-

dexed bin for which there is sufficient available

capacity. In other words, ui is inserted into the first

bin in which it will ‘‘fit’’. It is clear that the fol-

lowing is true regarding the optimal number of

bins (OPTBP):

OPTBP P
Xn
i¼1

sðuiÞ
& ’

: ð5Þ

It is also true that the result of the first fit heuristic

(FFBP) is such that

FFBP < 2
Xn
i¼1

sðuiÞ
& ’

: ð6Þ

The above is true since there is at most one non-

empty bin in the first fit packing with assigned
contents equal to .5 or less. Combined, the above

two equations yield the following well known re-

sult

FFBP < 2OPTBP: ð7Þ

Improvements have been made to the bound for

the first fit algorithm [13] so that

FFBP 6
17

10
OPTBP þ 2: ð8Þ

For the MTVMPD, we can also lower bound

the optimal number of vehicles required

(OPTMTVMPD).

Lemma 1

OPTMTVMPD P
Xn
i¼1

ei
pi

& ’
: ð9Þ
Proof. This result is based on the fact that number

of deliveries to a customer i over L equals
L
pi
: ð10Þ

Each delivery requires ei amount of time each time

it is executed, for a total of

eiL
pi

ð11Þ

over the horizon. If we sum this amount over all

customers and divide this total amount of work

evenly over L, we obtain

Xn
i¼1

eiL
piL

: ð12Þ

Simplifying this expression completes the proof of

the lemma. h

The Greedy Scheduling with First Fit

algorithm works from smallest period to largest.
This preserves many of the properties established

earlier about the greedy algorithm when applied

to evenly divisible periods. For example, we still

only have to make each decision based on the

customers assigned to the pi start days possible

for customer i since pi is the least common mul-

tiple of the periods of all of the prior customers.

If a customer is assigned to a particular start day,
each future occurrence will be on a day requiring

the same number of vehicles and using the same

vehicle.

For each customer, the algorithm evaluates

each start day from the first to the pith to find the

first day on which there is a vehicle (bin) in which

there is available time (capacity) to include the

delivery in question. If no vehicles on any of the
possible start days have sufficient availability, a

new vehicle is enlisted and first used on day 1 to

make the delivery in question. Once a new vehicle

is enlisted, it becomes available on the other days.

In this way, no new vehicle is used on a day unless

all but at most one other vehicle has at least 50%

of its time scheduled. In other words, we have the

same quality as with first fit as applied to bin
packing: there is ‘‘at most one non-empty bin with

assigned contents .5 or less’’. The result of using

Greedy Scheduling with First Fit

(GFFMTVMPD) is then:

A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684 683
GFFMTVMPD < 2
Xn
i¼1

ei
pi

& ’
ð13Þ
which is the desired result. It is possible that the
approximation factor may be improved to

the level in (8), but it will require further

study. h
8. Conclusions and future directions

In addition to the future research directions
indicated within the paper, we are also interested

in studying a variation that includes another

dimension to the problem: the size of each cus-

tomer’s delivery. Each customer would still re-

quire a full truck load delivery, but each customer

would require a visit by a vehicle with minimum

capacity ci where ci is one of a set of options. The

objective could be modified to charge based on
the vehicles used or restrictions could be placed

on the number of each size of vehicle available

for use. This is much closer to the problems that

occur in practice.

The VMPD is an interesting problem with a

variety of applications in the changing world of

logistics and scheduling. It is deceptively easy to

describe, but NP-hard to solve. In this paper, we
have presented classes of instances that can be

solved exactly and theoretical results concerning

the properties of the problem and its variants.

These results should be helpful for decomposing

problems as well as approximating solutions to

practical problems. We have also described an

extension, the MTVMPD, and modified the

proposed algorithm and selected results accord-
ingly.
Acknowledgements

This research was partially funded by the Na-

tional Science Foundation under Award Number

DMI 02-37726 (Campbell). The authors wish to
thank Martin Savelsbergh for his valuable input

regarding this research.
References

[1] S.K. Baruah, R.R. Howell, L.E. Rosier, On preemptive

scheduling of periodic, real-time tasks on one processor,

in: Mathematical Foundations of Computer Science,

Springer-Verlag, Berlin, 1990, pp. 173–179.

[2] A. Campbell, L. Clarke, A. Kleywegt, M. Savelsbergh,

Inventory routing, in: T. Crainic, G. Laporte (Eds.), Fleet

Management and Logistics, Kluwer Academic Publishers,

1998.

[3] M. Christiansen, B. Nygreen, A method for solving ship

routing problems with inventory constraints, Annals of

Operations Research 81 (1998) 81.

[4] N. Christofides, J. Beasley, The period routing problem,

Networks 14 (2) (1984) 237–256.

[5] G. Gallego, D. Simchi-Levi, On the effectiveness of

direct shipping strategy for the one-warehouse multi-

retailer R-systems, Management Science 36 (2) (1990)

240–243.

[6] M. Garey, D. Johnson, Computers and Intractability,

W.H. Freeman and Company, 1979.

[7] M. Gaudioso, G. Paletta, A heuristic for the periodic

vehicle routing problem, Transportation Science 26 (2)

(1992) 86–92.

[8] M. Gaudioso, G. Paletta, S. Sanna, Management of

periodic demands in distribution systems, European Jour-

nal of Operational Research 20 (1985) 234–238.

[9] B. Golden, A. Assad, R. Dahl, Analysis of a large scale

vehicle routing problem with an inventory component,

Large Scale Systems 7 (2–3) (1984) 181–190.

[10] R. Graham, D. Knuth, O. Patashnik, Concrete Mathe-

matics, second ed., Addison-Wesley, 1994.

[11] T.W. Hungerford, Abstract Algebra: An Introduction,

Saunders College Publishing, 1990.

[12] K. Jeffay, D. Stanat, C. Martel, On non-preemptive

scheduling of periodic and sporadic tasks, in: Proceedings

of the Twelfth IEEE Real-Time Systems Symposium,

December 1991.

[13] D. Johnson, A. Demers, J. Ullman, M. Garey, R. Graham,

Worst-case performance bounds for simple one-dimen-

sional packing algorithms, SIAM Journal of Computing 3

(4) (1974) 299–325.

[14] V. Kats, E. Levner, Minimizing the number of robots to

meet a given cyclic schedule, Annals of Operations

Research 69 (1997) 209–226.

[15] V. Kats, E. Levner, Minimizing the number of vehicles in

periodic scheduling: The non-Euclidean case, European

Journal of Operational Research 107 (2) (1998) 371–

377.

[16] J. Korst, Periodic multiprocessor scheduling, Ph.D. thesis,

Technical University of Eindhoven, December 1992.

[17] T. Lee, M. Posner, Performance measures and schedules in

periodic job shops, Operations Research 45 (1) (1997) 72–

91.

[18] J.Y.-T. Leung, J. Whitehead, On the complexity of fixed-

priority scheduling of periodic, real-time tasks, Perfor-

mance Evaluation 2 (4) (1982) 237–250.

684 A.M. Campbell, J.R. Hardin / European Journal of Operational Research 165 (2005) 668–684
[19] J.B. Orlin, Minimizing the number of vehicles to meet a

fixed periodic schedule: An application of periodic posets,

Operations Research 30 (4) (1982) 760–776.

[20] K.S. Park, D.K. Yun, Optimal scheduling of periodic

activities, Operations Research 33 (3) (1985) 690–695.

[21] K. Rosen, Elementary Number Theory and its Applica-

tions, Addison-Wesley, 1984.
[22] R. Roundy, 98%-effective integer-ratio lot-sizing for one-

warehouse multi-retailer systems, Management Science 31

(11) (1985) 1416–1430.

[23] C.C. Tan, J.E. Beasley, A Heuristic algorithm for the

period vehicle routing problem, OMEGA International

Journal of Management 12 (5) (1984) 497–504.

	Vehicle minimization for periodic deliveries
	Introduction
	Problem definition
	Literature review
	Complexity
	Complexity of VMPD
	Scheduling with a single vehicle
	Constrained VMPD

	Problem size reduction
	Greedy algorithm
	Relatively prime periods
	Evenly divisible periods
	Performance of the greedy algorithm
	Bound on greedy algorithm
	Bound on any algorithm

	Variable execution times
	Evenly divisible periods

	Conclusions and future directions
	Acknowledgements
	References

